Using KDETrees

Grady Weyenberg
February 8, 2013

1 Introduction

KDETrees is a tool for finding discordant phylogenetic trees. It takes as input
an ape: :multiPhylo object, which contains a set of trees, and produces a score
for each tree. High scores mean the tree is relatively similar to other trees in the
sample, while low scores indicate that the tree in question may be discordant
with the others. If desired, a number of low scoring trees may be designated
as “outliers”, which removes their contribution from the calculation. By default
the lowest scoring 5% of the sample is removed.

2 Basic Use

2.1 Importing Trees

Trees may be imported using any of the methods provided by ape. See ?read.tree
and 7read.nexus for examples. To import the apicomplexa dataset, for exam-
ple, I placed the Newick tree stringsinto the apicompexa.tre file and used the
following command:

> apicomplexa <- read.tree("apicomplexa.tre")

2.2 Running kdetrees

The simplest way to run kdetrees is to call the function of the same name,
with the list of trees as the first argument.

> result <- kdetrees(apicomplexa)

By default branch lengths are ignored, if you would like to use the branch length
information in the calculation, set the use.blen option to true.

> result <- kdetrees(apicomplexa,use.blen=TRUE)

Another important option is the number of “outlier” trees which should be re-
moved from the calculation. This is controlled by the n parameter.

> result <- kdetrees(apicomplexa,n=12,use.blen=TRUE)

> plot(result)

12 Outliers Removed

outlier -+ FALSE - TRUE

. 5
CIC) S . ~ . .
o i 5 "

a

° s N

©

£ -

5 >

T10-

c

[=}

4

0- o
1 1 1
0 100 200
Tree Index

> hist(result)

Histogram of Estimates: 12 Outliers Removed

outier I FaLse [l TRuE

| | |
0 10 20 30 40

Non-normalized Density

Figure 1: Diagnostic plots can be created with plot and hist. These methods
use ggplot2, instead of base graphics.

It should be noted that the plot and hist methods use the ggplot2 package,
not base graphics. Thus, you can modify them as you see fit. For example,

> library(ggplot2)
> plot(result) + theme(panel.background=element_blank())

12 Outliers Removed

outlier FALSE - TRUE

w
o
|

Non-normalized Density
= N
o o
1 1

o
|
.

1
100 200
Tree Index

o

2.3 Results

The result object is a list with three components.

> str(result,strict.width="wrap")

List of 3

$ density : Named num [1:268] 32.1 20.7 26.5 26.5 27.6 ...

..— attr(x, "names")= chr [1:268] "457.tre" "458.tre"
"459.tre" "460.tre"

$ outliers : Named int [1:12] 51 80 266 36 177 79 259 223
239 176 ...

..— attr(*, "names")= chr [1:12] "515.tre" "bH47.tre"
"780.tre" "497.tre"

$ bandwidth: Named num [1:268] 1.5 2.85 1.61 1.65 1.63 ...

..— attr(*, "names")= chr [1:268] "457.tre" "458.tre"
"459.tre" "460.tre"

- attr(x, "class")= chr "kdetrees"

The first element, density, has the computed score for each tree in the input
list. This is the variable displayed in the diagnostic plots. The second element
outliers contains the indices of the low scoring trees which were not included
in the calculations. We can use this to extract the outlier trees from the input
list.

> outlier.trees <- apicomplexal[result$outliers]

One might then wish to look at a plot of the putative outlier trees. Here I plot
the lowest scoring tree in the apicomplexa dataset. It appears that something
bad happened during the reconstruction of this tree, causing one branch to be
much longer than the others.

> plot(outlier.trees[[1]],"u",no.margin=TRUE)

If you would like to export the outlier trees to a file, you may do something like
the following.

> write.tree(outlier.trees,file="outliers.tre")

3 Shell Script

The KDETrees package also comes with a bash shell script that calls kdetrees
using the Rscript executable. This is a convenience wrapper for cli users. If you
copy this script to a working directory you can run it as follows.

$./kdetrees -h
Usage: ./kdetrees [options] file [...]
Options:
-b, —-—use-branch-lengths
-n NUM-OUTLIERS, -—-num-outliers=NUM-OUTLIERS
-o OUTPUT-PREFIX, --output-prefix=0UTPUT-PREFIX
-h, --help, Show this help message and exit

This script will read any trees in the file[s] provided as positional arguments,
run kdetrees on them using the options provided, and write several output files
to the current directory. The outliers.tre file will contain newick strings of

the outlier trees, these trees are also rendered in the outliers.pdf file. The
scatterplot and histogram pdf filess contain the result of calling plot and hist,
respectively, and the results.csv file contains the name, Newick string, and
computed score for each tree found.

The final element of the result list bandwidth contains the bandwidths cal-
culated by the nearest-neighbor algorithm. This is discussed further in the next
section.

4 Advanced Options

Currently, kdetrees uses an adaptive bandwidth method based on a nearest-
neighbor calculation by default. It is possible to control the number of trees
used to define the neighborhood, or disable the adaptive method entirely and
provide a constant bandwidth, using the bw parameter. If bw is passed as a list,
the list is used as a set of parameters for a call to bw.nn. For example, to change
the neighborhood to include 50% of the sample, instead of the default 20%, we
would do the following.

> kdetrees(apicomplexa,n=12,bw=1ist (prop=0.5) ,use.blen=TRUE)
If we wanted to set a constant bandwidth, we simply pass it directly to bw.
> kdetrees (apicomplexa,n=12,bw=6,use.blen=TRUE)

The kdetrees function is a fairly simple wrapper of a few component func-
tions.

> kdetrees

function (trees, n = ceiling(0.05 * length(trees)), bw = 1list(),
L))
{
dm <- dist.diss(trees, ...)
if (is.list(bw))
bw <- do.call(bw.nn, c(list(dm), bw))
km <- normkern(dm, bw)
i <- which.min(estimate (km))
while (length(i) < n) {
j <- which.min(estimate(km[-i, -i]))
j[1] <- match(names(j), rownames (km))
i< cl, j)
+
est <- estimate(km, i)
out <- list(density = est, outliers = i, bandwidth = bw)
class(out) <- "kdetrees"
out
}

<environment: namespace:kdetrees>

Additional control over the method can be achieved by calling the dist.diss,
normkern, and estimate functions separately, although this is not recommended
unless you know what you are doing.

