
iprior: An R Package for Regression Modelling using

I-priors

Haziq Jamil
London School of Economics

Wicher Bergsma
London School of Economics

Abstract

This is an overview of the R package iprior, which implements a unified methodology
for fitting parametric and nonparametric regression models, including additive models,
multilevel models, and models with one or more functional covariates. Based on the
principle of maximum entropy, an I-prior is an objective Gaussian process prior for the
regression function with covariance kernel equal to its Fisher information. The regres-
sion function is estimated by its posterior mean under the I-prior, and hyperparameters
are estimated via maximum marginal likelihood. Estimation of I-prior models is simple
and inference straightforward, while small and large sample predictive performances are
comparative, and often better, to similar leading state-of-the-art models. We illustrate
the use of the iprior package by analysing a simulated toy data set as well as three real-
data examples, in particular, a multilevel data set, a longitudinal data set, and a dataset
involving a functional covariate.

Keywords: Gaussian, process, regression, objective, prior, empirical, Bayes, RKHS, kernel,
EM, algorithm, Nyström, random, effects, multilevel, longitudinal, functional, I-prior, R.

Updated: 3 November 2017

1. Introduction

For subject i ∈ {1, . . . , n}, assume a real-valued response yi has been observed, as well as a row
vector of p covariates xi = (xi1, . . . , xip), where each xik belongs to some set Xk, k = 1, . . . , p.
To describe the dependence of the yi on the xi, we consider the regression model

yi = f(xi) + εi

εi
iid∼ N(0, ψ−1)

(1)

where f is some regression function to be estimated. When f can be parameterised linearly
as f(xi) = x>i β, β ∈ Rp, we then have the ordinary linear regression - a staple problem in
statistics and other quantitative fields. We might also have that the data is separated naturally
into groups or levels by design - for example, data from stratified sampling, students within
schools, or longitudinal measurements over time. In such a case, we might want to consider
a regression function with additive components

f(xij , j) = f1(xij) + f2(j) + f12(xij , j)

where xij denotes the ith observation in group j ∈ {1, . . . ,m}. Again, assuming a linear
parameterisation, this is recognisable as the multilevel or random-effects linear model, with

2 Regression Modelling using iprior

f2 representing the varying intercept via f2(j) = β0j , f12 representing the varying slopes via
f12(xij , j) = x>ijβ1j , and f1 representing the linear component as above.

Moving on from linear models, smoothing models may be of interest as well. A myriad of
models exist for this type of problem, with most classed as nonparametric regression, and the
more popular ones are LOcal regrESSion (LOESS), kernel regression, and smoothing splines.
Semiparametric regression models combines the linear component with a non-parameteric
component.

Further, the regression problem is made interesting when the set of covariates X is functional
- in which case the linear regression model aims to estimate coefficient functions β : T → R
from the model

yi =

∫
T
xi(t)β(t) dt+ εi.

Nonparametric and semiparametric regression with functional covariates have also been widely
explored.

On the software side, there doesn’t seem to be a shortage of packages in R (R Core Team 2017)
to fit the models mentioned above. The lm() function provides simple and multiple linear
regression in base R. For multilevel models, lme4 (Bates, Mächler, Bolker, and Walker 2015) is
widely used. These two are likelihood based methods, but Bayesian alternatives are available
as well in rstanarm Stan Development Team (2016b) and brms(Bürkner 2017). For smoothing
models, base R provides the functions smooth.spline() for modelling with smoothing splines,
and ksmooth() for Nadaraya-Watson kernel regression. The mgcv package (Wood 2017) is
an extensive package that is able to fit (generalised) additive models. Finally, the fda package
(Ramsay, Wickham, Graves, and Hooker 2017) fits functional regression models in R.

The iprior package provides a platform in R to estimate a wide-range of regression models,
including the ones described above, using what we call the I-prior methodology. As such, it
can be seen as a unifying methodology for various regression models. Estimation and inference
is simple and straightforward using maximum likelihood, and thus the package provides the
end-user with the tools necessary to analyse and interpret various types of regression models.
Prediction is also possible, with small and large sample performance comparative to, though
often better than, other methodologies such as the closely related Gaussian process regression.

1.1. The I-prior regression model

For the regression model stated in (1), we assume that the function f lies in a reproducing
kernel Hilbert space (RKHS) of functions F with reproducing kernel h : X × X → R. Often,
the reproducing kernel (or simply kernel, for short) is defined by one or more parameters
which we shall denote as η. Correspondingly, the kernel is rightfully denoted as hη to indicate
the dependence of the parameters on the kernels, though where this is seemingly obvious,
might be omitted.

A consequence of the celebrated Moore-Aronszajn theorem for RKHSs is that we can show
that any function f ∈ F with kernel h may be written in the form

f(x) =
n∑
i=1

h(x, xi)wi (2)

for some real values w1, . . . , wn
1. We define the I-prior for our regression function f as the

distribution for a random function as in (2) such that each of the wi are identically distributed

Haziq Jamil, Wicher Bergsma 3

as N(0, ψ) with ψ being the model error precision. As a result, we may view the I-prior for f
as having the Gaussian process distribution

f =
(
f(x1), . . . , f(xn)

)> ∼ Nn(0, ψH2
η) (3)

with Hη an n × n matrix with (i, j) entries equal to hη(xi, xj), and 0 a length n vector of
zeroes. The covariance kernel of this prior distribution is related to the Fisher information for
f (Bergsma 2017), and hence the name I-prior - the ‘I’ stands for information. As a remark,
the prior mean of zero for the regression function is a suitable choice after centering the data,
and this is what the iprior package implements.

As with Gaussian process regression (GPR), the function f is estimated by its posterior mean.
In the normal model, the posterior distribution for the regression function conditional on the
responses y = (y1, . . . , yn),

p(f |y) =
p(y|f)p(f)∫
p(y|f)p(f) df

, (4)

can easily be found, and it is in fact normally distributed. The posterior mean for f evaluated
at a point x ∈ X is given by

f̂(x) = h>η (x) ·

w̃︷ ︸︸ ︷
ψHη

(
ψH2

θ + ψ−1In
)−1

y (5)

where we have defined h>η (x) to be the vector of length n with entries hη(x, xi) for i = 1, . . . , n.
Incidentally, the n-vector w̃ defined in (5) is the posterior mean of the random variables wi
in the formulation (2). The posterior variance for f is

σ2f (x) = h>η (x)
(
ψH2

η + ψ−1In
)−1

h>η (x). (6)

These are of course well-known results in Gaussian process literature - see, for example,
Rasmussen and Williams (2006) for details.

1.2. Estimation

The kernel parameters η and the error precision ψ (which we collectively refer to as θ, the
model hyperparameters of the covariance kernel) may need to be estimated. This can be done
in several ways, one of which is to optimise the marginal log-likelihood directly - the most
common method in the Gaussian process literature.

logL(θ) = log

∫
p(y|f)p(f) df

= −n
2

log 2π − 1

2
log |Σθ| −

1

2
y>Σ−1θ y

where Σθ = ψH2
η + ψ−1In. This is typically done using conjugate gradients with a Cholesky

decomposition on the covariance kernel to maintain stability, but the iprior package opts for

1That is to say, that F is spanned by the functions h(·, x). More precisely, F is the completion of the
space G = span{h(·, x)|x ∈ X} endowed with the inner product 〈g, g′〉G =

∑n
i=1

∑n
i=1 wiwjh(xi, xj). See, for

example, Berlinet and Thomas-Agnan (2011) for details.

4 Regression Modelling using iprior

an eigendecomposition of the kernel matrix (Gram matrix) Hη = V · diag(u1, . . . , un) · V>
instead. Since Hη is a symmetrix matrix, we have that VV> = In, and thus

Σθ = V · diag(ψu21 + ψ−1, . . . , ψu2n + ψ−1) ·V>

for which the inverse and log-determinant is easily obtainable. This method is relatively
robust to numerical instabilities and is better at ensuring positive definiteness of the covariance
kernel. The eigendecomposition is performed using the Eigen C++ template library and linked
to iprior using Rcpp (Eddelbuettel and Francois 2011). The hyperparameters are transformed
by the iprior package so that an unrestricted optimisation using the quasi-Newton L-BFGS
algorithm provided by optim() in R. Note that minimisation is done on the deviance scale,
i.e. minus twice the log-likelihood. The direct optimisation method can be prone to local
optima, in which case repeating the optimisation at different starting points and choosing the
one which yields the highest likelihood is one way around this.

Alternatively, the expectation-maximisation (EM) algorithm may be used to estimate the
hyperparameters, in which case the I-prior formulation in (2) is convenient. Substituting this
into (1) we get something that resembles a random effects model. By treating the wi as
“missing”, the tth iteration of the E-step entails computing

Q(θ) = E
[
log p(y,w|θ)

∣∣y, θ(t)] . (7)

As a consequence of the properties of the normal distribution, the required joint and posterior
distributions p(y,w) and p(w|y) are easily obtained. The M-step then maximises the Q
function above, which boils down to solving the first order conditions

∂Q

∂η
= −1

2
tr

(
∂Σθ

∂η
W̃(t)

)
+ ψ · y>∂Hη

∂η
w̃(t) (8)

∂Q

∂ψ
= −1

2
y>y − tr

(
∂Σθ

∂ψ
W̃(t)

)
+ y>Hηw̃

(t) (9)

equated to zero. Here, w̃ and W̃ are the first and second posterior moments of w. The
solution to (9) can be found in closed-form, but is generally not the case for (8). In cases
where closed-form solutions exist, then it is just a matter of iterating the update equations
until a suitable convergence criterion is met (e.g. no more sizeable increase in successive log-
likelihood values). In cases where closed-form solutions do not exist for θ, the Q function is
again optimised with respect to θ using the L-BFGS algorithm.

While the EM is a reliable estimation method, the downside to the EM algorithm is that it
is slow to converge, in that it typically requires a lot of iterations to reach convergence. The
iprior package provides a method to switch to the direct optimisation method after running
several EM iterations. This then combines the stability of the EM with the speed of direct
optimisation.

For completeness, it should be mentioned that a full Bayesian treatment of the model is possi-
ble, with additional priors on the hyperparameters set. Markov chain Monte Carlo (MCMC)
methods can then be employed to sample from the posteriors of the hyperparameters, with
point estimates obtained using the posterior mean or mode, for instance. Additionally, the
posterior distribution encapsulates the uncertainty about the parameter, for which inference
can be made. Posterior sampling can be done using Gibbs-based methods in WinBUGS

Haziq Jamil, Wicher Bergsma 5

(Lunn, Thomas, Best, and Spiegelhalter 2000) or JAGS (Plummer 2003), and both have in-
terfaces to R via R2WinBUGS (Sturtz, Ligges, and Gelman 2005) and runjags (Denwood
2016) respectively. Hamiltonian Monte Carlo (HMC) sampling is also a possibility, and the
Stan project (Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li,
and Riddell 2017) together with the package rstan (Stan Development Team 2016a) makes
this possible in R. All of these MCMC packages require the user to code the model individ-
ually, and there does not seem to exist, as far as we are aware of, MCMC-based packages
which are able to estimate GPR models. This makes it inconvenient for GPR and I-prior
models, because in addition to the model itself, the kernel functions need to be coded as well
and ensuring computational efficiency would be a difficult task. Note that this full Bayesian
method is not implemented in iprior, but described here for completeness.

1.3. Computational considerations

Computational complexity for estimating I-prior models (and in fact, for GPR in general) is
dominated by the inversion of the n×n matrix Σy = ψH2

θ +ψ−1In, which scales as O(n3) in
time. As mentioned earlier, the iprior package inverts this by way of the eigendecomposition
of Hθ, but this operation is also O(n3). For the direct optimisation method, this matrix
inversion is called when computing the log-likelihood, and thus must be computed at each
Newton step. For the EM algorithm, this matrix inversion appears when calculating w̃, the
posterior mean of the I-prior random effects. Furthermore, storage requirements for I-priors
models are similar to that of GPR models, which is O(n2).

The machine learning literature is rich in ways to resolve this issue, as summarised by
Quiñonero-Candela and Rasmussen (2005). One such method is to use low-rank matrix ap-
proximations. Let Q be a matrix with rank q < n, and that QQ> can be used to approximate
the kernel matrix Hθ. Then

(ψH2
θ + ψ−1In)−1 ≈ ψ

[
In −Q

((
ψ2Q>Q

)−1
+ Q>Q

)−1
Q>
]
,

obtained via the Woodbury matrix identity, is a much cheaper operation which scales O(nq2)
- O(q3) to do the inversion, and O(nq) to do the multiplication (because typically the inverse
is premultiplied to a vector). When the kernel matrix itself is low ranked (for instance, when
using the linear kernel) then the above method is exact. However, other interesting kernels
such as the fractional Brownian motion (fBm) kernel or the squared exponential kernel results
in kernel matrices which are full rank.

The method that this package uses is the Nyström method of approximating the kernel matrix
(Williams and Seeger 2001). The theory has its roots in approximating eigenfunctions, but
this has since been adopted to speed up kernel machines. The main idea is to obtain an
(approximation to the true) eigendecomposition of Hθ based on a small subset m� n of the
data points. Reorder the rows and columns and partition the kernel matrix as

Hθ =

(
Am×m Bm×(n−m)

B>m×(n−m) C(n−m)×(n−m)

)
.

The Nyström method provides an approximation to the lower right block C by manipulating
the eigenvectors and eigenvalues of A, an m×m matrix, together with the matrix B to give

Hθ ≈
(

Vm

B>VmU−1m

)
Um

(
V B>VmU−1m

)

6 Regression Modelling using iprior

where Um is the diagonal matrix containing the m eigenvalues of A, and Vm is the corre-
sponding matrix of eigenvectors. An orthogonal version of this approximation is of interest,
which has been studied by Fowlkes, Belongie, and Malik (2001), which allows us to easily cal-
culate the inverse of Σy. Estimating I-prior models using the Nyström method takes O(nm2)
times and O(nm) storage.

1.4. Comparison to other software packages

It is possible to reformulate the I-prior model as a GPR model instead, i.e. by using squared
kernels and a suitable reparameterisation of the hyperparameters (see Appendix A). With
this in mind, there are a number of excellent GPR software available which may potentially
be used to fit I-prior models. In this short review, we specifically make comparisons to R
packages.

The package kernlab (Karatzoglou, Smola, Hornik, and Zeileis 2004) provides a comprehensive
toolkit for not just GPR, but also other kernel-based machine learning models. The package
provides what is termed “dot product primitives (kernels)”, i.e. the functions to calculate
kernels and kernel matrices are exposed to the end-user. Furthermore, the package allows
user-defined kernel functions to extend their S4 methods which then means I-prior modelling
is possible. However, kernel hyperparameters must be fixed, and therefore it is not possible
to estimate the hyperparameter values from the data.

The package gptk (Kalaitzis, Honkela, Gao, and Lawrence 2014) on the other hand, originally
implemented in MATLAB, is able to estimate hyperparameters by log-likelihood maximisation.
Kernel support is minimal, with the main kernel used being the SE kernel. The authors of
the package have also developed another GPR package called gprege (Kalaitzis and Lawrence
2011), but it seems it is geared towards the specific usage in time-series genetic expression
analysis.

The package GPfit (MacDonald, Ranjan, and Chipman 2015) focuses effort on developing a
clustering based, gradient type, optimisation algorithm to estimate GPR models using the
squared exponential kernel. There is also no option to change or modify this kernel nor to
supply a user-defined kernel.

Finally, GPFDA (Shi and Cheng 2014) is a specialised package which performs GPR with
functional covariates, though unidimensional covariates are also supported. Kernel support is
also minimal, with only the linear and SE kernel builtin as of the time of writing, though the
package does estimate the hyperparameters and the error precision together via maximum
likelihood (conjugate gradients).

A common theme among all these packages, besides using the SE kernel as standard, is the
lack of a feature to estimate kernel parameters. Though when this feature is available, it is
not possible to supply a user-defined kernel in which to perform I-prior modelling. Apart
from kernlab, which only offers the functionality to use fixed hyperparameter values, there
does not seem to be a suitable package to estimate I-prior models.

2. The iprior package

There are three main functions in the iprior package. The first are the various kern_*()

functions to create kernel matrices. The second is the kernL() function to “load the kernels”

Haziq Jamil, Wicher Bergsma 7

and prepare an I-prior model. The third is the iprior() function itself, which either takes a
prepared kernel-loaded object from kernL(), or takes in a model directive straight from the
user, and proceeds to fit an I-prior model. A schematic of the package is shown in the figure
below.

DATA

x, y contained
in data frame

x, y as vector/
matrices

formula syntax

non-formula syntax

ipriorMod
object

ipriorKernel
object

Parameter
estimates only

iprior()

extract ipriorKernel

refit using
iprior() or
update()

MODEL & FIT

external optimisers

kernL()
(kern_*()called  

internally)

• simple input

• more options to fit
complex models

iprior()
(kernL()called

internally)

Figure 1: A schematic of the package. The main iprior() function can be called directly,
which in turn calls kernL() internally and that calls the particular kern_*() functions. Al-
ternatively, these can be called individually.

2.1. Kernels

The building blocks of the I-prior models are kernel functions: Symmetric, positive-definite
functions which maps pairs of inputs from X to a real number, i.e. h : X × X → R. The
usefulness of kernels are particularly well-known in the machine learning literature, with
many methods taking advantage of what is known as the “kernel trick” (Bishop 2006, Section
6). For our purposes, kernels give rise to reproducing kernel Hilbert spaces (RKHS), which
provides us the mathematical structure necessary to perform I-prior modelling. The choice of
kernel determines the space of functions that the I-prior functions resides in, and this package
supports five types of RKHSs, which are explained below. With the exception of the Pearson
kernel, the set X for the kernels are assumed to be Rd, for some d ∈ N.

In what follows, each of the kernel functions have an associated scale parameter λ. The
scale of the RKHS over the set of covariates may be arbitrary, so scale parameters, typically
estimated from the data, are introduced to resolve this. Setting scale parameter values are
optional when calling the kernel functions in iprior, with default values of one. Some of the
kernels are also defined by additional parameters.

The canonical linear kernel

The function kern_linear() (or the alternatively named kern_canonical()) implements

8 Regression Modelling using iprior

the kernel given by

hλ(x, x′) = λ · 〈x, x′〉X .

This gives rise to the RKHS of “straight-line” functions.

The fractional Brownian motion (fBm) kernel

The function kern_fbm() implements the fractional Brownian motion kernel with Hurst co-
efficient γ ∈ (0, 1), as defined by

hλ,γ(x, x′) = −λ
2

(
‖x− x′‖2γX − ‖x‖

2γ
X − ‖x

′‖2γX
)
.

This gives rise to functions suitable for smoothing models. The value of the Hurst coefficient
acts as a smoothing parameter. The default value γ = 0.5 is used in the package.

The squared exponential (SE) kernel

The function kern_se() implements the de-facto kernel used in GPR, as defined by

hλ,l(x, x
′) = λ · exp

(
−
‖x− x′‖2X

2l2

)
.

The length scale parameter l > 0 determines how much the smooth exponential functions
wiggles. Parameterised differently, this kernel is also known as the Gaussian kernel or the
radial basis function (RBF) kernel. The default length scale is set to one.

The d-degree polynomial kernel

The function kern_poly() implements polynomial kernel with degree d and offset c ≥ 0, as
given by

hλ,c,d(x, x
′) =

(
λ · 〈x, x′〉X + c

)d
.

This allows modelling with functions with effect similar to that achieved by polynomial re-
gression. In other words, squared, cubic, or higher order terms may be added to the regression
function simply by choosing the correct degree d. The offset parameter may be estimated or
left at the default of zero.

The Pearson kernel

The so-called Pearson RKHS contains functions that map a countably finite set X to the
reals, and so the kernel is used for categorical covariates. Let P be a probability distribution
over X . The function kern_pearson() implements the kernel defined by

hλ(x, x′) = λ ·
(

δxx′

P(X = x)
− 1

)
,

where δ is the Kronecker delta. The package uses the empirical distribution in lieu of the true
distribution P. The Pearson RKHS is so named due to its relation with the Pearson chi-square
statistic as seen from the Hilbert-Schmidt independence criterion (HSIC) (Gretton, Bousquet,
Smola, and Schölkopf 2005).

Haziq Jamil, Wicher Bergsma 9

x

f(x
)

Sample linear I−prior paths

x

f(x
)

Sample fBm I−prior paths (Hurst = 0.5)

x

f(x
)

Sample SE I−prior paths (lengthscale = 0.5)

x

f(x
)

Sample polynomial I−prior paths (degree = 2)

Figure 2: Samples of function paths following an I-prior under various kernels. These were
generated according to (2) with ψ = 1.

Examples

The kern_*() functions take in vectors or matrices x, and another optional vector or matrix
y. If y is not supplied, then y is taken to be x. The function returns a matrix with entries
[i, j] entries equal to h(x[i,], y[j,]).

R> # The linear kernel

R> x <- rnorm(5)

R> kern_linear(x, 1:5)

R> # The fBm kernel with Hurst = 0.5

R> y <- rnorm(3)

R> kern_fbm(x, y, gamma = 0.5)

R> # The SE kernel with length scale = 1

R> x <- matrix(rnorm(5 * 3), nrow = 5, ncol = 3)

R> kern_se(x, l = 1)

R> # The polynomial kernel with degree = 2 and offset = 0

R> y <- matrix(rnorm(3 * 3), nrow = 3, ncol = 3)

R> kern_poly(x, y, d = 2, c = 0)

R> # The Pearson kernel

R> x <- factor(1:5)

R> kern_pearson(x)

10 Regression Modelling using iprior

The Sobolev-Hilbert inner product for functional covariates

Suppose that we have functional covariates x in the real domain, and that X is a set of
differentiable functions. If so, it is reasonable to assume that X is a Sobolev-Hilbert space
with inner product

〈x, x′〉X =

∫
ẋ(t)ẋ′(t) dt,

so that we may apply the linear, fBm or any other kernels which make use of inner products by
making use of the polarisation identity. Furthermore, let z ∈ RT be the discretised realisation
of the function x ∈ X at regular intervals t = 1, . . . , T . Then

〈x, x′〉X ≈
T−1∑
t=1

(zt+1 − zt)(z′t+1 − z′t).

For discretised observations at non-regular intervals then a more general formula to the above
one might be used.

Centred kernels

As a remark, the package implements centred versions of the following kernels when estimating
I-prior models, which resolves the possibly arbitrary origin of the RKHS over the set of
covariates. The use of centred kernels in the iprior() function is non-negotiable. However,
when calling the kern_*() functions independently, an additional option centre = FALSE

may be set to retrieve the non-centred versions of the respective kernels.

2.2. The kernel loader

For the remainder of Section 2, we shall be looking at the Orange data set available in base R,
which contains n = 35 growth records of the circumference of the trunks of seven orange trees.
The data set also contains the age of the trees (in days) at the time of measurement. The
tree labels are treated as nominal variables, and the rest of the data set as real, continuous
measurements. For simplicity, we shorten the variable names

R> names(Orange) <- c("tree", "age", "circ")

R> head(Orange)

tree age circ

1 1 118 30

2 1 484 58

3 1 664 87

4 1 1004 115

5 1 1231 120

6 1 1372 142

Basic syntax

The kernL() function readies an I-prior model for estimation according to the user’s specifi-
cation of the model. It determines the hyperparameters to be estimated (or fixed), performs

Haziq Jamil, Wicher Bergsma 11

the necessary kernel matrix calculations, and outputs an object of class ipriorKernel. This
can then be passed to the iprior() function for estimation, which is explained in Section
2.3. An I-prior model may be specified using formula or non-formula syntax, and the most
basic syntax is as follows:

R> mod <- kernL(circ ~ age + tree, data = Orange) # formula syntax

R> with(Orange, mod <<- kernL(y = circ, age, tree)) # non-formula syntax

This would fit the following model:

circ = f(age, tree) + ε

ε ∼ N(0, ψ−1)

with f ∈ F (an RKHS), and an I-prior on the regression function f . In the I-prior methodol-
ogy, we assume an additive decomposition of the regression function into constituent functions
dictated by the desired effect of the covariates. For instance, we could assume that

f(age, tree) = f1(age) + f2(tree)

where f1 lies in the linear RKHS F1 and f2 lies in the Pearson RKHS F2, so that F = F1+F2.
This would have the effect of regressing separate “straight line” functions with similar slopes
on the covariate age for each tree - in other words, it is a varying-intercept model. Omitting
the tree variable in the syntax above would fit a linear regression model of circ on age.

Interactions

A varying-slope effect can be achieved by assuming

f(age, tree) = f1(age) + f2(tree) + f12(age, tree).

Here, f12 is assumed to lie in the so-called tensor product RKHS F1 ⊗ F2 with kernel h12 =
h1h2. To fit this model, the additional option interactions should be called when using
non-formula syntax. In the formula syntax, then use the regular expression for interactions.

R> # formula syntax

R> mod <- kernL(circ ~ age + tree + age:tree, data = Orange)

R> # non-formula syntax

R> with(Orange, {

+ mod <<- kernL(y = circ, age, tree, interactions = "1:2")

+ })

The syntax for specifying interactions in the non-formula syntax is "a:b" to indicate that
the variable in position a interacts with the variable in position b. As seen above, this is
automatically dealt with when using formula. The resulting output from print() contains
information regarding the I-prior model prescribed.

12 Regression Modelling using iprior

R> print(mod)

Sample size: 35

No. of covariates: 2

Object size: 0.1 MB

##

Kernel matrices:

1 linear [1:35, 1:35] 646646 352329 207584 -65825 -248365 ...

2 pearson [1:35, 1:35] 4 4 4 4 4 4 4 -1 -1 -1 ...

3 linear x pearson [1:35, 1:35] 2586583 1409318 830335 -263299 -993461 ...

##

Hyperparameters to estimate:

lambda[1], lambda[2], psi

##

Estimation methods available:

direct, em, mixed, fixed

As the output tells us, the I-prior model “loaded” has n = 144 samples and one covariate
using the linear RKHS. The hyperparameters to estimate are the scale parameters lambda[1]
and lambda[2], and the error precision psi. Note that since the kernel for the interaction
effect is simply the product of the two kernels, there are no additional hyperparameters as a
result. The estimation methods, selectable during the iprior() fit, are the direct optimisation
method, the EM algorithm, and the mixed (EM plus direct) method. It is also possible just to
obtain the posterior regression estimate based on fixed hyperparameters. Setting user-defined
hyperparameter values for the scale parameters, error precision, and other kernel parameters
are explained next.

Specifying kernels and setting hyperparameters

If instead we assumed that F1 is the fBm RKHS, we can achieve a smooth effect of the
covariate age on the response variable. This is achieved by specifying the kernel option:

R> mod <- kernL(circ ~ ., data = Orange, kernel = "fbm")

R> mod$kernels

tree age

"pearson" "fbm,0.5"

Notice that factor type objects are automatically treated with the Pearson kernel, and this
is not able to be overridden unless the data is preprocessed beforehand and converted to a
numeric class object. If there are multiple variables in the model, it is possible to specify
them individually, as follows:

R> Orange$tree <- as.numeric(Orange$tree)

R> mod <- kernL(circ ~ age + tree, data = Orange,

+ kernel = c("se,0.5", "poly3,1"))

R> get_kernels(mod)

Haziq Jamil, Wicher Bergsma 13

age tree

"se,0.5" "poly3,1"

In this example, the variable tree has been converted to a numeric class, and applied a poly-
nomial kernel of degree three and offset equal to one. Meanwhile, the kernel for age has been
set to a SE kernel with lengthscale 0.5. Note the use of the comma (,) to specify the hyper-
parameter for the kernel. The syntax is "<kernel name>,<value>", where <kernel name>

can be one of fbm, se or poly (the linear and pearson kernels do not have hyperparameters
associated with them, except the scale). Omission of the ,<value> is allowed, in which case
the default values for the kernels are set. To set the degree d of the polynomial kernel, use
poly or poly2 for d = 2, poly3 for d = 3, and so on.

It is also possible to set the values of the scale parameters and error precision by including
the arguments lambda = <value> and/or psi = <value>, and this is especially relevant if
the user would like these values to be treated as fixed. Note that setting values for any of the
hyperparameters above do not indicate that they should not be estimated; this is explained
in the next subsection.

Selecting the hyperparameters to estimate

With the current five kernels supported by the package, users may select which of the hyper-
parameters should be estimated in the I-prior model. This is specified by calling the logical
options listed in the Table 1. Here’s an example:

R> (kernL(circ ~ age + tree, Orange, kernel = "fbm", est.hurst = TRUE))

Sample size: 35

No. of covariates: 2

Object size: 0 MB

##

Kernel matrices:

1 fbm,0.5 [1:35, 1:35] 529 216 87 -107 -205 ...

2 pearson [1:35, 1:35] 4 4 4 4 4 4 4 -1 -1 -1 ...

##

Hyperparameters to estimate:

lambda[1], lambda[2], hurst[1], psi

##

Estimation methods available:

direct, em, mixed, fixed

By default, the scale parameters and error precision are estimated, while the other hyper-
parameters are not. Note that the package does not optimise the degree of the polynomial
kernel. To quick set all est.* options to TRUE/FALSE, use the fixed.hyp option. When
there are several covariates using the same kernel, it is not possible to choose which of the
covariates kernel hyperparameters to fix and which to estimate - the current implementation
of the package is to either estimate all of them, or to fix all of them.

14 Regression Modelling using iprior

Option Description Default

est.lambda Estimate scale parameters? TRUE

est.hurst Estimate fBm Hurst coefficients? FALSE

est.lengthscale Estimate SE lengthscales? FALSE

est.offset Estimate polynomial offsets? FALSE

est.psi Estimate the error precision? TRUE

fixed.hyp Quick TRUE/FALSE toggle for all est.* NULL

Table 1: The various options for which hyperparameters to estimate.

The Nyström method

The Nyström method of approximating the kernel matrix is supported by the package. This
is set by calling the option nystrom = TRUE. This would then use a random sample of 10%
of the total data available to estimate the kernel matrix. Alternatively, the nystrom option
can be set to be a number equal to the Nyström sample size m as described in Section
1.3. Additionally, the seed for random sampling can be controlled by supplying a value to
nys.seed.

R> (kernL(circ ~ age, Orange, kernel = "se", nystrom = 10, nys.seed = 123))

Sample size: 35

No. of covariates: 1

Object size: 0 MB

##

Kernel matrices:

1 se,1 [1:10, 1:35] 1 0 0 0 0 0 0 1 0 0 ...

##

Hyperparameters to estimate:

lambda, psi

##

Estimation methods available:

direct (Nystrom), fixed (Nystrom)

2.3. Model fitting and post-estimation

The main function to estimate I-prior models in the form of ipriorKernel objects is the
iprior() function. Based on information from the ipriorKernel, it dispatches the esti-
mation procedure to a selected subroutine and estimates the hyperparameters of the I-prior
model, if any. The resulting fit is an object of class ipriorMod. Users may select from
"direct", "em", "mixed", or "fixed" as an option to supply to method in the iprior()

function. For instance,

R> mod <- kernL(circ ~ age + tree + age:tree, data = Orange)

R> mod.fit <- iprior(mod, method = "direct") # default method

R> mod.fit <- iprior(mod, method = "em") # The EM algorithm

Haziq Jamil, Wicher Bergsma 15

The iprior() function is also a wrapper function for the kernL() and estimation procedures.
This means that users may call the iprior() function directly, with the exact same options
that are available to kernL(), without having to invoke the two step procedure of calling
kernL() and then iprior(). The following code fits the above model in one step using the
EM algorithm and the fBm kernel.

R> mod <- iprior(circ ~ age + tree + age:tree, data = Orange, kernel = "fbm",

+ method = "em")

Exposing the kernel loader function for the end user has two advantages. Firstly, I-prior
models can sometimes involve high-dimensional matrix multiplications, and these may take a
long time to process. By “loading the kernel”, the user is able to have a stored ipriorKernel

object which can then be reused and fitted . A situation where this would be useful would be
when the user would like to restart the EM algorithm from different set of starting values, or
change to a different estimation procedure. Rather than having to go through all the kernel
loading process all over again, the user can simply call the saved ipriorKernel object from
memory. The caveat of storing the loaded kernel matrices is that it may take a large amount
of memory since I-prior models have O(n2) storage requirements - this is the price to pay for
the convenience.

Secondly, the kernL() function allows for flexible model fitting. The logLik() and deviance()

S3 methods can be used on an ipriorKernel object to calculate the log-likelihood and
deviance respectively at the hyperparameter value theta. There is flexibility in the sense
that the user can then estimate the hyperparameters of the I-prior model through means
other than optim()’s L-BFGS algorithm or the EM algorithm, which is built in to the
iprior() function. A wide range of optimisation packages are available in R - see here:
https://cran.r-project.org/web/views/Optimization.html for details.

Control options

Besides the estimation method and model options from kernL(), the other main option is the
control of fitting methods. The user supplies the iprior() function a list containing the
control options to modify. The available control options are:

1. maxit

The maximum number of iterations for either the L-BFGS optimisation procedure or
the EM algorithm. Defaults to 100.

2. em.maxit

When using method = "mixed", this controls the number of initial EM steps before
switching to the direct optimisation method. Defaults to 5.

3. stop.crit

The stopping criterion for either the L-BFGS optimisation procedure or the EM algo-
rithm. The algorithm terminates when it is not able to improve the log-likelihood value
by stop.crit. Defaults to 1e-8.

4. report

The interval for progress reporting of the L-BFGS algorithm by optim().

https://cran.r-project.org/web/views/Optimization.html

16 Regression Modelling using iprior

5. theta0

The initial values for the hyperparameters. By default, these are set to random values,
but may be changed by the user. Note that the hyperparameters have been transformed
so that an unconstrained optimisation can be performed - see Appendix B for details.

6. restarts

The estimation procedure can be restarted multiple times from different initial values
by setting restarts = TRUE. This is especially useful when local optima are present.
The run with the highest log-likelihood value is chosen automatically. By default, the
number of restarts is equal to the number of available cores on the machine, and each run
is parallelised on each core. This is achieved using the R packages foreach (Revolution
Analytics and Weston 2015) and doSNOW (Microsoft Corporation and Weston 2017).

7. no.cores

The number of cores to make available to iprior() for the parallel restarts. By default,
it detects and sets this to the maximum number of cores available on the machine.

8. silent

A logical option to turn on or off progress feedback from the estimation procedures.

An example for setting control options is shown below.

R> mod <- kernL(circ ~ age + tree + age:tree, data = Orange)

R> # Set a higher number of maximum iterations and more lenient stop.crit

R> mod.fit <- iprior(mod, control = list(maxit = 500, stop.crit = 1e-3))

R> # Set the mixed method to run more EM steps

R> mod.fit <- iprior(mod, control = list(em.maxit = 50))

R> # Start from lambda = c(2, 2) and psi = 0.5

R> mod.fit <- iprior(mod, control = list(theta0 = c(2, 2, log(0.5))))

R> # Perform four restarts on four cores

R> mod.fit <- iprior(mod, control = list(restarts = 4, no.cores = 4))

R> # Completely turn off reporting

R> mod.fit <- iprior(mod, control = list(silent = TRUE))

Refit and update

The iprior function is written as an S3 generic which is able to dispatch on ipriorMod objects
as well. A practical situation for this is when the EM algorithm has not fully converged within
the maxit supplied, then one can simply run

R> mod.fit <- iprior(mod.fit)

which then estimates the I-prior model from the previous obtained hyperparameter values.
This is possible because the resulting ipriorMod object also contains the ipriorKernel object
(from kernL()). Even better still, running

Haziq Jamil, Wicher Bergsma 17

R> update(mod.fit, iter.update = 100)

updates the ipriorMod object with another 100 iterations using the same estimation method,
and then overwrites mod.fit in environment without having to explicitly do the assignment.
It is also possible to set a new estimation method and supply a new control list.

Post-estimation

There are several methods written for ipriorMod objects. The print() and summary()

are ways to inspect the resulting fit and obtain information required for analysis and in-
ference. This includes information on the I-prior model and fit information such as the
model call/formula, the kernels used on the covariates, the estimation method and relating
convergence information. The summary also includes the estimated hyperparameter values,
along with their standard errors and p-values for an asymptotic Z-test of normality, the
log-likelihood value and training mean squared error.

R> mod.fit <- iprior(circ ~ . ^ 2, data = Orange, method = "em",

+ control = list(maxit = 5000))

==================================

Converged after 2446 iterations.

R> print(summary(mod.fit), wrap = TRUE) # wrap option to neaten LaTeX output

Call:

iprior(formula = circ ~ .^2, data = Orange, method = "em",

control = list(maxit = 5000))

##

RKHS used:

Pearson (tree)

Linear (age)

##

Residuals:

Min. 1st Qu. Median 3rd Qu. Max.

-16.7965 -7.2506 -0.5123 7.3863 18.1857

##

Hyperparameters:

Estimate S.E. z P[|Z>z|]

lambda[1] -9.9940 3.5640 -2.804 0.005 **

lambda[2] -0.0002 0.0001 -2.372 0.018 *

psi 0.0110 0.0030 3.644 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Closed-form EM algorithm. Iterations: 2446/5000

Converged to within 1e-08 tolerance. Time taken: 2.629601 secs

Log-likelihood value: -160.6596

Training mean squared error: 78.89536

18 Regression Modelling using iprior

Inference on the scale parameters λ essentially give us a sense of importance of that covariate
on the response, since functions in the RKHS are of the form

f(x) = λ
n∑
i=1

h(x, xi)wi,

as we saw earlier in (2). Thus, a scale parameter which is not statistically significant implies
that the contribution of that function is nil. Furthermore, model comparisons can be done
via log-likelihood ratio tests whose test statistic follows an asymptotic χ2 distribution with
degrees of freedom equal to the difference in the number of parameters estimated. When
the number of parameters are the same, then it is a matter of selecting models with higher
likelihood. Such a method of comparing marginal likelihoods can be seen as Bayesian model
selection using empirical Bayes factors.

Fitted values may be obtained using fitted(), and predicted values at a new set of data points
newdata using predict(). There is an option so that both function return the credibility
interval for the predictions at the alpha level of significance. Although the hyperparameters
are estimated using maximum likelihood, the regression function itself possesses a posterior
distribution, and this is used for the credibility intervals. The newdata must be similar to the
original data used to fit the model - for formula syntax, this must be a data frame containing
identical column names; for non-formula syntax, the variables must be supplied as a list.

R> fitted(mod.fit)

Training MSE: 78.89536

##

Predicted values:

1 2 3 4 5 6 7 8

35.508 65.139 79.711 107.236 125.614 137.029 154.030 33.899

9 10

79.481 101.898

... with 25 more values

R> predict(mod.fit, Orange[1:5,], intervals = TRUE, alpha = 0.05)

Test MSE: 45.24412

##

Predicted values:

2.5% Mean 97.5%

1 12.578 35.508 58.439

2 44.426 65.139 85.851

3 59.653 79.711 99.769

4 87.499 107.236 126.974

5 105.404 125.614 145.824

Several plot functions have been written for ipriorMod objects, with the plot() S3 method
pointing to the plot_fitted() function. This plots the fitted regression line through the

Haziq Jamil, Wicher Bergsma 19

0

50

100

150

200

250

400 800 1200 1600

age

ci
rc

tree

3

1

5

2

4

Figure 3: Plot of fitted regression line for the Orange data set. Confidence bands for predicted
values are also shown.

data points, with the response variable on the y-axis and the covariate on the x-axis. Thus,
it is only useful when the data is able to be presented on a two-dimensional plane. The other
plot functions are described in Table 2.

3. Modelling examples

We demonstrate the use of the iprior package with modelling a toy example from a simulated
data set, as well as three other real-data examples.

3.1. Using the Nyström method

In this section, we investigate the use of the Nyström method of approximating the kernel
matrix in estimating I-prior models applied to a toy data set. The data is obtained by
randomly generating data points according to the true regression model

yi = const.+ 0.35 · φ(xi; 1, 0.82) + 0.65 · φ(xi; 4, 1.52) + 1[xi > 4.5] · e1.25(xi−4.5) + εi

εi
iid∼ N(0, 0.92)

where φ(x;µ, σ2) represents the PDF of a normal distribution with mean µ and variance σ2.
The features of this regression function are two large bumps at the centres of the mixed Gaus-
sian PDFs, and also a small bump right after x > 4.5 caused by the additional exponential
function. The true regression function goes to positive infinity as x increases, and to zero as x
decreases. 2,000 (x, y) points in the domain x ∈ (−1, 5.5) have been generated by the built-in
gen_smooth() function, which generates data from the regression model above2.

2Random fluctuations have also been added to the (x, y) coordinates.

20 Regression Modelling using iprior

R Function Description

Methods

coef Extracts the estimates of the hyperparameters that have
been estimated.

sigma Extracts the estimate of the model standard deviation of
errors (i.e., square root of the inverse error precision).

fitted Returns the fitted value of the responses ŷ1, . . . , ŷn.
predict Calculates fitted values from a new set of covariates.
resid Returns the residuals ε̂1, . . . , ε̂n.
logLik Returns the log-likelihood value of the fitted I-prior model

at the ML estimates.
deviance Returns twice the negative log-likelihood value.

Accessor functions

get_intercept Obtains the intercept of the regression function.
get_hyp Obtains all values of the model hyperparameters (both esti-

mated and fixed values).
get_lambda Obtains scale parameters used for the RKHS.
get_psi Obtains the model error precision.
get_se Obtains the standard errors for the estimated hyperparam-

eters.
get_kernels Obtains the RKHS used for the regression functions.
get_kern_matrix Obtains the kernel matrix Hθ.
get_mse Obtains the training mean squared error.
get_estl Obtains information on which hyperparameters were fixed

and which were estimated.
get_method Obtains the estimation method used to fit the model.
get_convergence Obtain the convergence information.
get_niter Obtain the number of iterations (Newton or EM steps) taken

to fit the model.
get_time Obtains the time taken to run the estimation procedure.
get_size Obtains the size of the ipriorKernel object (where most of

the large matrices are stored).

Plots

plot This currently points to plot_fitted() for convenience.
plot_fitted Plot of fitted regression line.
plot_resid Plot of residuals against fitted values.
plot_iter Plot of the log-likelihood values over time/iteration.
plot_ppc Plot of a posterior predictive check of the observed versus

fitted distribution of the responses.

Table 2: Available methods, accessor functions and plot functions for an object of class
ipriorMod.

Haziq Jamil, Wicher Bergsma 21

R> dat <- gen_smooth(n = 2000, xlim = c(-1, 5.5), seed = 1)

R> head(dat)

y X

1 0.6803514 -2.608953

2 3.6747031 -2.554039

3 -1.1563508 -2.381275

4 2.2657657 -2.280259

5 2.5398243 -2.214122

6 1.2929592 -2.170532

One could fit the regression model using all available data points, with an I-prior from the
fBm-0.5 RKHS of functions as follows (note that the silent option is used to suppress the
output from the iprior() function):

R> (mod.full <- iprior(y ~ X, dat, kernel = "fbm",

+ control = list(silent = TRUE)))

Log-likelihood value: -4355.075

##

lambda psi

2.30244 0.23306

To implement the Nyström method, the option nystrom = 50 was added to the above function
call, which uses 50 randomly selected data points for the Nyström approximation.

R> (mod.nys <- iprior(y ~ X, dat, kernel = "fbm", nystrom = 50,

+ control = list(silent = TRUE)))

Log-likelihood value: -1945.33

##

lambda psi

1.64833 0.13538

The hyperparameters estimated for both models are slightly different. The log-likelihood is
also different, but this is attributed to information loss due to the approximation procedure.
Nevertheless, we see from Figure 4 that the estimated regression functions are quite similar in
both the full model and the approximated model. The main difference is that the the Nyström
method was not able to extrapolate the right hand side of the plot well, because it turns out
that there were no data points used from this region. This can certainly be improved by
using a more intelligent sampling scheme. The full model took a little under 15 minutes to
converge, while the Nyström method took just seconds. Storage savings is significantly higher
with the Nyström method as well.

22 Regression Modelling using iprior

0

10

20

−2.5 0.0 2.5 5.0 7.5

X

y

0

10

20

−2.5 0.0 2.5 5.0 7.5

X

y

Figure 4: Plot of predicted regression function for the full model (left) and the Nyström
approximated method (right). For the Nyström plot, the data points that were active are
shown by circles with bold outlines.

R> get_time(mod.full); get_size(mod.full, units = "MB")

14.14067 mins

128.2 MB

R> get_time(mod.nys); get_size(mod.nys)

1.215164 secs

965.3 kB

3.2. Random effects models

In this section, a comparison between a standard random effects model and the I-prior ap-
proach for estimating varying intercept and slopes model is illustrated. The example concerns
control data3from several runs of radioimmunoassays (RIA) for the protein insulin-like growth
factor (IGF-I) (explained in further detail in Davidian and Giltinan 1995, Section 3.2.1). RIA
is a in vitro assay technique which is used to measure concentration of antigens - in our case
the IGF-I proteins. When an RIA is run, control samples at known concentrations obtained
from a particular lot are included for the purpose of assay quality control. It is expected
that the concentration of the control material remains stable as the machine is used, up to a
maximum of about 50 days, at which point control samples from a new batch is used to avoid
degradation in assay performance.

R> data(IGF, package = "nlme")

R> head(IGF)

Grouped Data: conc ~ age | Lot

Lot age conc

1 1 7 4.90

2 1 7 5.68

Haziq Jamil, Wicher Bergsma 23

3 1 8 5.32

4 1 8 5.50

5 1 13 4.94

6 1 13 5.19

The data consists of IGF-I concentrations (conc) from control samples from 10 different lots
measured at differing ages of the lot. The data were collected with the aim of identifying
possible trends in control values conc with age, ultimately investigating whether or not the
usage protocol of maximum sample age of 50 days is justified. Pinheiro and Bates (2000)
remarks that this is not considered a longitudinal problem because different samples were
used at each measurement.

We shall attempt to model the IGF data set using the I-prior methodology using the regression
function

f(age, Lot) = f1(age) + f2(Lot) + f12(age, Lot)

where f1 lies in the linear RKHS F1, f2 in the Pearson RKHS F2 and f12 in the tensor product
space F12 = F1 ⊗ F2. The regression function f then lies in the RKHS F = F1 + F2 + F12

with kernel equal to the sum of the kernels from each of the RKHSs. The explanation here
is that the conc levels are assumed to be related to both age and Lot, and in particular, the
contribution of age on conc varies with each individual Lot. This gives the intended effect of
a linear mixed-effects model, which is thought to be suitable in this case, in order to account
for within-lot and between-lot variability. We first fit the model using the iprior package, and
then compare the results with the standard random effects model using lme4::lmer(). The
command to fit the I-prior model using the EM algorithm is

R> mod.iprior <- iprior(conc ~ age * Lot, IGF, method = "em")

==

Converged after 57 iterations.

R> summary(mod.iprior)

Call:

iprior(formula = conc ~ age * Lot, data = IGF, method = "em")

##

RKHS used:

Linear (age)

Pearson (Lot)

##

Residuals:

Min. 1st Qu. Median 3rd Qu. Max.

-4.4889 -0.3798 -0.0090 0.2563 4.3973

##

Hyperparameters:

Estimate S.E. z P[|Z>z|]

3This data is available in the R package nlme (Pinheiro, Bates, DebRoy, Sarkar, and R Core Team 2017).

24 Regression Modelling using iprior

8 5 4 3 7

9 6 1 10 2

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

age

co
nc

Figure 5: Plot of fitted regression line for the I-prior model on the IGF data set, separated
into each of the 10 lots.

lambda[1] 0.0000 0.0002 -0.004 0.997

lambda[2] 0.0007 0.0030 0.238 0.812

psi 1.4576 0.1366 10.672 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Closed-form EM algorithm. Iterations: 57/100

Converged to within 1e-08 tolerance. Time taken: 2.62014 secs

Log-likelihood value: -291.9033

Training mean squared error: 0.6845311

To make inference on the covariates, we look at the scale parameters lambda. We see that
both scale parameters for age and Lot are close to zero, and a test of significance is not able
to reject the hypothesis that there parameters are indeed null. We conclude that neither age
nor Lot has a linear effect on the conc levels. The plot of the fitted regression line in Figure
5 does show an almost horizontal line for each Lot.

The standard random effects model, as explored by Davidian and Giltinan (1995) and Pinheiro

Haziq Jamil, Wicher Bergsma 25

and Bates (2000), is

concij = β0j + β1jageij + εij(
β0j
β1j

)
∼ N

((
β0
β1

)
,

(
σ20 σ01
σ01 σ21

))
εij ∼ N(0, σ2)

for i = 1, . . . , nj and the index j representing the 10 Lots. Fitting this model using lmer,
we can test for the significance of the fixed effect β0, for which we find that it is not (p-value
= 0.616), and arrive at the same conclusion as in the I-prior model. However, we notice
that the package reports a perfect negative correlation between the random effects, σ01. This
indicates a potential numerical issue when fitting the model - a value of exactly −1, 0 or 1
is typically forced by the package to force through estimation in the event of non-positive
definite covariance matrices arising. We can inspect the eigenvalues of the covariance matrix
for the random effects to check that they are indeed non-positive definite.

R> (mod.lmer <- lmer(conc ~ age + (age | Lot), IGF))

Linear mixed model fit by REML ['lmerMod']
Formula: conc ~ age + (age | Lot)

Data: IGF

REML criterion at convergence: 594.3662

Random effects:

Groups Name Std.Dev. Corr

Lot (Intercept) 0.082507

age 0.008092 -1.00

Residual 0.820628

Number of obs: 237, groups: Lot, 10

Fixed Effects:

(Intercept) age

5.374974 -0.002535

R> eigen(VarCorr(mod.lmer)$Lot)

eigen() decomposition

$values

[1] 6.872939e-03 -1.355253e-20

##

$vectors

[,1] [,2]

[1,] -0.99522490 -0.09760839

[2,] 0.09760839 -0.99522490

Degenerate covariance matrices often occur in models with a large number of random coeffi-
cients. These are typically solved by setting restrictions which then avoids overparameterising
the model. One advantage of the I-prior method for varying intercept/slopes model is that

26 Regression Modelling using iprior

Intercept Slope

5.28 5.32 5.36 5.40 5.44 −0.005 0.000 0.005

9

6

1

10

2

8

5

4

3

7

beta

Lo
t

model iprior lmer

Figure 6: A comparison of the estimates for random intercepts and slopes (denoted as points)
using the I-prior model and the standard random effects model. The dashed vertical lines
indicate the fixed effect values.

the positive-definiteness is automatically taken care of. Furthermore, I-prior models typi-
cally require less number of parameters to fit a similar varying intercept/slopes model - in
the above example, the I-prior model estimated only three parameters, while the standard
random effects model estimated a total of six parameters.

It is also possible to “recover” the estimates of the standard random effects model from the
I-prior model, albeit in a slighly manual fashion. Denote by f j the individual linear regression
lines for each of the j = 1, . . . , 10 Lots. Then, each of these f j has a slope and intercept for
which we can estimate from the fitted values f̂ j(xij), i = 1, . . . , nj . This would give us the
estimate of the posterior mean of the random intercepts and slopes; these would typically be
obtained using empirical-Bayes methods in the case of the standard random effects model.

Furthermore, σ20 and σ21 gives a measure of variability of the intercepts and slopes of the
different groups, and this can be calculated from the estimates of the random intercepts and
slopes. In the same spirit, ρ01 = σ01/(σ0σ1), which is the correlation between the random
intercept and slope, can be similarly calculated. Finally, the fixed effects can be estimated
from the intercept and slope of the best fit line running through the I-prior estimated conc

Parameter iprior lmer

σ0 0.012 0.083
σ1 0.000 0.008
ρ01 0.690 -1.000

Table 3: A comparison of the estimates for the covariance matrix of the random effects using
the I-prior model and the standard random effects model.

Haziq Jamil, Wicher Bergsma 27

values. The intuition for this is that the fixed effects are essentially the ordinary least squares
(OLS) of a linear model if the groupings are disregarded. Figure 6 illustrates the differences
in the estimates for the random coefficients, while Table 3 illustrates the differences in the
estimates for the covariance matrix. Minor differences do exist, with the most noticeable one
being that the slopes in the I-prior model are categorically estimated as zero, and the sign of
the correlation ρ01 being opposite in both models. Even so, the conclusions from both models
are similar.

3.3. Longitudinal data analysis

We consider a balanced longitudinal data set consisting of weights in kilograms of 60 cows, 30
of which were randomly assigned to treatment group A, and the remaining 30 to treatment
group B. The animals were weighed 11 times over a 133-day period; the first 10 measurements
for each animal were made at two-week intervals and the last measurement was made one
week later. This experiment was reported by Kenward (1987), and the data set is included as
part of the package jmcm (Pan and Pan 2016) in R. The variable names have been renamed
for convenience.

R> data(cattle, package = "jmcm")

R> names(cattle) <- c("id", "time", "group", "weight")

R> cattle$id <- as.factor(cattle$id) # convert to factors

R> str(cattle)

'data.frame': 660 obs. of 4 variables:

$ id : Factor w/ 60 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...

$ time : num 0 14 28 42 56 70 84 98 112 126 ...

$ group : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1 1 ...

$ weight: int 233 224 245 258 271 287 287 287 290 293 ...

The response variable of interest are the weight growth curves, and the aim is to investigate
whether a treatment effect is present. The usual approach to analyse a longitudinal data set
such as this one is to assume that the observed growth curves are realizations of a Gaussian
process. For example, Kenward (1987) assumed a so-called ante-dependence structure of order
k, which assumes an observation depends on the previous k observations, but given these, is
independent of any preceeding observations.

Using the I-prior, it is not necessary to assume the growth curves were drawn randomly.
Instead, it suffices to assume that they lie in an appropriate function class. For this example,
we assume that the function class is the fBm RKHS, i.e., we assume a smooth effect of time
on weight. The growth curves form a multidimensional (or functional) response equivalent
to a “wide” format of representing repeated measures data. In our analysis using the iprior
package, we used the “long” format and thus our (unidimensional) sample size n is equal to
60 cows × 11 repeated measurements. We also have two covariates potentially influencing
growth, namely the cow subject id and also treatment group. The regression model can then
be thought of as

weight = f(id, group, time) + error.

28 Regression Modelling using iprior

Model Explanation Formula (weight ~ ...)

1 Growth does not vary with treat-
ment nor among cows

time

2 Growth varies among cows only id * time

3 Growth varies with treatment only group * time

4 Growth varies with treatment and
among cows

id * time + group * time

5 Growth varies with treatment and
among cows, with an interaction ef-
fect between treatment and cows

id * group * time

Table 4: A brief description of the five models fitted using I-priors.

We assume iid errors, and in addition to a smooth effect of time, we further assume a nominal
effect of both cow id and treatment group using the Pearson RKHS. In the iprior package,
factor type objects are treated with the Pearson kernel automatically, and the only model

option we need to specify is the kernel = "fbm" option for the time variable. We have opted
not to estimate the Hurst coefficient in the interest of computational time, and instead left it
at the default value of 0.5. Table 4 explains the five models we have fitted.

The simplest model fitted was one in which the growth curves do not depend on the treatment
effect or individual cows. We then added treatment effect and the cow id as covariates,
separately first and then together at once. We also assumed that both of these covariates
are time-varying, and hence added also the interaction between these covariates and the time

variable. The final model was one in which an interaction between treatment effect and
individual cows was assumed, which varied over time.

All models were fitted using the mixed estimation method. Compared to the EM algorithm
alone, we found that the combination of direct optimisation with the EM algorithm in the
mixed routine fits the model about six times faster for this data set due to slow convergence
of EM algorithm. Here is the code and output for fitting the first model.

R> # Model 1: weight ~ f(time)

R> (mod1 <- iprior(weight ~ time, cattle, kernel = "fbm", method = "mixed"))

Running 5 initial EM iterations

==

Now switching to direct optimisation

final value 1394.615060

converged

Log-likelihood value: -2789.231

##

lambda psi

0.83662 0.00375

The results of the model fit are summarised in Table 5. We can test for a treatment effect
by testing Model 4 against the alternative that Model 2 is true. The log-likelihood ratio test

Haziq Jamil, Wicher Bergsma 29

Model Formula

(weight ~ ...)

Log-likelihood Error S.D. Number of

parameters

1 time -2789.23 16.33 1
2 id * time -2789.20 16.32 2
3 group * time -2787.03 15.91 2
4 id * time + group * time -2787.03 15.91 3
5 id * group * time -2276.74 3.33 3

Table 5: Summary of the five I-prior models fitted to the cow data set.

statistic is D = −2(−2789.20 − (−2787.03)) = 4.35 which has an asymptotic chi-squared
distribution with 3− 2 = 1 degree of freedom. The p-value for this likelihood ratio test is less
than 10−6, so we conclude that Model 4 is significantly better than Model 2.

We can next investigate whether the treatment effect differs among cows by comparing Model
5 against Model 4. As these models have the same number of parameters, we can simply choose
the one with the higher likelihood, which is Model 5. We conclude that treatment does indeed
have an effect on growth, and that the treatment effect differs among cows. We can use the
plot function to plot the fitted regression curves onto the cow data set. This is shown in
Figure 7.

R> plot_fitted_multilevel(mod5, show.legend = FALSE, cred.bands = FALSE)

A B

0 50 100 0 50 100

200

250

300

350

time

w
ei

gh
t

Figure 7: A plot of the I-prior fitted regression curves from Model 5. In this model, growth
curves differ among cows and by treatment effect (with an interaction between cows and
treatment effect), thus producing these 60 individual lines, one for each cow, split between
their respective treatment groups (A or B).

30 Regression Modelling using iprior

12.7
10.7
29.2
6.6
28.1
16.4
2.9
33.7
47.8

19.9

2.5

3.0

3.5

4.0

4.5

1 25 50 75 100

Wavelength index

A
bs

or
ba

nc
e

U
ni

ts

Figure 8: Sample of spectrometric curves used to predict fat content of meat. For each
meat sample the data consists of a 100 channel spectrum of absorbances and the contents of
moisture, fat (numbers shown in boxes) and protein measured in percent. The absorbance is
− log 10 of the transmittance measured by the spectrometer. The three contents, measured
in percent, are determined by analytic chemistry.

3.4. Regression with a functional covariate

We illustrate the prediction of a real valued response with a functional covariate using a
widely analysed data set for quality control in the food industry. The data4contain samples
of spectrometric curve of absorbances of 215 pieces of finely chopped meat, along with their
water, fat and protein content. These data are recorded on a Tecator Infratec Food and Feed
Analyzer working in the wavelength range 850 - 1050 nm by the Near Infrared Transmis-
sion (NIT) principle. Absorption data has not been measured continuously, but instead 100
distinct wavelengths were obtained. Figure 8 shows a sample of 10 such spectrometric curves.

For our analyses and many others’ in the literature, the first 160 observations in the data set
are used as a training sample for model fitting, and the remaining 55 observations as a test
sample to evaluate the predictive performance of the fitted model. The focus here is to use the
iprior package to fit several I-prior models to the Tecator data set, and compare out-of-sample
test error rates with various other predictive models. We compare the predictive performance
of I-prior models against Gaussian process regression and the many other different methods
applied on this data set. These methods include neural networks (Vila, Wagner, and Neveu
2000), kernel smoothing (Ferraty and Vieu 2006), double index model (Chen, Hall, and Müller
2011), single index model (Goia and Vieu 2014), sliced inverse regression (Lian and Li 2014),
multivariate adaptive regression splines (MARS), partial least squares, and component selec-
tion and estimation for functional additive model (CSEFAM). The last three methods were
studied by (Zhu, Yao, and Zhang 2014). Table 6 tabulates all of the above results.

Assuming a regression model as in (1), we would like to model the fat content yi using the

4 Used with permission from Tecator (see http://lib.stat.cmu.edu/datasets/tecator for details). We
used the version made available in the dataframe tecator from the R package caret (Kuhn et al. 2017) for our
analyses.

http://lib.stat.cmu.edu/datasets/tecator

Haziq Jamil, Wicher Bergsma 31

spectral curves xi. Let xi(t) denote the absorbance for wavelength t = 1, . . . , 100. From Figure
8, it appears that the curves are smooth enough to be differentiable, and therefore reasonable
to assume that they lie in the Sobolev-Hilbert space as discussed in Section 2.1.7. We take first
differences of the 100-dimensional matrix, which leaves us with the 99-dimensional covariate
saved in the object named absorp. The fat and absorp data have been split into *.train and
*.test samples, as mentioned earlier. Our first modelling attempt is to fit a linear effect by
regressing the responses fat.train against a single high-dimensional covariate absorp.train
using the linear RKHS and the direct optimisation method.

R> # Model 1: Canonical RKHS (linear)

R> (mod1 <- iprior(y = fat.train, absorp.train))

iter 10 value 205.101440

final value 204.662106

converged

Log-likelihood value: -409.3244

##

lambda psi

3860.38318 0.12349

Our second and third model uses polynomial RKHSs of degrees two and three, which allows
us to model quadratic and cubic terms of the spectral curves respectively. We also opted to es-
timate a suitable offset parameter, and this is called to iprior() with the option est.offset

= TRUE. Each of the two models has a single scale parameter, an offset parameter, and an
error precision to be estimated. The direct optimisation method has been used, and both
models converged regularly (output omitted).

R> # Model 2: Polynomial RKHS (quadratic)

R> mod2 <- iprior(y = fat.train, absorp.train, kernel = "poly2",

+ est.offset = TRUE)

R> # Model 3: Polynomial RKHS (cubic)

R> mod3 <- iprior(y = fat.train, absorp.train, kernel = "poly3",

+ est.offset = TRUE)

Next, we attempt to fit a smooth dependence of fat content on the spectrometric curves
using the fBm and SE RKHS. By default, the Hurst coefficient for the fBm RKHS is set
to be 0.5. However, with the option est.hurst = TRUE, the Hurst coefficient is included
in the estimation procedure. We fit models with both a fixed value for Hurst (at 0.5) and
an estimated value for Hurst. For both of these models, we encountered numerical issues
when using the direct optimisation method. The L-BFGS algorithm kept on pulling the
hyperparameter towards extremely high values, which in turn made the log-likelihood value
greater than the machine’s largest normalised floating-point number (.Machine$double.xmax
= 1.797693e+308). Investigating further, it seems that estimates at these large values give
poor training and test error rates, though likelihood values here are high (local optima). To
get around this issue, we used the EM algorithm to estimate the fixed Hurst model, and the
mixed method for the estimated Hurst model. For both models, the stop.crit was relaxed
and set to 1e-3 for quicker convergence, though this did not affect the predictive abilities
compared to a more stringent stop.crit.

32 Regression Modelling using iprior

R> # Model 4: fBm RKHS (default Hurst = 0.5)

R> (mod4 <- iprior(y = fat.train, absorp.train, kernel = "fbm", method = "em",

+ control = list(stop.crit = 1e-3)))

===============================

Converged after 44 iterations.

Log-likelihood value: -211.9866

##

lambda psi

13.48959 104.60542

R> # Model 5: fBm RKHS (estimate Hurst)

R> (mod5 <- iprior(fat.train, absorp.train, kernel = "fbm", method = "mixed",

+ est.hurst = TRUE, control = list(stop.crit = 1e-3)))

Running 5 initial EM iterations

==

Now switching to direct optimisation

iter 10 value 109.499480

final value 108.704913

converged

Log-likelihood value: -217.4141

##

lambda hurst psi

40.65659 0.57400 35.07545

Finally, we fit an I-prior model using the SE RKHS with lengthscale estimated. Here we
illustrate the use of the restarts option, in which the model is fitted repeatedly from different
starting points. In this case, eight random initial parameter values were used and these jobs
were parallelised across the eight available cores of the machine. The additional par.maxit
option in the control list is an option for the maximum number of iterations that each parallel
job should do. We have set it to 100, which is the same number for maxit, but if par.maxit is
less than maxit, the estimation procedure continues from the model with the best likelihood
value. Here we see that starting from eight different initial values, direct optimisation leads
to (at least) two log-likelihood optima sites (-234.4 and -631.6).

R> # Model 6: SE kernel

R> (mod6 <- iprior(fat.train, absorp.train, est.lengthscale = TRUE,

+ kernel = "se", control = list(restarts = TRUE,

+ par.maxit = 100)))

Performing 8 random restarts on 8 cores

==

Log-likelihood from random starts:

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7

Haziq Jamil, Wicher Bergsma 33

RMSE

Model Train Test

I-prior
Linear 2.80 3.24
Quadratic 0.70 0.99
Cubic 0.35 0.68
Smooth (fBm-0.50) 0.02 0.67
Smooth (fBm-0.57) 0.07 0.65
Smooth (SE-0.09) 0.34 0.61

Gaussian process regression
Linear 0.17 2.75
Smooth (SE-4.08) 0.23 4.06

Others
Neural network 0.34
Kernel smoothing 1.85
Double index model 1.58
Single index model 1.18
Sliced inverse regression 0.90
MARS 0.88
Partial least squares 1.01
CSEFAM 0.85

Table 6: A summary of the I-prior models fitted on the Tecator data set.

-234.4414 -631.6411 -631.6412 -631.6411 -631.6414 -234.4414 -631.6412

Run 8

-234.4414

Continuing on Run 8

final value 117.220652

converged

Log-likelihood value: -234.4414

##

lambda lengthscale psi

89.09657 0.08931 6.15346

Predicted values of the test data set can be obtained using the predict() function. An
example for obtaining the first model’s predicted values is shown below. The predict()

method for ipriorMod objects also return the test MSE if the vector of test data is supplied.

R> predict(mod1, newdata = list(absorp.test), y.test = fat.test)

Test MSE: 10.5014

##

34 Regression Modelling using iprior

Predicted values:

[1] 14.122 15.859 15.847 21.594 25.223 26.579 25.166 31.908 28.370

[10] 29.465

... with 45 more values

The results are summarised in Table 6. For the I-prior models, a linear effect of the functional
covariate gives an RMSE of 3.24, which is improved by both the quadratic and cubic models.
The RMSE is improved further by assuming a smooth RKHS of functions for f , with the
best RMSE given by the squared exponential RKHS with lengthscale 0.09. This is followed
closely by the fBm RKHS with Hurst coefficient 0.57. The best performing I-prior model is
only outclassed by neural networks of Vila et al. (2000). The I-prior models also give a much
better RMSE than Gaussian process regression5.

4. Summary and discussion

The iprior package provides methods to estimate and analyse I-prior regression models. At
face value, I-prior models differ from GPR models only in the specification of the covariance
kernel, though the difference ends there. The use of the squared Gram matrices means it is
important that orthogonal decompositions are used, because we would be wasting computa-
tional resources in squaring the kernel matrix naively otherwise. Further, most GPR software
opt to estimate models with fixed kernel parameters - this is a crucial difference in I-prior
modelling in which most if not all hyperparameters are estimated for inferential purposes. We
had also not come across any software package that implements the fBm kernel.

We have identified several areas of improvement, and the first is regarding estimation speed.
The nature of I-prior models means that the estimation scales as O(n3N), with n being the
sample size and N being the number of EM or L-BFGS iterations. As it stands, our minimal
tests suggests that the iprior package would struggle with data sets of sizes n ≥ 5000, unless
the Nyström method is used (though this is not applicable in all cases, and the Nyström
method’s approximation quality needs to be accounted for as well). While every care has
been taken to ensure efficiency in the code, it is clear that more work needs to be done
to overcome this speed issue, either from an algorithmic standpoint or in the actual code
implementation.

Furthermore, storage requirements for I-prior models is a concern for large data sets, which
is the second area for improvement. The package opts to calculate and hard store the kernel
matrices so that these can simply be called by the estimation methods. Although it is possible
to be more efficient by recalculating the kernel matrices from the data, or by opting to store
the n × 1 pre-multiplied vectors that occur most frquently e.g. Hθw̃ and V−1y y, the O(n2)
storage requirement still cannot be beaten as there is still an O(n2) element that needs to be
elucidated and stored (temporarily) in memory. In our case, this is the eigendecomposition
routine.

Thirdly, we would like to develop the ability to handle multidimensional responses. This was
mentioned earlier in Section 3.3, where we saw cow growth data represented as multidimen-
sional vectors of weights over time. In the current version of the package, we needed to convert
this into the “long” data format, and thus increasing the sample size from n cows to n × T ,

5GPR models were fit using gausspr() in kernlab.

Haziq Jamil, Wicher Bergsma 35

i.e. T time points for each cow. Keeping the data in “wide” format would have been more
computationally efficient, and open the possibility to support more general multidimensional
response regression models.

Fourthly and lastly, the package can be extended to deal with non-iid errors, i.e. (ε1, . . . , εn) ∼
Nn(0,Ψ−1) and Ψ has a more general symmetric form. In particular, the ability to deal with
autoregressive errors would add flexibility.

References

Bates D, Mächler M, Bolker B, Walker S (2015). “Fitting Linear Mixed-Effects Models Using
lme4.” Journal of Statistical Software, 67(1), 1–48. doi:10.18637/jss.v067.i01.

Bergsma W (2017). “Regression and Classification with I-priors.” Manuscript in preparation.
arXiv:1707.00274.

Berlinet A, Thomas-Agnan C (2011). Reproducing Kernel Hilbert Spaces in Probability and
Statistics. Springer-Verlag. doi:10.1007/978-1-4419-9096-9.

Bishop C (2006). Pattern Recognition and Machine Learning. Springer-Verlag.

Bürkner PC (2017). “brms: An R Package for Bayesian Multilevel Models Using Stan.” Journal
of Statistical Software, 80(1), 1–28. doi:10.18637/jss.v080.i01.

Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo
J, Li P, Riddell A (2017). “Stan: A Probabilistic Programming Language.” Journal of
Statistical Software, Articles, 76(1), 1–32. doi:10.18637/jss.v076.i01.

Chen D, Hall P, Müller HG (2011). “Single and Multiple Index Functional Regression Models
with Nonparametric Link.” The Annals of Statistics, 39(3), 1720–1747. doi:10.1214/

11-AOS882.

Davidian M, Giltinan DM (1995). Nonlinear Models for Repeated Measurement Data. Chap-
man and Hall/CRC.

Denwood M (2016). “runjags: An R Package Providing Interface Utilities, Model Templates,
Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS.”
Journal of Statistical Software, 71(9), 1–25. doi:10.18637/jss.v071.i09.

Eddelbuettel D, Francois R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Ferraty F, Vieu P (2006). Nonparametric Functional Data Analysis. 1st edition. Springer-
Verlag. doi:10.1007/0-387-36620-2.

Fowlkes C, Belongie S, Malik J (2001). “Efficient Spatiotemporal Grouping Using the Nyström
Method.” In Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2001), volume 1, pp. 231–238. doi:10.1109/

CVPR.2001.990481.

http://dx.doi.org/10.18637/jss.v067.i01
http://arxiv.org/abs/1707.00274
http://dx.doi.org/10.1007/978-1-4419-9096-9
http://dx.doi.org/10.18637/jss.v080.i01
http://dx.doi.org/10.18637/jss.v076.i01
http://dx.doi.org/10.1214/11-AOS882
http://dx.doi.org/10.1214/11-AOS882
http://dx.doi.org/10.18637/jss.v071.i09
http://dx.doi.org/10.18637/jss.v040.i08
http://dx.doi.org/10.1007/0-387-36620-2
http://dx.doi.org/10.1109/CVPR.2001.990481
http://dx.doi.org/10.1109/CVPR.2001.990481

36 Regression Modelling using iprior

Goia A, Vieu P (2014). “Some Advances in Semiparametric Functional Data Modelling.” In
Contributions in Infinite-Dimensional Statistics and Related Topics, pp. 135–141. Societa
Editrice Esculapio. doi:10.15651/978-88-748-8763-7.

Gretton A, Bousquet O, Smola A, Schölkopf B (2005). “Measuring Statistical Dependence
with Hilbert-Schmidt Norms.” In S Jain, HU Simon, E Tomita (eds.), Proceedings of the
16th International Conference of Algorithmic Learning Theory, pp. 63–77. Springer-Verlag.
doi:10.1007/11564089_7.

Kalaitzis A, Honkela A, Gao P, Lawrence ND (2014). gptk: Gaussian Processes Tool-Kit. R
package version 1.08, URL https://CRAN.R-project.org/package=gptk.

Kalaitzis A, Lawrence ND (2011). “A Simple Approach to Ranking Differentially Expressed
Gene Expression Time Courses through Gaussian Process Regression.” BMC Bioinformat-
ics, 12(1), 180. doi:10.1186/1471-2105-12-180.

Karatzoglou A, Smola A, Hornik K, Zeileis A (2004). “kernlab - An S4 Package for Kernel
Methods in R.” Journal of Statistical Software, 11(9), 1–20. doi:10.18637/jss.v011.i09.

Kenward MG (1987). “A Method for Comparing Profiles of Repeated Measurements.”
Journal of the Royal Statistical Society C (Applied Statistics), 36(3), 296–308. doi:

10.2307/2347788.

Kuhn M, et al. (2017). caret: Classification and Regression Training. R package version
6.0-77, URL https://CRAN.R-project.org/package=caret.

Lian H, Li G (2014). “Series Expansion for Functional Sufficient Dimension Reduction.”
Journal of Multivariate Analysis, 124(C), 150–165. doi:10.1016/j.jmva.2013.10.019.

Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000). “WinBUGS - A Bayesian modelling
framework: Concepts, structure, and extensibility.” Statistics and Computing, 10(4), 325–
337. doi:10.1023/A:1008929526011.

MacDonald B, Ranjan P, Chipman H (2015). “GPfit: An R Package for Fitting a Gaussian
Process Model to Deterministic Simulator Outputs.” Journal of Statistical Software, 64(12),
1–23. doi:10.18637/jss.v064.i12.

Microsoft Corporation, Weston S (2017). doSNOW: Foreach Parallel Adaptor for the snow
Package. R package version 1.0.15, URL https://CRAN.R-project.org/package=doSNOW.

Pan J, Pan Y (2016). jmcm: Joint Mean-Covariance Models using Armadillo and S4. R
package version 0.1.7.0, URL https://CRAN.R-project.org/package=jmcm.

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2017). nlme: Linear and Nonlinear
Mixed Effects Models. R package version 3.1-131, URL https://CRAN.R-project.org/

package=nlme.

Pinheiro JC, Bates DM (2000). Mixed-Effects Models in S and S-plus. Springer-Verlag. doi:
10.1007/b98882.

Plummer M (2003). “JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs
Sampling.” In Proceedings of the 3rd International Workshop on Distributed Statistical
Computing, volume 124, p. 125. Vienna, Austria.

http://dx.doi.org/10.15651/978-88-748-8763-7
http://dx.doi.org/10.1007/11564089_7
https://CRAN.R-project.org/package=gptk
http://dx.doi.org/10.1186/1471-2105-12-180
http://dx.doi.org/10.18637/jss.v011.i09
http://dx.doi.org/10.2307/2347788
http://dx.doi.org/10.2307/2347788
https://CRAN.R-project.org/package=caret
http://dx.doi.org/10.1016/j.jmva.2013.10.019
http://dx.doi.org/10.1023/A:1008929526011
http://dx.doi.org/10.18637/jss.v064.i12
https://CRAN.R-project.org/package=doSNOW
https://CRAN.R-project.org/package=jmcm
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
http://dx.doi.org/10.1007/b98882
http://dx.doi.org/10.1007/b98882

Haziq Jamil, Wicher Bergsma 37

Quiñonero-Candela J, Rasmussen CE (2005). “A Unifying View of Sparse Approximate Gaus-
sian Process Regression.” Journal of Machine Learning Research, 6, 1939–1959.

Ramsay JO, Wickham H, Graves S, Hooker G (2017). fda: Functional Data Analysis. R
package version 2.4.7, URL https://CRAN.R-project.org/package=fda.

Rasmussen CE, Williams CKI (2006). Gaussian Processes for Machine Learning. The MIT
Press.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Revolution Analytics, Weston S (2015). foreach: Provides Foreach Looping Construct for R.
R package version 1.4.3, URL https://CRAN.R-project.org/package=foreach.

Shi JQ, Cheng Y (2014). GPFDA: Apply Gaussian Process in Functional Data Analysis. R
package version 2.2, URL https://CRAN.R-project.org/package=GPFDA.

Stan Development Team (2016a). “RStan: The R Interface to Stan.” R package version 2.14.1,
URL http://mc-stan.org/.

Stan Development Team (2016b). “rstanarm: Bayesian Applied Regression Modeling via
Stan.” R package version 2.13.1, URL http://mc-stan.org/.

Sturtz S, Ligges U, Gelman A (2005). “R2WinBUGS: A Package for Running WinBUGS
from R.” Journal of Statistical Software, 12(3), 1–16. doi:10.18637/jss.v012.i03.

Vila JP, Wagner V, Neveu P (2000). “Bayesian Nonlinear Model Selection and Neural Net-
works: A Conjugate Prior Approach.” IEEE Transactions on Neural Networks, 11(2),
265–278. doi:10.1109/72.838999.

Williams CKI, Seeger M (2001). “Using the Nyström Method to Speed Up Kernel Machines.”
In Advances in Neural Information Processing Systems 13, pp. 682–688. The MIT Press.

Wood SN (2017). Generalized Additive Models: An Introduction with R. 2nd edition. Chapman
and Hall/CRC.

Zhu H, Yao F, Zhang HH (2014). “Structured Functional Additive Regression in Reproducing
Kernel Hilbert Spaces.” Journal of the Royal Statistical Society B (Statistical Methodology),
76(3), 581–603. doi:10.1111/rssb.12036.

https://CRAN.R-project.org/package=fda
https://www.R-project.org/
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=GPFDA
http://mc-stan.org/
http://mc-stan.org/
http://dx.doi.org/10.18637/jss.v012.i03
http://dx.doi.org/10.1109/72.838999
http://dx.doi.org/10.1111/rssb.12036

38 Regression Modelling using iprior

A. I-prior models as GPR models

Consider the following regression model

yi = f(xi) + εi

εi
iid∼ N(0, ψ−1)

(10)

for i = 1, . . . , n with f ∈ F an RKHS with kernel h, and an I-prior on f , i.e.

f =
(
f(x1), . . . , f(xn)

)> ∼ Nn(0, ψH2
η).

We note that among the hyperparameters of the kernel function η, there always contains a
scale parameter λ and possibly some other hyperparameters ν, such that we can write the
kernel function as

hη(x, x
′) = λhν(x, x′).

Now define the kernel

λ̃kν(x, x′) = ψ

n∑
i=1

n∑
j=1

hη(x, xi)hη(x
′, xj)

= ψλ2
n∑
i=1

n∑
j=1

hν(x, xi)hν(x′, xj)

By using the parameterisation ψλ2 7→ λ̃, we can treat the above kernel as having scale
parameter λ̃ and other hyperparameters ν. Since sums of kernels are kernels and products of
kernels are kernels, the k defined above is also a valid kernel. We then have

f ∼ Nn(0,K)

which is the familiar Gaussian process prior with Kij = λ̃kν(xi, xj).

B. Remark on hyperparameters and standard errors

In the iprior package, estimation of the hyperparameters, in particular the direct method
using the L-BFGS algorithm, is done without any bounds constraints on the hyperparameters.
This is achieved by using the transformations listed in Table 7. In the package internals, the
transformed parameters are always referred to as theta, while the untransformed original
hyperparameters are reffered to as param. This distinction must be noted when supplying
initial values for the iprior() function, as it is in the transformed parameterisation. A helpful
function included in the package is check_theta(), which reminds the form of theta:

Haziq Jamil, Wicher Bergsma 39

Parameter Transformation Remarks

Scale λ 7→ log λ Only if single scale parameter.
Error precision ψ 7→ logψ
Hurst index γ 7→ Φ−1(γ) FBm kernel. Φ is CDF of N(0, 1).
Length scale l 7→ log l SE kernel.
Offset c 7→ log c Polynomial kernel.

Table 7: Hyperparameters transformations used in the package.

R> mod <- kernL(circumference ~ . ^ 2, Orange, kernel = "fbm",

+ est.hurst = TRUE)

R> check_theta(mod)

theta consists of 4:

lambda[1], lambda[2], qnorm(hurst[2]), log(psi)

When using maximum likelihood, the parameters may be freely transformed without affecting
the optimisation procedure. Thus, the estimates of the hyperparameters are obtained by using
the respective inverse transformations in Table 7.

The standard errors however must be transformed back using the delta method. The uni-
variate delta method states that if the ML estimate denoted by θ̂n (with a dependence on
the sample size n) converges in distribution to N(θ, σ2), then the transformed ML estimate
g(θ̂n) converges in distribution to N

(
g(θ), σ2[g′(θ)]2

)
, assuming g′(θ) exists and is non-zero.

Therefore, the transformed standard errors is given by σ̂g′(θ̂n), where σ̂ is the standard error
for θ̂n.

C. Remark on the scale parameters

If one or more scale parameters are (estimated to be) negative, then the reproducing kernel for
the space of functions in which the regression function lives is not positive definite anymore.
It seem arbitrary to restrict the scale parameters to the positive orthant, as the sign of of the
scale parameters may be informative, especially when kernels are added and multiplied (e.g.
in the varying intercept/slope model). Note that the sign of the scale parameters itself are
not identified in the model (this is easily seen when having a single scale parameter in the
model since the scale is squared when it appears in the likelihood) but relative signs of the
scale parameters with respect to each other is.

The space of functions with negative scale parameters is actually called a reproducing kernel
Krein space (RKKS). Since the building blocks for the models considered are positive definite
kernels, we keep speaking about RKHSs in this paper. As with RKHSs, the user does not
require any in-depth knowledge of RKKSs in order to perform I-prior modelling.

40 Regression Modelling using iprior

Affiliation:

Haziq Jamil, Wicher Bergsma
London School of Economics and Political Science
Department of Statistics
Columbia House
Houghton Street
London WC2A 2AE
United Kingdom
E-mail: h.jamil@lse.ac.uk
URL: https://haziqj.ml

E-mail: w.p.bergsma@lse.ac.uk
URL: http://stats.lse.ac.uk/bergsma/

mailto:h.jamil@lse.ac.uk
https://haziqj.ml
mailto:w.p.bergsma@lse.ac.uk
http://stats.lse.ac.uk/bergsma/

	Introduction
	The I-prior regression model
	Estimation
	Computational considerations
	Comparison to other software packages

	The iprior package
	Kernels
	The canonical linear kernel
	The fractional Brownian motion (fBm) kernel
	The squared exponential (SE) kernel
	The d-degree polynomial kernel
	The Pearson kernel
	Examples
	The Sobolev-Hilbert inner product for functional covariates
	Centred kernels

	The kernel loader
	Basic syntax
	Interactions
	Specifying kernels and setting hyperparameters
	Selecting the hyperparameters to estimate
	The Nyström method

	Model fitting and post-estimation
	Control options
	Refit and update
	Post-estimation

	Modelling examples
	Using the Nystrom method
	Random effects models
	Longitudinal data analysis
	Regression with a functional covariate

	Summary and discussion
	I-prior models as GPR models
	Remark on hyperparameters and standard errors
	Remark on the scale parameters

