
hwriterPlus: Extending the hwriter Package

David J. Scott
University of Auckland

October 23, 2012

Abstract

The R package hwriter provides a convenient way of producing HTML documents
which incorporate statistical analyses using R. This package extends the capability of
hwriter to allow the incorporation of SVG graphics, output from R or complete R sessions
and the display of mathematical expressions using LATEX format. The resulting documents
may be successfully viewed in recent versions of common browsers. Additionally such
documents may also be opened in recent versions of Microsoft Word.

1 Introduction

For producing documents in pdf or postscript formats which include the results of statisti-
cal analysis using R, Sweave is commonly used. Because Sweave uses LATEX for document
production it can produce documents of almost infinite complexity incorporating text,
tables, and graphics. The myriad styles and add-on packages available for LATEX can also
be used. However Sweave cannot produce HTML or Microsoft Word documents directly
and the requirement that LATEX be installed is a problem in some situations. To produce
HTML there are currently two packages on CRAN, hwriter (Pau (2010))and R2HTML
(Lecoutre (2003)). In both cases the only software which needs to be installed is R and
the relevant package. The source files for both hwriter and R2HTML are pure R code
and there is only one processing step, consisting of running the R code. These aspects are
in contrast to the use of Sweave where the source file alternates chunks of LATEX and of
R, and there are at least two steps in the process with a number of additional files being
produced. Use of hwriter (or R2HTML) is in many ways a simpler, more lightweight ap-
proach to automated document production than the use of Sweave. The challenge though
is to enhance the capability of hwriter to try and match the ability of Sweave to produce
complex documents. This is the motivation behind hwriterPlus.

As an example of the sort of problem which this software addresses, the author was
tasked with providing a program to produce a weekly report taking data from a spread-
sheet to produce summary statistics and graphs in a convenient format. This was relatively
easy using R and the package hwriter which could easily be installed on the client’s com-
puter. The document was produced in HTML format with graphs in Windows metafile
format. The document could be read by Microsoft Word or viewed in Internet Explorer,
so besides R and hwriter, no additional software needed to be installed on the client’s
computer.

Using R with hwriter has also proved valuable in providing reports to statistical con-
sulting clients who wish to include results from the report in papers for publication.

hwriter though, has limitations in what it can produce. There is the capability for
incorporating individual mathematical symbols, superscripts and subscripts, but not more
complex mathematical expressions without the use of additional software outside of R.

1

Images may be included also in various formats, but no cross-platform vector graphic
format can be used. Windows metafile is specific to Windows computers and may only
be displayed by Internet Explorer, not Firefox nor Chrome nor Safari. Other available
image formats are bitmaps, including jpg and png. The only cross-platform vector image
format which can be displayed in Firefox and Internet Explorer is SVG, scalable vector
graphics.

A further useful capability already available in Sweave is the ability to show the output
produced by a sequence of R commands or both the commands and output, reproducing
part (or even all) of an R session.

The small package hwriterPlus extends the capability of hwriter to enable the incorpo-
ration of LATEX expressions in documents in HTML format when displayed in up-to-date
versions of Firefox, Internet Explorer, Chrome and Safari. In addition SVG graphic ob-
jects can be incorporated into such documents and displayed in those browsers. Finally
the ability to display the result of a sequence of R commands or part of an R session has
also been included in hwriterPlus.

This paper describes the features and implementation of hwriterPlus and gives exam-
ples of its use. There is also a discussion of the problems of using XML rather than HTML,
and of viewing HTML documents using Microsoft Word. In the hwriterPlus, there are two
example files showing the capability of the package. These are called BrowserExampleMath-
Jax.R and NumberedHeadingsExample.R, both located in the inst/examples subdirectory.
There is also a version of this document (a vignette) in the inst/doc subdirectory.

Some understanding of HTML and related concepts such as CSS (Cascading Style
Sheets) is desirable when reading this paper. A suitable introduction which is readily
available and includes the use of MathML is Siegrist (2007). A thorough introduction
(excluding MathML) is given in Murrell (2009).

2 Incorporating LaTeX in HTML

When considering how to add the ability to display mathematical expressions in LATEX
format to hwriter, it is natural to examine the package R2HTML which already has this
facility. In R2HTML the LATEX expressions are processed using the JavaScript code ASCI-
IMathML from Jipsen (2005) which converts LATEX expressions to Presentation MathML
expressions. Initially I reverse-engineered R2HTML to use ASCIIMathML to display
mathematical expressions in LATEX format. There were problems with this approach how-
ever. First of all, ASCIIMathML is poorly supported across different browsers. Firefox
works best. Recent versions of Internet Explorer are also satisfactory, but less up-to-date
versions require the installation of MathPlayer (Design Science (2011)). Neither Chrome
nor Safari appear to support ASCIIMathML, nor is there an add-on available for them.
Secondly, the head element specification required to ensure that Internet Explorer prop-
erly processes the JavaScript for ASCIIMathML is complex and rather unforgiving. It
required considerable experimentation to get it to work properly.

Most importantly though, ASCIIMathML has been supplanted by the JavaScript im-
plementation provided by MathJax, http://www.mathjax.org/. MathJax ”is a joint
project of the American Mathematical Society, Design Science, Inc., and the Society for
Industrial and Applied Mathematics” (see the Sponsorship tab on the website MathJax
(2012)). It appears to live up to its claim to display properly in all modern browsers.

For these reasons hwriterPlus uses MathJax for display mathematical expressions and
equations.

The first step in creating an HTML document is the insertion of the head element.
In hwriter this is done via the openPage function. For hwriterPlus rather than modify
openPage, I wrote a new function newPage which has some additional arguments, but
also removes some arguments present in openPage. To enable the use of MathJax, the

2

http://www.mathjax.org/

minimal evocation of newPage is R code similar to the following:

pg <- newPage ("file.html",

title = "Example of a Document for Display in a Browser",

link.javascript =

c("http ://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX -AMS -MML_HTMLorMML "))

This will open a text document with the name file.html in the current folder and prepare
it to accept HTML code making up the body element. It will also place essentially the
following head element in the file:

<!DOCTYPE html >

<html ><head >

<title >Example of a Document for Display in a Browser </title >

<script type="text/javascript"

src="http ://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX -AMS -MML_HTMLorMML">

</script >

</head >

<body >

The head element above has had some additional carriage returns inserted for the
readability of this document compared to what will actually appear in file.html.

Use of MathJax as indicated in the above example requires an active internet connec-
tion so that the latest version of MathJax can be accessed. Alternatively a local copy of
MathJax.js can be downloaded and accessed. All that is required is that the argument
link.javascript should specify the location of MathJax.js. The required format is
link.javascript = "path-to-MathJax/MathJax.js".

Once this head element has been inserted in the document it is possible to insert LATEX
code into the document to produce both inline and displayed mathematical expressions.
For an inline expression simply insert some LATEX inside backticks, with all backslashes
being doubled. Thus

hwrite ("Here is an inline expression :‘\\int_{-\\ infty }^{1}f(x)dx‘,

p, br = TRUE)

will produce the HTML code

Here is an inline expression :‘\int_{-\infty }^{1}f(x)dx‘

in the document BrowserExample.html. When the file is opened in a browser this will
appear as

Here is an inline expression:
∫ 1

−∞ f(x)dx

although the exact typsetting of the expression will differ from what is shown on this
page, and from browser to browser.

The doubling of backslashes specified above is necessary because hwrite is essentially
a wrapper around cat and it must be made explicit that backslashes be produced rather
than the backslash being treated as an escape symbol.

Producing displayed mathematical expressions is more complicated. They are in fact
produced by inserting a table in the HTML document. In hwriterPlus the command used
is hwriteLatex along with as.latex, derived from the R2HTML functions HTML.latex

and as.latex. As an example

hwriteLatex(as.latex ("\\ int_{-\\ infty }^{1}f(x)dx",

inline = FALSE , count = FALSE),

page = p,

table.attributes = "border = ’1’",

tr.attributes = "bgcolor = ’white ’")

produces (some linebreaks have been added for clarity)

3

<center ><table border = ’1’>

<tr bgcolor = ’white ’>

<td align = ’center ’>\[\int_{-\infty }^{1}f(x)dx\]</td>

</tr>

</table ></center >

displayed in a browser more or less as ∫ 1

−∞
f(x)dx

If numbered equations are required then there is additional complexity. For example

hwriteLatex(as.latex ("\\{ 26.119 < \\sum_{i=1}^n(X_i-\\bar{X})^2\\}

\\ bigcup \\ \\{ 5.629 > \\sum_{i=1}^n (X_i-\\bar{X})^2 \\}.",

inline = FALSE , label = "equation 1"),

page = p,

tr.attributes = "bgcolor = ’white ’",

td.attributes = c("width = ’50’", "align = ’center ’",

"align = ’right ’ width = ’50’"))

produces (some linebreaks have been added for clarity)

<center ><table border = ’0’ width = ’90%’>

<tr bgcolor = ’white ’>

<td width = ’50’> </td>

<td align = ’center ’>

\[\{ 26.119 < \sum_{i=1}^n(X_i-\bar{X})^2\}\ bigcup\ \{ 5.629 >

\sum_{i=1}^n (X_i-\bar{X})^2 \}.\]

</td>

<td align = ’right ’ width = ’50’ id = ’eq:equation 1’>(1)</td>

</tr>

</table ></center >

which is displayed essentially as

{26.119 <
n∑

i=1

(Xi − X̄)2}
⋃
{5.629 >

n∑
i=1

(Xi − X̄)2} (1)

Note the inclusion of the id element with a name attribute which in this example is
eq:equation1, as a result of the equation label being specifed as equation1. This permits
reference to be made to this equation elsewhere in the document, as follows. The R code

hwrite ("Here is the link to the equation: ",

p, br = FALSE)

hwrite (" Numbered Equation.", p, br = TRUE ,

link = "#eq:equation 1")

will produce

Here is the link to the equation:

Numbered Equation.

This creates a hyperlink to Equation 1 with the text ”Numbered Equation”. This is an
attempt an HTML equivalent of the LATEX approach of creating a labelled equation and a
reference to that equation elsewhere in the document using the \ref command. There is
a convenience function which will produce the equation number when supplied with the
equation label, this is eqRef. In the example above if the equation with the label equation1
is the first numbered equation in the document, then eqRef{"equation1"} returns the
number 1, so eqRef performs the same function as \ref in LATEX.

Whereas R2HTML uses JavaScript to implement equation numbering, in hwriterPlus,
only R code is used. This is in part because for many R users, JavaScript will be very
foreign. In addition the hwriterPlus implementation allows equations to be referenced by

4

name as in LATEX rather than the writer having to remember the equation number. When
newPage is called initially, a vector of length one is created called hwriterEquation, with
the initial value of 0. A second vector, a character vector of length zero is also created
with the name hwriterEquationList, which will hold the names of any numbered equations
created. Each time a numbered equation is inserted into the document using hwriteLatex
hwriterEquation is incremented and the resulting number is inserted into the table which
displays the numbered equation. If a label for the equation has been supplied, then the
label prefixed by eq: is appended to hwriterEquationList. If no label was supplied, then a
default label is created by concatenating the prefix eq: and the equation number.

3 Incorporating SVG Graphics

Images are usually included in an R document using the image element. Thus in hwriter
the function hwriteImage essentially surrounds the location of an image file with an
 tag pair. SVG images are different however and use an object ele-
ment. Moreover the required attributes of the object element vary according to browser.
SVG can be used to actually create an image when the file is browsed, as opposed to the
browser simply displaying a previously created SVG format image. The ability to include
SVG images in a file has been added to hwriterPlus via the hwriteSVG function. This
produces a complicated piece of HTML which was taken from the Quick Start (http:
//codinginparadise.org/projects/svgweb/docs/QuickStart.html) available on the
web page of the svgWeb project (svgWeb (2011)). To insert the SVG image with the
filename helloworld.svg into an HTML document, the following HTML code is recom-
mended:

<!--[if !IE]>-->

<object data="../svg -files/helloworld.svg" type="image/svg+xml"

width="200" height="200" id="mySVGObject"> <!--<![endif]-->

<!--[if lt IE 9]>

<object src="../svg -files/helloworld.svg" classid="image/svg+xml"

width="200" height="200" id="mySVGObject"> <![endif]-->

<!--[if gte IE 9]>

<object data="../svg -files/helloworld.svg" type="image/svg+xml"

width="200" height="200" id="mySVGObject"> <![endif]-->

</object >

For those unfamiliar with HTML code this is quite strange, but certainly works. The
following snippet of R code creates a lattice plot of data concerning cats provided in the
MASS package and inserts it into the document BrowserExampleMathJax.html.

library(MASS)

library(Cairo)

CairoSVG ("cats.svg", width = 4, height = 4)

lattice.options(theme = "col.whitebg ")

print(xyplot(Hwt ~ Bwt|Sex , data = cats , type = c("p", "r")))

dev.off()

hwriteSVG ("cats.svg", p, height = 600, width = 600, id = "catsSVG",

center = FALSE , br = TRUE)

The code produced in BrowserExampleMathJax.html is

<!--[if !IE]>-->

<object data = ’cats.svg ’ type = ’image/svg+xml ’

width = ’600’ height = ’600’

id = catsSVG border = ’0’> <!--<![endif]-->

<!--[if lt IE 9]>

<object src = ’cats.svg ’ classid = ’image/svg+xml ’

width = ’600’ height = ’600’

id = catsSVG border = ’0’> <![endif]-->

<!--[if gte IE 9]>

<object data = ’cats.svg ’ type = ’image/svg+xml ’

5

http://codinginparadise.org/projects/svgweb/docs/QuickStart.html
http://codinginparadise.org/projects/svgweb/docs/QuickStart.html

width = ’600’ height = ’600’

id = catsSVG border = ’0’> <![endif]-->

</object >

One problem with SVG graphics in web documents is that they are treated differently
by different browsers. Firefox is the most lenient in what it requires and will produce an
image if the width and height arguments are omitted. If either of these arguments is too
small to accommodate the image, the image will be produced with slider bars. Internet
Explorer requires both the width and height arguments to be specified, or no image is
produced. Also, the actual size of the displayed image can vary wildly from browser to
browser.

4 Capturing R Output and R Sessions

Sweave has the ability to capture the output of a sequence of R commands using the
instructions starting a chunk of code, <<echo=FALSE, results=verbatim>>=. To capture
both commands and output the instructions <<echo=TRUE, results=verbatim>>= are
used. These facilities have been incorporated into hwriterPlus.

To capture output from R the commands producing the output are given as an ar-
gument of the capture.output function, and the resulting output is inserted into the
document using the hwriterPlus function hwriteOutput. Thus

aggOut <-

capture.output(data(iris),

str(iris),

aggregate(Sepal.Length~Species , iris , mean)

)

hwriteOutput(aggOut , p, center = FALSE , br = TRUE)

inserts the following HTML code in BrowserExample.html:

<pre style = ’font -size :10pt’>’data.frame ’: 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

$ Species : Factor w/ 3 levels "setosa","versicolor" ,..: 1 1 1 1 1 1 1 1 1 1 ...

Species Sepal.Length

1 setosa 5.006

2 versicolor 5.936

3 virginica 6.588</pre>

The element pre means the text is to be treated as preformatted, and is akin to the
LATEX verbatim environment. Note that there are commas between the commands whose
output is to be captured by capture.output. This requirement is explained and amplified
in the help and examples for the function capture.output.

To capture a full R session, that is including commands and output, it appears to
be necessary to write to a file, then read back the contents of the file. The package
TeachingDemos has this facility via the command txtStart. Here is an example of some
R code

tmpFile <- tempfile (" Session ")

txtStart(tmpFile)

clotting <-

data.frame(

u = c(5,10,15,20,30,40,60,80,100),

lot1 = c(118,58,42,35,27,25 ,21,19,18),

lot2 = c(69 ,35 ,26 ,21 ,18 ,16 ,13 ,12 ,12)

)

clotting

coef(glm(lot1 ~ log(u), data=clotting , family=Gamma))

6

txtStop ()

sessionOut <- readLines(tmpFile)

hwriteOutput(sessionOut , p, center = FALSE , br = TRUE)

which produces

<pre style = ’font -size :10pt ’>> clotting <- data.frame(u = c(5, 10, 15, 20, 30, 40, 60, 80, 100),

+ lot1 = c(118, 58, 42, 35, 27, 25, 21, 19, 18), lot2 = c(69,

+

+ 35, 26, 21, 18, 16, 13, 12, 12))

> clotting

u lot1 lot2

1 5 118 69

2 10 58 35

3 15 42 26

4 20 35 21

5 30 27 18

6 40 25 16

7 60 21 13

8 80 19 12

9 100 18 12

> coef(glm(lot1 ~ log(u), data = clotting , family = Gamma))

(Intercept) log(u)

-0.01655438 0.01534311 </pre>

Note that unfortunately txtStart does not capture the line breaks correctly for a multiline
input command.

I approached Professor Ross Ihaka with this problem and he provided me the function
script which will properly capture an R session. Here is an example of its use. The R code

tmpFile <- tempfile (" Session ")

script(tmpFile)

clotting <-

data.frame(

u = c(5,10,15,20,30,40,60,80,100),

lot1 = c(118,58,42,35,27,25,21,19,18),

lot2 = c(69 ,35 ,26 ,21 ,18 ,16 ,13 ,12 ,12)

)

clotting

coef(glm(lot1 ~ log(u), data=clotting , family=Gamma))

q()

sessionOut <- readLines(tmpFile)

sessionOut

hwriteOutput(sessionOut , p, br = TRUE)

produces the following

<pre style = ’font -size :10pt’>Script started on Sat Sep 01 19:17:13 2012

> clotting <-

> data.frame(

> u = c(5,10,15,20,30,40,60,80,100),

> lot1 = c(118,58,42,35,27,25,21,19,18),

> lot2 = c(69 ,35 ,26 ,21 ,18 ,16 ,13 ,12 ,12)

>)

> clotting

u lot1 lot2

1 5 118 69

2 10 58 35

3 15 42 26

4 20 35 21

5 30 27 18

6 40 25 16

7 60 21 13

8 80 19 12

9 100 18 12

> coef(glm(lot1 ~ log(u), data=clotting , family=Gamma))

(Intercept) log(u)

7

-0.01655438 0.01534311

> q()

Script done on Sat Sep 01 19:17:13 2012 </pre>

The function script places some information about the session being recorded at the
beginning and at the end of the session. In many cases that information is not needed.
The function hwriteScript is derived from hwriteOutput, the only difference being that
by default it will drop the information lines (one at the start and two at the end) which
script places in the temporary file.

5 Displaying R Objects

hwriter is able to display R objects such as vectors, matrices, and dataframes. An extensive
example is given in the help to the function hwrite. This example may also be seen on
Gregoire Pau’s website at http://www.embl.de/~gpau/hwriter/.

For output of tables, xtable is useful since the function print.xtable can produce
HTML. Here is some code which will produce a nicely formatted analysis of variance table
for example.

require(xtable)

data(tli)

fm1 <- aov(tlimth ~ sex + ethnicty + grade + disadvg , data=tli)

fm1.table <- print(xtable(fm1), type="html")

hwrite(fm1.table , p, center = TRUE , br = TRUE)

Note that the way that R objects are formatted in the HTML document can be con-
trolled by the use of a CSS file. In particular the appearance of the hwriter example
document is governed by the CSS style sheet which comes with hwriter.

6 Links in Documents

Internal and external links are easy to achieve in HTML documents. External links use
the a element. So a link to the Department of Statistics website at the University of
Auckland requires the HTML code

The Department of Statistics.

which is easily produced by the R code

hwrite ("The Department of Statistics .", p, br = TRUE ,

link = ’http ://www.stat.auckland.ac.nz/uoa/’)

Internal links within an HTML document are very useful since they allow cross-
referencing. The mechanism is to create anchors, which are named objects within the
HTML document, then other parts of the document can link to an anchor using an a

element. To name an object, either an a element can be used or an id attribute may be
added to the object’s definition.

Here is an example of using the a element approach. The R code

hwrite(hwrite (" Entering Text", name = "intro"), p,

heading = 1, center = FALSE , br = TRUE)

produces the HTML

<h1>Entering Text</h1>

which is a level 1 heading with the name "intro". To create a reference to this heading
we can use the R code

8

http://www.embl.de/~gpau/hwriter/

hwrite ("Here is a link to the heading named using the a element: ",

p, br = FALSE)

hwrite (" Entering Text.", p, br = TRUE ,

link = "#intro")

which produces

Here is a link to the heading named using the a element:

Entering Text.

As an example of the use of an id attribute, the R code

hwrite (" Rendering Mathematics", p, id = "mathematics",

heading = 1, center = FALSE , br = TRUE)

produces

<h1 id="mathematics">Rendering Mathematics </h1>

which has the anchor #mathematics.
The code to produce numbered equations given in Section 2 includes the creation of

an anchor. If that equation is the first in the document the anchor is then #equation1

and a link can be created in the usual way.

7 XML and XHTML

I will not attempt to compare XML (eXtensible Markup Language), and HTML. An
authoritative description of XML is available at http://www.w3schools.com/xml/xml_

whatis.asp. See also Murrell (2009). It is of interest however to see if hwriter and
hwriterPlus can produce XML rather than HTML, not least because XML is used by
recent versions of Microsoft Word, but also because XML is intended as a data description
language, and hence is of interest to statisticians. If the extension of the document
BrowserExampleMathJax.html is changed to .xhtml then the document will be treated by
browsers as XHTML which is dialect of XML. This reveals many problems with the
code in BrowserExampleMathJax.xhtml. Some problems which arose in earlier versions of
hwriterPlus have been eliminated, such as the requirement that attribute values be quoted.
Browsers are happy to accept border = 0 when reading HTML, but border = ’0’ is
required in XML. XML also doesn’t accept a number of escapes such as >, so in that
case > must be used. The assignment in R, <-, needs to be identified as literal rather
than the start of an XML element, so must be enclosed inside <![CDATA[]]> which is like
a LATEX \verb or \verbatim environment. The output from print.xtable also caused
problems because it produces tags in upper case: so TABLE, TR, TD have to be changed to
lower case.

8 Microsoft Word

Recent versions of Microsoft Word (where the extension is docx) use a modified and
compressed XML format. From 2007, Word will also open an HTML document, so that
hwriter, hwriterPlus and R2HTML can be used to produce documents which can be
opened with MS Word. Some aspects of an HTML document are recognised by Word, for
example, heading styles transfer appropriately, and links created using an a element or an
id attribute are recognised. Numbered equations and embedded LATEX are not recognised,
nor can SVG graphics be displayed. One approach to deal with embedded LATEX is to
use MathType (see http://www.dessci.com/en/products/mathtype/. Provided there
are not many instances of mathematical expressions in LATEX in the document, a search
can be made for backticks and the backticks replaced by $ then use the MathType Toggle
TeX facility to render the expressions appropriately.

9

http://www.w3schools.com/xml/xml_whatis.asp
http://www.w3schools.com/xml/xml_whatis.asp
http://www.dessci.com/en/products/mathtype/

A further problem with using MS Word when the document contains images is that
the images are not stored within the document. They can be embedded easily however
by following the instructions on this webpage: http://www.onemanwrites.co.uk/2011/
09/13/how-to-embed-linked-images-in-word-2010/. In this form it is easy to send
the document to someone else.

9 Discussion

There are many extensions which may be considered for hwriterPlus. One possible ex-
tension is to allow LaTeXMathML, see for example Knisley (2007). This permits the
inclusion of larger LATEX structures such as theorem environments, but also tables. Not
all of the rich features of LATEX tables are available however.

R2HTML includes grid JavaScript and a grid CSS file. This is of interest for producing
rich data representations in an HTML file. According to Permessur (2010):

A data grid can help address concerns of HTML tables with large data sets by
providing features like sorting, filtering, searching, pagination and even in-line
editing for your tables.

hwriter already includes some limited interaction with tables as can be seen on the
hwriter examples page Pau (2010). The addition of grid JavaScript would allow much
richer interactions. Grid JavaScript is an example of AJAX (Asynchronous JavaScript
and XML) technologies whereby ”web applications can send data to, and retrieve data
from, a server asynchronously (in the background) without interfering with the display
and behavior of the existing page” (Wikipedia (2011)).

10 Conclusion

hwriterPlus is able to produce useful documents in HTML format using only R code and
small CSS and JavaScript files and is very simple to use. The files produced can be opened
in Microsoft Word which will interpret most aspects of the files correctly.

hwriterPlus is currently available on R-Forge, at https://r-forge.r-project.org/
R/?group_id=1269.

References

Design Science (2011). “MathPlayer.” http://www.dessci.com/en/products/

mathplayer/. Online: accessed November 29, 2011.

Jipsen P (2005). http://www1.chapman.edu/~jipsen/mathml/asciimath.xml. Online:
accessed November 29, 2011.

Knisley J (2007). “A Brief Description of LaTeXMathML.” http://math.etsu.edu/

LaTeXMathML/. Online: accessed December 5, 2011.

Lecoutre E (2003). “The R2HTML Package.” R News, 3(3), 33–36. URL http://cran.

r-project.org/doc/Rnews/Rnews_2003-3.pdf.

MathJax (2012). http://www.mathjax.org/. Online: accessed October 22, 2012.

Murrell P (2009). Introduction to Data Technologies. Computer Science and Data Analysis
Series. CRC Press, Boca Raton, FL.

10

http://www.onemanwrites.co.uk/2011/09/13/how-to-embed-linked-images-in-word-2010/
http://www.onemanwrites.co.uk/2011/09/13/how-to-embed-linked-images-in-word-2010/
https://r-forge.r-project.org/R/?group_id=1269
https://r-forge.r-project.org/R/?group_id=1269
http://www.dessci.com/en/products/mathplayer/
http://www.dessci.com/en/products/mathplayer/
http://www1.chapman.edu/~jipsen/mathml/asciimath.xml
http://math.etsu.edu/LaTeXMathML/
http://math.etsu.edu/LaTeXMathML/
http://cran.r-project.org/doc/Rnews/Rnews_2003-3.pdf
http://cran.r-project.org/doc/Rnews/Rnews_2003-3.pdf
http://www.mathjax.org/

Pau G (2010). hwriter: HTML Writer - Outputs R objects in HTML format. R package
version 1.3, URL http://CRAN.R-project.org/package=hwriter.

Permessur A (2010). “15 JavaScript Data Grids to Enhance your HTML Tables.” http://
www.hotscripts.com/blog/15-javascript-data-grids-enhance-html-tables/.
Online: accessed December 5, 2011.

Siegrist K (2007). “Mathematics with Structure and Style.” The Journal of Online
Mathematics and Its Applications, 7. http://www.maa.org/joma/Volume7/Siegrist/
StructureStyle.html.

svgWeb (2011). “svgweb - Scalable Vector Graphics for Web Browsers using Flash.”
http://code.google.com/p/svgweb/. Online: accessed November 30, 2011.

Wikipedia (2011). “Ajax (programming).” http://en.wikipedia.org/wiki/Ajax_

(programming). Online: accessed December 8, 2011.

11

http://CRAN.R-project.org/package=hwriter
http://www.hotscripts.com/blog/15-javascript-data-grids-enhance-html-tables/
http://www.hotscripts.com/blog/15-javascript-data-grids-enhance-html-tables/
http://www.maa.org/joma/Volume7/Siegrist/StructureStyle.html
http://www.maa.org/joma/Volume7/Siegrist/StructureStyle.html
http://code.google.com/p/svgweb/
http://en.wikipedia.org/wiki/Ajax_(programming)
http://en.wikipedia.org/wiki/Ajax_(programming)

	Introduction
	Incorporating LaTeX in HTML
	Incorporating SVG Graphics
	Capturing R Output and R Sessions
	Displaying R Objects
	Links in Documents
	XML and XHTML
	Microsoft Word
	Discussion
	Conclusion

