
A Short Introduction to the gpuR Package

Dr. Charles Determan Jr. PhD∗

August 31, 2015

1 Introduction

GPUs (Graphic Processing Units) were originally developed to perform graphic render-
ing and commonly referred to in the comuting gaming world. These devices are also
able to be applied to numerical operations in parallel. Although there are a few different
vendors, the two primary competitors are AMD and NVIDIA.

NVIDIA GPUs depend upon the proprietary CUDA framework whereas AMD GPUs
utilize the open source OpenCL framework. The upside of OpenCL is that ’kernels’ are
able to used on any GPU whereas CUDA kernels can only be used on NVIDIA GPUs.
It is worth noting, however, that CUDA tends to edge out OpenCL performance likely a
result of the highly specific framework to the NVIDIA GPUs.

That said, programming either framework is often difficult for programmers unac-
customed to working with such a low-level interface. Creating bindings for high-level
programming languages (such as R) make using GPUs much more accessible to a broader
audience.

Several R packages have been developed including gputools, cudaBayesreg, HiPLARM,
HiPLARb, and gmatrix. However, all of the packages depend upon a CUDA backend and
therefore restrict the using to only using NVIDIA GPUs. The novelty of this package is
the use of the ViennaCL library (http://viennacl.sourceforge.net/) which has been cove-
niently been repackaged in the RViennaCL package to be used in other R packages. This
allows the user to leverage the auto-tuned OpenCL kernels of the ViennaCL library on
any GPU. It also allows for a CUDA backend for those who in fact have a NVIDIA GPU
for improved performance, which will be provided in a companion gpuRcuda package.

Of the aforementioned packages, most contain a very limited set of functions avail-
able to the R user within the packages. The most extensive being the gmatrix package
which contains most linear algebra operations. All of the packages (with the exception
of gmatrix) don’t store the data on the GPU. As such, there is the overhead of transferring
data back and forth between the device and host. Similar to gmatrix, this package utilizes
S4 classes to store an external pointer to the data on the GPU which mirror the base
matrix and vector classes. However, given the interactive nature of R programming and

∗cdetermanjr@gmail.com

1

http://cran.fhcrc.org/web/packages/gputools/index.html
http://cran.fhcrc.org/web/packages/cudaBayesreg/index.html
http://cran.fhcrc.org/web/packages/HiPLARM/index.html
http://cran.fhcrc.org/web/packages/HiPLARb/index.html
http://cran.fhcrc.org/web/packages/gmatrix/index.html
https://github.com/cdeterman/RViennaCL
https://github.com/cdeterman/gpuRcuda

the limited RAM available on GPU’s this package provides intermediate classes that re-
move the object from GPU RAM to allow objects to be stored on the CPU but still utilize
the GPU as needed.

2 Install

Install gpuR using

Stable version
install.packages("gpuR")

Dev version
devtools::install_github("cdeterman/gpuR")

2

3 Basic Use with gpuMatrix

gpuR has most basic linear algebra operations. The user simply needs to create a gpuMa-
trix object and the GPU methods will be used. Here is a minimal example demonstrating
typical matrix multiplication.

library("gpuR")

verify you have valid GPUs
detectGPUs()

create gpuMatrix and multiply
set.seed(123)
gpuA <- gpuMatrix(rnorm(16), nrow=4, ncol=4)
gpuB <- gpuA %*% gpuA

Most linear algebra methods have been created to be executed for the gpuMatrix
and gpuVector objects. These methods include basic Aithmetic functions %*%, +, -, *,
/, crossprod, tcrossprod, colMeans, colSums, rowMean, and rowSums. Math functions
include sin, asin, sinh, cos, acos, cosh, tan, atan, tanh, exp, log, log10. Additional
operations include some linear algebra routines such as cov (Pearson Covariance) and
eigen. With many more in development.

The objects may also be created specifying data type including int, float, and dou-
ble. Float type was included to provide a smaller memory footprint and also increased
throughput if the increased accuracy of double is not required.

Both the gpuMatrix and vclMatrix objects return a pointer to the data. Given that
working with GPU’s implies that you are working with larger datasets, this prevents
R from making unneccessary copies. However, this does require the user to exercise
caution as any change made to a ’copy’ (e.g. gpuB <- gpuA) will result in changes to the
original object and all others pointing to it as well.

4 vclMatrix Class

The vclMatrix class was created to allow the user to put data directly on the GPU once and
not need to continually push data back and forth between the host and device. Therefore,
if multiple processes are to be applied to a given matrix, there will be significant savings
by using vclMatrix objects. It is important to remember though, different GPU’s have
different amounts of RAM. The interactive nature of R often has many objects existing
simultaenously where you may exceed your GPU’s RAM. As such, the gpuMatrix class is
provided.

3

	1 Introduction
	2 Install
	3 Basic Use with gpuMatrix
	4 vclMatrix Class

