
Using the Google Visualisation API with R:

googleVis-0.2.6 Package Vignette

Markus Gesmann∗, Diego de Castillo†

Contact: rvisualisation@gmail.com

June 12, 2011

Abstract

The googleVis package provides an interface between R and the Google
Visualisation API. The Google Visualisation API offers interactive charts which
can be embedded into web pages. The best known of these charts is probably
the Motion Chart, popularised by Hans Rosling in his TED talks.

The functions of the googleVis package allow the user to visualise data
stored in R data frames with the Google Visualisation API without uploading
their data to Google. The output of a googleVis function is html code that
contains the data and references to JavaScript functions hosted by Google
and can be displayed via a browser via the R HTTP help server.

∗markus.gesmann@gmail.com
†decastillo@gmail.com

1

Contents

1 Introduction 3

1.1 Motivation . 3

1.2 Google Visualisation API . 5

2 The googleVis package 6

2.1 Installation . 6

2.2 Using the googleVis package . 8

2.3 Motion Chart Example . 9

2.4 Displaying gvis objects locally . 15

2.5 Combing charts with gvisMerge 15

3 Embedding googleVis in web sites 16

3.1 Integrating gvis objects in existing sites 16

3.2 Embedding googleVis in web sites dynamically 17

3.2.1 Using googleVis with R.rsp 17

3.2.2 Using googleVis with RApache and brew 17

4 Contact 19

4.1 Collaboration . 19

4.2 Citation . 19

4.3 Training and consultancy . 20

References 21

2

1 Introduction

1.1 Motivation

More and more data is becoming available, and yet stories and insights are still often
missed: we are lost in the data jungle and struggle to see the wood for the trees.

Hence new tools are required to bring data to life, to engage with users, to enable
them to slice and dice the data, to view it from various angles and to find stories
worth telling: outliers, trends or even the obvious.

In 2006 Hans Rosling gave an inspiring talk at TED [Ros06] about social and eco-
nomic developments in the world over the last 50 years, which challenged the views
and perceptions of many listeners. Rosling had used extensive data analysis to reach
his conclusions. To visualise his talk, he and his team at Gapminder [Fou10b] had
developed animated bubble charts, aka motion charts, see Figure 1.

Rosling’s presentation popularised the idea and use of interactive charts, and as
one result the software behind Gapminder was bought by Google and integrated as
motion charts into their Visualisation API [Inc11] one year later.

We also notice that data journalism has grown over the recent years. The data
blogs of the Guardian (UK), and taz.de (Die Tageszeitung, Germany) have brought
data analysis and data visualisation to a wider audience.

In 2010 Sebastián Pérez Saaibi [Saa10] presented at the R/Rmetrics Workshop on
Computational Finance and Financial Engineering the idea to link Google motion
charts with R using the R.rsp package [Ben11].

Inspired by those talks and the desire to use interactive data visualisation tools to
foster the dialogue between data analysts and others the authors of this vignette
started the development of the googleVis package [GdC11].

Of course there are many other alternative visualisation toolkits out there, e.g.
Many Eyes [RtICsg10], Open Flash Chart (Flash) [JG10], OpenLayers (JavaScript)
[Fou10c], Processing (Java) [FR10], simile (AJAX) [DKM10] and FLARE (Action-
Script) [Lab10].

3

http://www.guardian.co.uk/news/datablog
http://blogs.taz.de/open-data/
http://services.alphaworks.ibm.com/manyeyes/page/Create_a_Visualization.html
http://teethgrinder.co.uk/open-flash-chart/
http://www.openlayers.org/
http://processing.org/
http://simile.mit.edu/
http://flare.prefuse.org/
http://flare.prefuse.org/

Y-axis
Click here to select
indicators for the y-
axis.

Lin / Log scale
X- and y-axis scales can
be linear or
logarithmic. A log scale
can make it easier to
see trends.

Play / Stop
Click Play/Stop to
control the animation.
(How the graph
changes over time.)

Time
Click and drag to
change year.

Speed of
animation
Drag to change the
speed of the animation.

X-axis
Click here to select indicators for
the x-axis. You can also choose to
display time on this axis.

Chart type
Change between bubble, bar and line chart.

Colour
Click to choose
another indicator
for colour.

Select variables
Click boxes to
select specific
variables. (You can
also click the
bubbles.)

Trails
Click Trails to
follow a selected
country while the
animation plays.

Size indicator
Select the indicator
which represents
the size of the
bubble

To zoom in:
1. Put your mouse in the
chart area.
2. Hold down the left
mouse button and draw a
rectangle over the items
that you want to zoom in.
3. Release the left mouse
button.
4. In the menu that pops
up, select 'Zoom in'.

To zoom out:
Click the 'Zoom out' link
above the zoom thumbnail
in the right panel.

Settings
Change opacity of
non selected items
and further
advanced settings

Adapted from www.gapminder.org, which used
an original idea by wwww.juicygeography.co.uk

Figure 1: Overview of a Google Motion Chart. Screenshot of the output of
plot(gvisMotionChart(Fruits, idvar=’Fruit’, timevar=’Year’))

4

1.2 Google Visualisation API

The Google Visualisation API [Inc11], [Inc] allows users to create interactive charts
as part of Google documents, spreadsheets and web pages. In this text we will focus
on the usage of the API as part of web pages.

The Google Public Data Explorer [Inc10b] provides a good example, demonstrating
the use of interactive charts and how they can help to analyse data. Please note,
that most of those charts are rendered within a browser.

The charting data can either be embedded into the html file or read dynami-
cally. The key to the Google Visualisation API is that the data is structured in
a DataTable [Inc10c], and this is where the googleVis package helps, as it uses
the functionality of the RJSONIO package [Lan11] to transform R data frames into
JSON [JSO06] objects as the basis for a DataTable.

As an example we shall look at the html-code of a motion chart from Google’s
visualisation gallery [Inc10a], which generates output similar to Figure 1:

<html>
<head>
<script type="text/javascript" src="http://www.google.com/jsapi">
</script>
<script type="text/javascript">
google.load('visualization', '1', {'packages':['motionchart']});
google.setOnLoadCallback(drawChart);
function drawChart() {
var data = new google.visualization.DataTable();
data.addColumn('string', 'Fruit');
data.addColumn('date', 'Date');
data.addColumn('number', 'Sales');
data.addColumn('number', 'Expenses');
data.addColumn('string', 'Location');
data.addRows([
['Apples',new Date (1988,0,1),1000,300,'East'],
['Oranges',new Date (1988,0,1),1150,200,'West'],
['Bananas',new Date (1988,0,1),300,250,'West'],
['Apples',new Date (1989,6,1),1200,400,'East'],
['Oranges',new Date (1989,6,1),750,150,'West'],
['Bananas',new Date (1989,6,1),788,617,'West']
]);

var chart = new google.visualization.MotionChart(
document.getElementById('chart_div'));

chart.draw(data, {width: 600, height:300});
}

</script>
</head>

5

<body>
<div id="chart_div" style="width: 600px; height: 300px;"></div>

</body>
</html>

You will notice that the above html code has three generic parts:

� references to JavaScript functions provided by Google.

� data to visualise as a DataTable,

� chart with chart id (’chart_div’) and options, shown here as width and
height.

These principles hold true for most of the interactive charts of the Google Visuali-
sation API, see the examples in Figure 2.

2 The googleVis package

The googleVis package provides an interface between R and the Google Visuali-
sation API. The functions of the package allow the user to visualise data stored in
R data frames with the Google Visualisation API.

The output of a googleVis function is html code that contains the data and
references to JavaScript functions hosted by Google. To view the output a browser
with Flash and Internet connection is required, the actual chart is rendered in the
browser; it may not work when loaded as a local file. For more details see the Google
Visualisation API documentation [Inc10a].

Fortunately, R comes with an internal HTTP server which allows the googleVis
package to display pages locally.

Currently the package provides interfaces to motion chart, line chart, bar chart, col-
umn chart, area chart, scatter chart, combo chart, pie chart, geo chart, candlestick
chart, and org chart, further annotated time line, map, geo map, table, tree map,
intensity map, and gauge [Inc11]. See Figure 2 for some examples, for more see the
project site1.

2.1 Installation

We can install googleVis in the usual way from CRAN, e.g.:

R> install.packages('googleVis')

1http://code.google.com/p/google-motion-charts-with-r/wiki/GadgetExamples

6

http://code.google.com/p/google-motion-charts-with-r/wiki/GadgetExamples

Figure 2: Screenshot of some of the outputs of demo(googleVis), with
gvisMotionChart, gvisAnnotatedTimeLine, gvisMap, gvisGeoMap,
gvisTable and gvisTreeMap from top left to bottom right.

7

The installation was successful if the command library(googleVis) gives you
the following message:

R> library(googleVis)

To suppress the following message use the statement:
suppressPackageStartupMessages(library(googleVis))

Welcome to googleVis version 0.2.6

Type ?googleVis to access the overall documentation and
vignette('googleVis') for the package vignette.
You can execute the demo of the package via: demo(googleVis)

More information is available on the googleVis project web-site:
http://code.google.com/p/google-motion-charts-with-r/

Please read also the Google Visualisation API Terms of Use:
http://code.google.com/apis/visualization/terms.html

Feel free to send us an email <rvisualisation@gmail.com>
if you would like to be keept informed of new versions,
or if you have any feedback, ideas, suggestions or would
like to collaborate.

2.2 Using the googleVis package

The individual functions of the googleVis package are documented in detail in the
help pages. Here we will cover only the principles of the package.

As an example we will show how to generate a motion chart as displayed in Figure 1.
It works similarly for the other APIs. Further examples are covered in the demos of
the googleVis package, see also Figure 2.

The design of the visualisation functions is fairly generic. The name of the visuali-
sation function is ’gvis’ + ChartType. So for the Motion Chart we have:

gvisMotionChart(data, idvar='id', timevar='date',
options=list(), chartid)

Here data is the input data.frame and idvar and timevar specify the column
names of the id variable and time variable for the plot, while display options are set
in an optional list. The options and data requirements follow those of the Google
Visualisation API and are documented in the help pages, see

R> help('gvisMotionChart')

8

The argument chartid allows the user to set a chart id of the output chart manu-
ally. If the argument is missing a random id using tempfile(pattern='') will be
generated. Unique chart ids are required to place more than one chart into a page.

The output of a googleVis function is a list of lists (a nested list) containing
information about the chart type, chart id and the html code in a sub-list with
header, chart, caption and footer.

The idea behind this concept is that users can get a complete web page while at
the same time extracting specific parts, such as the chart. This is particular helpful
if the package functions are used in solutions where the user wants to feed the
visualisation output into other sites, or would like to embed them into rsp-pages
(see page 17), or use RApache (see page 17) or Google Gadgets.

The output of a googleVis function will be of class ’gvis’ and ’list’. Generic
print (print.gvis) and plot (plot.gvis) functions exist to ease the handling of
such objects.

To illustrate the concept we shall create a motion chart using the Fruits data set.

2.3 Motion Chart Example

Following the documentation of the Google Motion Chart API we need a data
set which has at least four columns: one identifying the variable we would like to
plot, one time variable and at least two numerical variables, further numerical and
character columns are allowed.

As an example we use the Fruits data set:

R> data(Fruits)

R> Fruits

Fruit Year Location Sales Expenses Profit Date
1 Apples 2008 West 98 78 20 2008-12-31
2 Apples 2009 West 111 79 32 2009-12-31
3 Apples 2010 West 89 76 13 2010-12-31
4 Oranges 2008 East 96 81 15 2008-12-31
5 Bananas 2008 East 85 76 9 2008-12-31
6 Oranges 2009 East 93 80 13 2009-12-31
7 Bananas 2009 East 94 78 16 2009-12-31
8 Oranges 2010 East 98 91 7 2010-12-31
9 Bananas 2010 East 81 71 10 2010-12-31

Here we will use the columns ’Fruit’ and ’Year’ as id and time variable respec-
tively. However we could heave used ’Date’ instead of ’Year’ as well.

R> M <- gvisMotionChart(Fruits, idvar="Fruit", timevar="Year")

9

The structural output of gvisMotionChart is a list of lists as described above

R> str(M)

List of 3
$ type : chr "MotionChart"
$ chartid: chr "MotionChartID64657ccd"
$ html :List of 4
..$ header : chr "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0
..$ chart : Named chr [1:7] "<!-- MotionChart generated in R 2.
.. ..- attr(*, "names")= chr [1:7] "jsHeader" "jsData" "jsDrawCh
..$ caption: chr "<div>Data: Fruits • Chart ID: <a h
..$ footer : chr "\n<!-- htmlFooter -->\n \nR version 2.13
- attr(*, "class")= chr [1:2] "gvis" "list"

The first two items of the list contain information about the chart type used and
the individual chart id:

R> M$type

[1] "MotionChart"

R> M$chartid

[1] "MotionChartID64657ccd"

The html output is a list with header, chart, caption and footer. This allows the
user to extract only certain parts of the page, or to create a complete html page.

The header part of the html page has only basic html and formatting tags:

R> print(M, tag='header')

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>MotionChartID64657ccd</title>
<meta http-equiv="content-type" content="text/html;charset=utf-8" />
<style type="text/css">
body {

color: #444444;
font-family: Arial,Helvetica,sans-serif;
font-size: 75%;

10

}
a {

color: #4D87C7;
text-decoration: none;

}
</style>

</head>
<body>

Here we used the print statement with the tag ’header’ instead of M$html$header
to achieve a formatted screen output. This is the same output as cat(M$html$chart).

The actual Google visualisation code is stored with the data as a named character
vector in the chart item of the html list. The chart is made up of several JavaScript
and HTML statements. Please notice that the JavaScript functions are uniquely
named with the information of the chart id. This concept allows the user get all
the chart code directly or only specific parts; see the examples in the help page of
print.gvis for more details.

R> names(M$html$chart)

[1] "jsHeader" "jsData" "jsDrawChart" "jsDisplayChart"
[5] "jsChart" "jsFooter" "divChart"

The complete chart can be displayed via:

R> print(M, tag='chart') ## or cat(M$html$chart)

<!-- MotionChart generated in R 2.13.0 by googleVis 0.2.6 package -->
<!-- Sun Jun 12 19:08:34 2011 -->

<!-- jsHeader -->
<script type="text/javascript" src="http://www.google.com/jsapi">
</script>
<script type="text/javascript">

// jsData
function gvisDataMotionChartID64657ccd ()
{
var data = new google.visualization.DataTable();
var datajson =

[
[
"Apples",

11

2008,
"West",

98,
78,
20,

"2008-12-31"
],
[
"Apples",
2009,

"West",
111,
79,
32,

"2009-12-31"
],
[
"Apples",
2010,

"West",
89,
76,
13,

"2010-12-31"
],
[
"Oranges",
2008,

"East",
96,
81,
15,

"2008-12-31"
],
[
"Bananas",
2008,

"East",
85,
76,
9,

"2008-12-31"
],
[
"Oranges",
2009,

12

"East",
93,
80,
13,

"2009-12-31"
],
[
"Bananas",
2009,

"East",
94,
78,
16,

"2009-12-31"
],
[
"Oranges",
2010,

"East",
98,
91,
7,

"2010-12-31"
],
[
"Bananas",
2010,

"East",
81,
71,
10,

"2010-12-31"
]
];
data.addColumn('string','Fruit');
data.addColumn('number','Year');
data.addColumn('string','Location');
data.addColumn('number','Sales');
data.addColumn('number','Expenses');
data.addColumn('number','Profit');
data.addColumn('string','Date');
data.addRows(datajson);
return(data);
}

// jsDrawChart

13

function drawChartMotionChartID64657ccd() {
var data = gvisDataMotionChartID64657ccd()
var chart = new google.visualization.MotionChart(
document.getElementById('MotionChartID64657ccd')
);
var options ={};

options["width"] = 600;
options["height"] = 500;
chart.draw(data,options);

}

// jsDisplayChart
function displayChartMotionChartID64657ccd()
{
google.load("visualization", "1", { packages:["motionchart"] });
google.setOnLoadCallback(drawChartMotionChartID64657ccd);

}

// jsChart
displayChartMotionChartID64657ccd()

<!-- jsFooter -->
//-->
</script>

<!-- divChart -->
<div id="MotionChartID64657ccd"
style="width: 600px; height: 500px;">

</div>

Similarly you can also access specific components of the chart, e.g.

R> cat(M$html$chart['jsChart']) # or print(M, 'jsChart')

// jsChart
displayChartMotionChartID64657ccd()

A basic chart caption and html footer are the final items of the html list (output is
truncated):

R> print(M, tag='caption')

<div>Data: Fruits • Chart ID: <a href="Chart_MotionCha

R> print(M, tag='footer')

14

<!-- htmlFooter -->

R version 2.13.0 (2011-04-13) • <a href="http://code.google.
• <a href="http://code.google.com/apis/visualization/terms.h
</div>
</body>
</html>

2.4 Displaying gvis objects locally

To display the page locally, type:

R> plot(M)

The plot method for gvis-objects creates html files in a temporary folder using the
type and chart id information of the object and it will display the output using the
R HTTP help web server locally.

Please note that the chart caption provides a link to the chart code via the chart id
for easy copy and paste.

The R command tempdir() will show you the path of the per-session temporary
directory, in which the files were written.

2.5 Combing charts with gvisMerge

Suppose you would like to show more than one interactive chart on the same page.

The function gvisMerge takes two gvis-objects and merges the underlying com-
ponents into one to align the charts either horizontally or vertically next to each
other in an HTML table.

The output of gvisMerge is a gvis-object again. This allows us to apply the same
function iteratively to create more complex chart layouts. The following example,
see Figure 3, aligns a geo chart and table below each other, and combines the output
with a motion chart to the right:

R> G <- gvisGeoChart(Exports, "Country", "Profit",

+ options=list(width=200, height=100))

R> T <- gvisTable(Exports,

+ options=list(width=200, height=270))

R> M <- gvisMotionChart(Fruits, "Fruit", "Year",

+ options=list(width=400, height=370))

R> GT <- gvisMerge(G,T, horizontal=FALSE)

R> GTM <- gvisMerge(GT, M, horizontal=TRUE,

+ tableOptions="bgcolor=\"#CCCCCC\" cellspacing=10")

15

Figure 3: Three charts combined with gvisMerge.

R> plot(GTM)

3 Embedding googleVis in web sites

3.1 Integrating gvis objects in existing sites

Suppose you have an existing web page and would like to integrate the output of
a googleVis function, such as gvisMotionChart. In this case you only need the
chart output from gvisMotionChart. So you can either copy and paste the output
from the R console

R> print(M, 'chart') ## or cat(M$html$chart)

into your existing html page, or write the content directly into a file

R> print(M, 'chart', file='myfilename')

and process it from there.

16

3.2 Embedding googleVis in web sites dynamically

In this section we provide examples how the googleVis functions can be embed-
ded into web sites dynamically. With the R packages R.rsp [Ben11] and brew
[Hor11a] we have two options to integrate R snippets into html code. While the
R.rsp package comes with its own internal web server, brew requires the Apache
HTTP server [Fou10a] with the RApache [Hor11b] module installed. Please note
that currently the RApache module only runs on UNIX/Linux and Mac OS X.

3.2.1 Using googleVis with R.rsp

The R.rsp package allows the user to integrate R code into html code. The R
code is filtered by the R.rsp web server and executed at run time.

As an example, we can embed the above motion chart into a rsp-page:

<html>
<body>
<% library(googleVis)%>
<% M <- gvisMotionChart(Fruits, idvar="Fruit", timevar="Year") %>
<%= M$html$chart %>
</body>
</html>

The R code included in <%. . .%> is executed when read by the R.rsp HTTP server,
but no R output will be displayed. To embed the R output into the html code we
have to add an equal sign, <%=. . .%>, which acts as a cat statement.

You find an example as part of the googleVis package. This example can be
displayed via the following R command:

R> library(R.rsp)

R> browseRsp()

R> # Follow the link for googleVis in the opening browser window

The actual rsp-file is located within the googleVis package directory and again R
allows you to find the file with the following command:

R> file.path(system.file("rsp", package = "googleVis"), "index.rsp")

For more information read the documentation of the R.rsp package.

3.2.2 Using googleVis with RApache and brew

RApache supports web application development using R and the Apache HTTP
server. The RApache module embeds the R interpreter into the Apache web server.

17

However, as we would like to mix R and html code we also need a parser and this
is where the R package brew comes into place.

Files sitting in a dedicated brew folder of the HTTP repository are parsed by brew
when opened in the browser. The R code is executed with RApache and the output is
embedded into the site. Hence the approach is similar to R.rsp with the difference
that the two tasks are split. This has the advantage that R does not have to run in
a separate window.

Detailed installation instructions for RApache are available on the project site:
http://rapache.net/manual.html, for specific comments on Mac OS X see: http://-
worldofrcraft.blogspot.com/2010/08/installing-rapache-on-mac-os-x-snow.html

Following the installation of RApache you will have to configure Apache. Most
likely you have to add something along the following lines to your apache2.conf or
httpd.conf file (often found in /etc/httpd or /private/etc/apache2/httpd.
conf on Mac OS X):

LoadModule R_module /usr/lib/apache2/modules/mod_R.so
On Mac OS X more likely to be:
LoadModule R_module libexec/apache2/mod_R.so
ROutputErrors
RSourceOnStartup "/var/www/rapache/R/startup.R"
On Mac OS X the www folder is often equivalent to:
/Library/WebServer/Documents/

The first line loads the R module when the Apache web server is started, the second
line deals with error handling, while the startup.R file is suitable for initial set ups,
e.g. libraries and global variables:

Ensure the packages are installed so that mod_R
has access to them, e.g. not in your home folder
library{googleVis}
library{lattice}
library{Cairo}
MyGlobalVar <- 42

To test that RApache is working open http://localhost/RApacheInfo and you should
find details about your system, an example can be found on the RApache site:
http://biostat.mc.vanderbilt.edu/rapache/files/RApacheInfo.html

The next step is to install the brew R package in the usual way:

R> install.packages('brew')

Following this we have to tell Apache that files in a specific folder should be parsed
by brew. Again we edit the apache2.conf or httpd.conf and add the connection
of the RHandler with the function brew:

18

http://rapache.net/manual.html
http://worldofrcraft.blogspot.com/2010/08/installing-rapache-on-mac-os-x-snow.html
http://worldofrcraft.blogspot.com/2010/08/installing-rapache-on-mac-os-x-snow.html
http://localhost/RApacheInfo
http://biostat.mc.vanderbilt.edu/rapache/files/RApacheInfo.html

<Directory /var/www/rapache/brew>
On Mac OS more likely to be something like:
<Directory /Library/WebServer/Documents/rapache/brew>

SetHandler r-script
RHandler brew::brew

</Directory>

That’s all. Restart the HTTP daemon and you can start placing files in the brew
directory and access them via http://localhost/rapache/brew/filename, e.g.
a file containing:

<html>
<body>
<h1>Fruits</h1>
<% library(googleVis)%>
<% M <- gvisMotionChart(Fruits, idvar="Fruit", timevar="Year") %>
<%= M$html$chart %>
</body>
</html>

You will notice that the brew syntax is very similar to rsp. For more information
read the documentation of the RApache module and brew package. You find two
simple examples of brew files in the googleVis package. Again the following R
command shows you the folder path:

R> system.file("brew", package = "googleVis")

4 Contact

4.1 Collaboration

Obviously, the package is work in progress and there are many other functions of
the Google Visualisation API which are still untouched.

Please feel free to send us an email if you would like to be kept informed of new
versions, or if you have any feedback, ideas, suggestions or would like to collaborate,
our address is rvisualisation@gmail.com.

4.2 Citation

Please cite R and/or googleVis if you use it in your work or publications. Use

R> citation()

19

mailto:rvisualisation@gmail.com

or

R> citation("googleVis")

for information on how to cite the software.

4.3 Training and consultancy

Please contact us if you would like to discuss tailored training or consultancy: rvi-
sualisation@gmail.com

References

[Ben11] Henrik Bengtsson. R.rsp: R server pages. http://CRAN.R-project.
org/package=R.rsp, 2011. R package version 0.5.3.

[DKM10] MacKenzie Smith (MIT Libraries) David Karger (MIT CSAIL). Simile:
Semantic Interoperability of Metadata and Information in unLike Environ-
ments. http://simile.mit.edu/, 2010.

[Fou10a] Apache Foundation. Apache HTTP Server 2.2. http://httpd.apache.
org, 2010.

[Fou10b] Gapminder Foundation. Gapminder. http://www.gapminder.org,
2010.

[Fou10c] Open Source Geospatial Foundation. Openlayers: Free maps for the web.
http://www.openlayers.org/, 2010.

[FR10] Ben Fry and Casey Reas. Processing an open source programming lan-
guage and environment to create images, animations, and interactions.
http://processing.org/, 2010.

[GdC11] Markus Gesmann and Diego de Castillo. googleVis: Using the
Google Visualisation API with R. http://code.google.com/p/
google-motions-chart-with-r/, 2011. R package version 0.2.5.

[Hor11a] Jeffrey Horner. brew: Templating framework for report generation. http:
//CRAN.R-project.org/package=brew, 2011. R package version 1.0-6.

[Hor11b] Jeffrey Horner. RApache: Web application development with R and
Apache. http://www.rapache.net/, 2011.

[Inc] Google Inc. Google Visualization API Terms of Service. http://code.
google.com/apis/visualization/terms.html.

20

mailto:rvisualisation@gmail.com?subject=Training-and-consultancy
mailto:rvisualisation@gmail.com?subject=Training-and-consultancy
http://CRAN.R-project.org/package=R.rsp
http://CRAN.R-project.org/package=R.rsp
http://simile.mit.edu/
http://httpd.apache.org
http://httpd.apache.org
http://www.gapminder.org
http://www.openlayers.org/
http://processing.org/
http://code.google.com/p/google-motions-chart-with-r/
http://code.google.com/p/google-motions-chart-with-r/
http://CRAN.R-project.org/package=brew
http://CRAN.R-project.org/package=brew
http://www.rapache.net/
http://code.google.com/apis/visualization/terms.html
http://code.google.com/apis/visualization/terms.html

[Inc10a] Google Inc. Google Motion Chart API. http://code.google.com/
apis/visualization/documentation/gallery/motionchart.html,
2010.

[Inc10b] Google Inc. Google Public Data Explorer. http://www.google.com/
publicdata/home, 2010.

[Inc10c] Google Inc. Google Visualisation Reference. http://code.google.com/
apis/visualization/documentation/reference.html, 2010.

[Inc11] Google Inc. Google Visualization API. http://code.google.com/apis/
visualization/documentation/gallery.html, 2011.

[JG10] George Neusse John Glazebrook, Guenther Harrasser. Open flash chart.
http://teethgrinder.co.uk/open-flash-chart/, 2010.

[JSO06] JSON.org. JSON. http://www.json.org/, 2006. RFC 4627 applica-
tion/json.

[Lab10] UC Berkeley Visualization Lab. flare: Data visualisation for the web.
http://flare.prefuse.org, 2010.

[Lan11] Duncan Temple Lang. RJSONIO: Serialize R objects to JSON, JavaScript
Object Notation. http://www.omegahat.org/RJSONIO/, 2011. R pack-
age version 0.7-3.

[Ros06] Hans Rosling. TED Talk: Hans Rosling shows the best stats you’ve ever
seen. http://www.ted.com/talks/hans_rosling_shows_the_best_
stats_you_ve_ever_seen.html, 2006.

[RtICsg10] IBM Research and the IBM Cognos software group. Many eyes.
http://services.alphaworks.ibm.com/manyeyes/page/Create_
a_Visualization.html, 2010.

[Saa10] Sebastián Pérez Saaibi. R/RMETRICS Generator Tool for Google Mo-
tion Charts. https://www.rmetrics.org/, 2010. Meielisalp, Lake Thune
Switzerland, June 27 - July 1, 2010.

21

http://code.google.com/apis/visualization/documentation/gallery/motionchart.html
http://code.google.com/apis/visualization/documentation/gallery/motionchart.html
http://www.google.com/publicdata/home
http://www.google.com/publicdata/home
http://code.google.com/apis/visualization/documentation/reference.html
http://code.google.com/apis/visualization/documentation/reference.html
http://code.google.com/apis/visualization/documentation/gallery.html
http://code.google.com/apis/visualization/documentation/gallery.html
http://teethgrinder.co.uk/open-flash-chart/
http://www.json.org/
http://flare.prefuse.org
http://www.omegahat.org/RJSONIO/
http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html
http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html
http://services.alphaworks.ibm.com/manyeyes/page/Create_a_Visualization.html
http://services.alphaworks.ibm.com/manyeyes/page/Create_a_Visualization.html

	Introduction
	Motivation
	Google Visualisation API

	The googleVis package
	Installation
	Using the googleVis package
	Motion Chart Example
	Displaying gvis objects locally
	Combing charts with gvisMerge

	Embedding googleVis in web sites
	Integrating gvis objects in existing sites
	Embedding googleVis in web sites dynamically
	Using googleVis with R.rsp
	Using googleVis with RApache and brew

	Contact
	Collaboration
	Citation
	Training and consultancy

	References

