Unleashing GPU Power Using R: The gmatrix
Package

Nathan Morris
Case Western Reserve University

Abstract

In recent years, graphical processing units (GPUs) have become increasingly flexible
in allowing the implementation of general purpose algorithms. Thus, given the massively
parallel nature of GPUs and their excellent performance to power ratio, many large data
centers are opting to install clusters with large numbers of NVIDIA®GPUs. Several very
nice R projects such as gputools have made use of GPU power to speed up certain specific
operations on the GPU. The gmatrix package follows a different path, giving users the
tools to implement a broad range of algorithms in R for themselves. The package allows
for easy management of the separate device and host memory spaces. Numerous numer-
ical operations are implemented for these objects on the GPU. These operations include
matrix multiplication, addition, subtraction, the Kronecker product, the outer product,
comparison operators, logical operators, trigonometric functions, indexing, sorting, ran-
dom number generation and many more. Currently, gmatrix can only be installed on
Linux machines with an NVIDIA®)GPU.

Keywords: GPU, CUDA, graphics processing unit, R.

1. Introduction

GPUs, which were originally designed to perform graphical rendering, are highly parallel de-
vices designed to perform large numbers of simple operations in parallel. The large general
market for GPUs has allowed manufacturers to push down prices while creating increasingly
high performance devices which arguably draw relatively lower amounts of power than a sim-
ilar central processing unit (CPU). Realizing the potential of such devices to be productive
in fields outside of graphics, GPU manufacturers have increasingly attempted to create tools
which will allow general purpose computing algorithms to be implemented on the GPU. One
of the most influential of these tools is a programing model known as the “compute unified
device architecture” (CUDA). This programming model extends the C language to allow pro-
grammers to create small functions known as kernels which run on the GPU. Unfortunately,
implementing a large complex algorithm with CUDA is not always straightforward, and there-
fore numerous libraries implementing tasks such as linear algebra operations and random
number generation have been created.

It is important to understand from the outset the limitations of GPUs. First, GPUs have
their own memory space which is separate from the main memory of the computer. A GPU
process does not directly access objects in the main memory. Objects in the main memory
must first be moved to GPU memory. In the high performance computing setting, typically

2 gmatrix: GPU Computing in R

the GPU memory will be significantly smaller than the main memory. Hence, it is important
to be able to manage the GPU memory effectively. Second, there is often a high overhead
to be paid for each GPU operation (i.e., kernel) that is launched. Hence, it is generally only
worthwhile to perform an operation on the GPU if that operation is running quite slowly on
the CPU. Third, GPUs are designed to run only relatively simple kernels. There is very little
hope of actually getting R to run directly in a GPU kernel. Finally, GPUs typically have
much higher single precision floating point capabilities than double precision floating point
capabilities.

A number of R packages have already been produced which make use of GPU power. The
packages gputools (J Buckner and Wilson 2013) and cudaBayesreg (da Silva 2011) implement
a number of specific applications such as linear regression, support vector machines and
Bayesian regression. While these packages may do very well at these specific applications, they
are not intended to enable the user to create more general algorithms. The packages magma
(Smith 2013), HIPLARM (Nash and Szeremi 2012) and HiPLARDb (Szeremi 2012) provide
access to matrix factorization and multiplication on the GPU. HiPLARb replaces some of
the base linear algebra functionality in R, while HIPLARM replaces some of the functionality
of the Matrix (Bates and Maechler 2013) package. Note that the base and Matrix packages
provide only serial implementations of linear algebra routines, while magma, HIPLARM and
HiPLARD provide much faster parallel / GPU versions of these algorithms. However, these
GPU based packages do not store the actual data on the GPU, and any operations which use
the GPU must involve the additional overhead of transferring data to and from the GPU for
every operation. Also, these packages perform standard matrix operations such as matrix
addition or element wise multiplication on the CPU instead of the GPU. Furthermore, these
packages do not perform random number generation, indexing, sorting, or special functions
(e.g., Log() or sin()) on the GPU. Perhaps the package that motivated gmatrix most strongly
was rgpu (Kempenaar and Dijkstra 2013), which allows objects to be transferred back and
forth between the GPU and main memory. The primary innovation of our approach, however,
has been to implement S4 classes which store an external pointer to data on the GPU. The
gmatrix and gvector classes behave very similarly to standard R matrix and vector objects.
Thus, many algorithms in R may be transferred transparently to the GPU with minimal effort.
In this respect, gmatrix is perhaps somewhat comparable to the ®Matlab plug-in known as
Jacket. Therefore, gmatrix differs from most previous GPU based R packages both in its
generality and its approach to managing the separate GPU and host memory spaces. It
should be noted that gmatrix does not perform matrix factorization which HIPLARM and
HiPLARD excel at. The rcula (Morris 2013) package builds on the gmatrix package to do
some simple matrix factorization.

2. The gmatrix and gvector class

The gmatrix and gvector S4 classes store matrix and vector objects on the GPU. Every
gmatrix and gvector object has an associated type (i.e., "double", "single", "integer"
or "logical") which is stored in the type slot. Other slots for the class store the dimen-
sions/length of the object, the names/rownames/colnames of the object and, most impor-
tantly, a pointer to the object in the GPU memory. An R matrix or vector may be moved
to the GPU using the command g() and moved back to the main memory with the com-
mand h(). One may also use the numerous coercion functions such as as.gmatrix() and

Nathan Morris 3

as.matrix() to move data on and off the GPU. Also, numerous approaches to construction
information on the GPU exist. In general, these function start with “g” and mimic the base
R functions as displayed in Table 1. For example, gmatrix(), g.rep(), gseq() and %to%
mimic respectively the R base functionality: matrix(), rep(), seq() and :. Consider, for
example, the following lines of code, all of which produce the equivalent matrices, but which
may differ in execution time.

R> A <- g(matrix(1:100, 10, 10))
R> A <- gmatrix(1:100, 10, 10)
R> A <- gmatrix(1 Jtoj 100, 10, 10)

It is crucial to understand that the gmatrix / gvector object only stores an external pointer.
This has some advantages and some disadvantages. Perhaps the chief disadvantage is the
unexpected behavior of a command such as B <= A. Such a command duplicates the pointer
without duplicating the actual object on the GPU. Thus, changes to the object B (e.g., B[1,1]
<- 1000) would change both objects A and B. One should instead use the command B <-
gdup (A). The gdup() function duplicates an object on the GPU and returns a pointer to the
duplicated object. A similar problem occurs when modifying an object within a function call.
For example:

R> f <- function(x) { x[1,1] <- 10; return(TRUE)}
R> f(4)

R creates a separate copy of x when it is modified. However, the separate copy of x still points
to the same memory on the GPU as A, and so the original input copy is modified. This can
again be easily fixed by modifying the function: £ <~ function(x) {x <- gdup(x); x[1,1]
<- 10; return(TRUE)}. While the use of an external pointer does create some problems, it
also opens up some interesting avenues for code optimization. For example, the command A
<- gmatrix(l %to% 100, 10, 10) performs an entirely unnecessary duplication of the input
data because the input data cannot be used or modified elsewhere in the code. The command
A <- gmatrix(1 %to}% 100, 10, 10, dup=FALSE) uses the external pointer nature of the
object to avoid this unneeded duplication. Because GPU memory is precious and often
the data is quite large, the ability to explicitly avoid such duplications is something to be
appreciated.

A related point is that, because R is only aware of the pointer, R does not know when the
GPU memory is full, and occasionally a failure to adequately perform garbage collection can
lead to memory full errors. The command ggc() may be used to perform garbage collection
and report on the amount of available memory on the GPU.

The type of an object can be accessed or set using the type and type<- functions. For
example, to coerce the type of A to "single", the command type(A) <- "s" or alternatively
type(A) <- "single" command may be issued. In general, "double" is equivalent to "d",
"single" is equivalent to "s", "integer" is equivalent to "i", and "logical" is equivalent
to "1". Numerous operations on the GPU behave much the same as on standard R objects.
By default, all operations which involve a GPU object are performed on the GPU and return a
GPU object with an appropriate type. For example, logical operators (i.e., & and |) involving at
least one GPU object return a GPU object with a "logical" type. Most function/operations
in the package attempt to coerce the type of the operands/inputs to something reasonable for
the given operation.

4 gmatrix: GPU Computing in R

Elementwise binary operations in R may be performed for two objects of different length. In
this case, the operation recycles the elements of the smaller object. This works with GPU
objects as well. For example, (1 %to’ 10 + 1 %to’ 2) and (1:10 + 1:2) will yield the
same results with one object on the GPU and one object on the main memory. As mentioned
previously, object are returned by default on the GPU. For example, (1 %to% 10) * 100
involves the operation (*) with the operand 100 residing in main memory, and yet the final
result of the operation will be an object of class gvector. The binary operators implemented

include. ||+l| n_n n * n "/II ll%%ll n-~n n——=n n ! =N "<=ll n >=ll n <ll ||>l| "&ll and n | n . In
addition, numerous unary elementwise functions/operators have been implemented. These
include: "!", abs(), exp(), expml (), log(), log2(), logl0(), loglp(), sin(), cos(),

|tan(), asin(), acos(), atan(), sinh(), cosh(), tanh(), asinh(), acosh(), atanh(),
abs(), lgamma (), gamma(), sign(), round(), ceiling(), is.na(), is.nan(), is.finite(),
and is.infinite().

The matrix multiplication functionality in gmatrix makes use of the CUBLAS library sup-
plied by NVIDIA®)CUDA Toolkit. We have also implemented other common matrix algebra
operations such as the Kronecker product (%x%), outer product(%o%, gouter()), the diag()
function, diag<- function, transpose (t()) and a function for multiplying a matrix times the
diagonal of a vector (gmatTimesDiagVec()). We have used the Thrust library (Hoberock
and Bell 2010) to implement reduction operations such as: sum(), mean(), max() and min().
Other reduction operations such as rowSums(), colSums(), rowMeans() and colMeans()
were implemented using the CUBLAS library. We also implemented the R functions which ()
and ifelse() for GPU objects. The function sort and gorder were implemented using the
Thrust library and behave very similarly to the standard R implementation of these functions.
However, unlike the standard R implementation, gorder creates a permutation for only one
vector and cannot handle multiple vectors.

Indexing operations similar to the ones performed on standard R objects have been imple-
mented. For example, one can use the command A[1:3,3] to extract the first three elements
of column 3 from the gmatrix object A. Or, similarly, A[1:3,3] <- 10 may be used to set
the specified elements to 10. The statement A[-10,] will return A with row 10 removed. The
form of indexing which uses a numeric matrix with one column for each dimension has not
been implemented.

3. Distributions and random number generation

The early versions of gmatrix were very useful in our own implementation of Bayesian MCMC
schemes with big data, and we believe that MCMC will be one of the primary places where
our package will find usefulness. We have implemented code to make use of the random
number generators in the cuRAND library. cuRAND can simulate random variables from
the uniform and normal distributions, and we have created the functionality to simulate from
gamma, Poisson and binomial distributions. We simulate from the gamma distribution using
the approach of Marsaglia and Tsang (2000). The Poisson and binomial distributions are
simulated using a modified version of the approach in the GSL library which it attributes to

[1P)

Knuth. The gmatrix version of random number generators may be found by putting a “g

Nathan Morris

R Function | gmatrix Function | Notes

matrix() gmatrix() Create a matrix / gmatrix from a vector / gvector

rep() g.rep() Create a vector /gvector by replicating a smaller
vector / gvector

seq(), : gseq(), %tok Create a sequence of numbers

rnorm() grnorm() Sample from a normal distribution

dnorm() gdnorm() Density function for a normal distribution

rgamma () grgamma () Sample from a gamma distribution

dgamma () gdgamma () Density function for a gamma distribution

rbeta() grbeta() Sample from a beta distribution

dbeta() gdbeta () Density function for a beta distribution

runif () grunif () Sample from a uniform distribution

dunif () gdunif () Density function for a uniform distribution

rpois() grpois() Sample from a Poisson distribution

dpois O gdpois () Density function for Poisson distribution

rbinom() grbinom() Sample from a binomial distribution

dbinom() gdbinom() Density function for binomial distribution

gcO) ggc O Garbage collection on the GPU

Table 1: R base vs. gmatrix functions

in front of the R command. For example, grnorm() is the GPU version of rnorm(). The
following code will create a set of random matrices with each row identically distributed:

R> Z1 <- gmatrix(grnorm(100, mean=1:10), 10, 10, dup=FALSE)
R> Z2 <- gmatrix(grgamma(100, shape=1:10), 10, 10, dup=FALSE)
R> Z3 <- gmatrix(grbeta(100, shapel=1:10, shape2=1:10),10,10, dup=FALSE)

We have also implemented functionality for calculating the density functions of all of the
above distributions. This again follows the convention of prepending a “g” in front of the R
command. For example, gdnorm() is the GPU version of dnorm(). We have not implemented
quantile functions or cumulative distribution functions for any distribution except the normal

distribution: ggnorm and gpnorm.

4. Multiple GPUs

If multiple NVIDIA®)GPUs are available on a system, the available devices may be listed
using the function 1istDevices(). The function getDevice and setDevice get and set the
current device. All GPU operations are performed on the current GPU device only. Any
attempt to operate on an object which is located on a different GPU will result in an error.
For example, the following code should result in an error:

R> setDevice(0)
R> Z <- gmatrix(grgamma(100, shape=1:10), 10, 10, dup=FALSE)
R> setDevice(1)
R> Z <- sin(2)

6 gmatrix: GPU Computing in R

To find out which device a given object (e.g., Z) is stored on, a command such as device(Z)
may be used. To move data from one GPU to another, a command such as device(Z)<-1
may be used. To copy the data to another device while leaving the original copy alone, the
command Z2<-gdub(Z,device=2) may be used. For example, to avoid the problem in the
code above, we may use:

R> setDevice(0)

R> Z <- gmatrix(grgamma(100, shape=1:10), 10, 10, dup=FALSE)
R> setDevice(1)

R> device(Z) <- 1

R> Z <- sin(Z)

It is possible to use gmatrix in conjunction with snow to submit work to the GPU in parallel
using the command clusterApply. However, the user is warned that it is extremely important
not to attempt to pass any objects of class gmatrix or gvector between the snow cluster
sessions and the master R session. Any such attempt is likely to cause a fatal error because
the cluster sessions do not have access to the same memory as the master R session. All
objects must be returned to the CPU memory before attempting to export them to the
cluster or return them to the main session. We have found that by using snow, it is possible
to increase speed even when using a single GPU. By submitting multiple kernels to the GPU
simultaneously, more of the GPUs power can be utilized. Here is a simple, safe example to
explore the Central Limit Theorem with a single GPU:

R> n <- 1le7

R> library("snow")

R> cl <- makeSOCKcluster(rep("localhost",3))

R> clusterExport(cl, "n")

R> clusterEvalQ(cl, library("gmatrix"))

R> pvals <- clusterApply(cl, 1:1000, fun = function(i) {

R> ggc (TRUE)

R> X <- exp(grnorm(n, sd=5))

R> Y <-exp(grnorm(n, sd=5))

R> Xbar <- mean(X); Ybar=mean(Y)

R> se <- sqrt((sum((X-Xbar)~2) +
sum((Y-Ybar)~2))/((n-2)*n))

R> T <- (h(Xbar)-h(Ybar))/h(se)

R> return (2*pnorm(-abs(T)))

R> 1)

R> stopCluster(cl)
R> typelerror <- mean(unlist(pvals)<.05)

We have found this code to be about 80% faster than the simpler approach which uses lapply
instead of clusterApply.

5. Benchmarking

To investigate the value of the gmatrix package, we have performed a number of benchmark
tests. All test were performed on the CPU side with an Intel®Xeon®E5630 processor with

Nathan Morris

2.53GHz, and on the GPU side with an NVIDIA®)C2050 card. Timing was performed using
the package microbenchmark, although in many cases the time was long enough that the
microbenchmark package would have been unnecessary. Of course, the benchmark speeds
will vary widely depending on the GPU and CPU hardware components being compared.
These benchmarks also only compare a particular implementation of the GPU operations
with standard R implementations of various operations, and we would warn the user not to
overgeneralize these benchmarks as generally representative of GPU vs. CPU comparisons.
There is probably significant room for optimization of both the CPU and GPU operations.
None of these benchmarks make use of the "single" type which could make the GPU signif-
icantly faster.

First, we investigated the performance of the random number generating functionality in
gmatrix. The results are shown in Figure 1. The normal simulation compared grnorm(n)
vs. grnorm(n) where n is the number on the x-axis of the figure. The gamma simulation
compared rgamma (n, shape=100) with grgamma(n, shape=100). The beta simulation com-
pared rbeta(n,shapel=10, shape2=10) with grbeta(n,shapel=10,shape2=10). The bi-
nomial simulation compared rbinom(n,size=100, prob=0.5) with grbinom(n, size=100,
prob=0.5). The Poisson simulation compared CPU function rpois(n,lambda=100) with the
GPU function grpois(n, lambda=100). We can see from the figure that in order for the
GPU to be efficient it must be simulating approximately 3 x 10* random numbers at a time
(the exact number depends on the distribution). However, when a large quantity of random
numbers must be simulated, the GPU gave more than an 80x speedup for simulating from a
normal distribution and beta distribution. Other distributions such as Poisson and binomial
appeared to yield relatively small speedups. Of course it should be noted that particularly for
the Poisson and binomial distribution, the amount of speedup may be heavily dependent on
the parameters for the distribution being simulated. For example, while not shown in Figure 1,
we found that when comparing rbinom(1E7, size=2, prob=.5) to grbinom(1E7,size=2,
prob=.5) the speedup was approximately 100x.

Next, we looked at the performance of some simple binary operations. As shown in Figure 2,
it takes a very large vector/matrix of length at least 5 x 10° to have any gains on the GPU,
for most of the operations. Exponentiation (i.e., z¥) appears to enjoy greater benefits on the
GPU than the other operations. However, it would not necessarily be beneficial to move an
object back to the CPU for these operations because, as we will see, the cost of moving the
matrix/vector back to the CPU may be quite large.

Next, we considered the performance of some logical operators and functions. Figure 3 shows
the results of this investigation. The ifelse() function appears to be quite efficient on the
GPU, and starts beating the CPU function with a vector size of only about 5000. The GPU
based & and | operators start beating the CPU for vectors of length approximately 7 x 10* and
speed up the operation by about 60x for vectors of length 107. The GPU which function starts
outperforming CPU for vector sizes of approximately 8 x 10 and achieves a 20x improvement
in speed for vectors of length 107.

We also looked at the performance of several mathematical special functions. As shown in
Figure 4, the GPU exp(), gamma(), sin() function were faster than the CPU for vectors
of about 8000, and all of these function had very large speedups for vectors of 107 (> 200x
speedup). The asin() and log() were a little less dramatic in their performance but still
quite impressive.

8 gmatrix: GPU Computing in R

Matrix multiplication is one operation in which the GPU excels for even relatively small
matrices. As shown in Figure 5, the GPU easily beats the CPU (by ~7x) when multiplying
two 100 x 100 matrices and the speedup is “120x when multiplying two 1000 x 1000 matrices.
Of course, the CPU based matrix multiplication could be significantly improve by setting up
R to use a faster BLAS library (Eddelbuettel 2010). Similarly, the Kronecker product on the
GPU easily beats the CPU when operating on two matrices of size 100 x 5. The transpose
operation on the GPU requires larger sized matrices to be efficient.

Next, we investigated the indexing operations on the GPU. Figure 6 displays some results for
indexing operations. It should be noted that the speed of indexing operations on the GPU
relative to the CPU may be heavily dependent on the size (i.e., dimensions) of the objects
being indexed. We were concerned that, due to the need of the GPU to coalesce its memory
accesses, the indexing on the GPU might be heavily effected by the ordering of the index.
This turns out not to be a big problem in the scenario shown in Figure 6 since the randomly
ordered index had a similar performance to the sequentially ordered index.

Finally, we discuss the transfer of memory to and from the GPU. As shown in Figure 7,
every memory transfer has an initial overhead to start the transfer regardless of the memory
size being transferred. The optimal approach for a given problem may not always be to run
an operation on the hardware platform which can perform it fastest. At times, it may be
beneficial to perform on the GPU an operation which is faster on th CPU, to avoid the cost
of bringing the data back and forth between the GPU and CPU.

6. Conclusions

This paper has shown through benchmark tests that large gains in speed can be achieved
by using the gmatrix package in conjunction with NVIDIA®)GPUs. As these devices are
becoming increasingly available on academic clusters, there can be little doubt that R packages
such as the one described in this paper will be useful to applied statisticians. Of course, we do
not want overstate the case for using GPU power. For small problems and some exceedingly
complex algorithms, GPUs are likely to slow the results down. Despite these limitations,
gmatrix has proven useful in our own implementation of Bayesian MCMC schemes with
large data sets. Many complex algorithms can be broken down into a sequence of relatively
simple steps, often involving linear algebra operations, sorting and random number generation.
Frequently the bottleneck steps in these algorithms can be sped up by orders of magnitude
fairly simply using a GPU. We are convinced that there is a tremendous opportunity to use
GPU power to take many previously computationally impossible tasks and put them well
within range of our current computing power.

References

Bates D, Maechler M (2013). Matriz: Sparse and Dense Matriz Classes and Methods. R
package version 1.0-11, URL http://Matrix.R-forge.R-project.org/.

da Silva AF (2011). “cudaBayesreg: Parallel Implementation of a Bayesian Multilevel Model
for fMRI Data Analysis.” Journal of Statistical Software, 44(4), 1-24. ISSN 1548-7660.
URL http://www.jstatsoft.org/v44/i04.

http://Matrix.R-forge.R-project.org/
http://www.jstatsoft.org/v44/i04

Nathan Morris 9

Eddelbuettel D (2010). gebd: GPU/CPU Benchmarking in Debian-based systems. URL
http://cran.r-project.org/web/packages/gcbd/.

Hoberock J, Bell N (2010). “Thrust: A Parallel Template Library.” Version 1.7.0, URL
http://thrust.github.io/.

J Buckner MS, Wilson J (2013). gputools: A few GPU enabled functions. R package ver-
sion 0.28, URL http://www.hiplar.org/hiplar-b.html.

Kempenaar M, Dijkstra M (2013). R/GPU: Using the Graphics Processing Unit to speedup
bioinformatics analysis with R. R package version 0.8-1, URL https://gforge.nbic.nl/
projects/rgpu/.

Marsaglia G, Tsang WW (2000). “A simple method for generating gamma variables.” ACM
Trans. Math. Softw., 26(3), 363-372. ISSN 0098-3500. doi:10.1145/358407.358414. URL
http://doi.acm.org/10.1145/358407.358414.

Morris N (2013). rcula: An R plugin for matriz factorization and inversion. R package
version 0.1, URL https://github.com/njm18/rcula/.

Nash P, Szeremi V (2012). HiPLARM: High Performance Linear Algebra in R. R package
version 0.1, URL http://cran.r-project.org/web/packages/gcbd/.

Smith BJ (2013). magma: Matriz Algebra on GPU and Multicore Architectures. R package
version 1.3.0-2, URL http://icl.cs.utk.edu/magma/.

Szeremi V (2012). HiPLARb: High Performance Linear Algebra in R. R package ver-
sion 0.1.3, URL http://www.hiplar.org/hiplar-b.html.

Affiliation:

Nathan Morris

Department of Epidemiology and Biostatistics

Case Western Reserve University

2103 Cornell Rd, Wolsten Bldg

Cleveland OH 44106, USA

E-mail: nathan.morris@case.edu

URL: http://epbiwww.case.edu/index.php/people/faculty/97-morris

http://cran.r-project.org/web/packages/gcbd/
http://thrust.github.io/
http://www.hiplar.org/hiplar-b.html
https://gforge.nbic.nl/projects/rgpu/
https://gforge.nbic.nl/projects/rgpu/
http://dx.doi.org/10.1145/358407.358414
http://doi.acm.org/10.1145/358407.358414
https://github.com/njm18/rcula/
http://cran.r-project.org/web/packages/gcbd/
http://icl.cs.utk.edu/magma/
http://www.hiplar.org/hiplar-b.html
mailto:nathan.morris@case.edu
http://epbiwww.case.edu/index.php/people/faculty/97-morris

10 gmatrix: GPU Computing in R

Speedup of Random Number Generation

90 —
40 —
20 —
g 10 —
=X Distribution Simulated
e}
o —— Normal
8— - = Gamma
1 — Beta
Binomial
0.4 - =+ Poisson
0.2 —

Number of Simulations

Figure 1: The speedup times observed for simulating from various distributions. Note the log
scale on both axis.
Binary Arithmetic Operations

170 —
80 —
40 —
. 20
a3
=X 10 Operation
8 —— Addition
& = = Subtraction
Multiplication
1 - Division
- — - Exponentiation
0.4 —
0.2 -

Vector Length

Figure 2: The speedup times observed for different binary operations. Note the log scale on
both axis.

Nathan Morris

Speedup of Logical Operations

80 —
40 —
20
8 10
% Operation
Q —— which
n - - ifelse
1 Or
And
0.4 —
0.2 —

Vector Length

Figure 3: The speedup times observed for some logical operations. Note the log scale on both
axis.

Speedup of Special Functions

150 —
70 —
30
<
o 107 Function
>
e} .
a] — sin
2 — sin
3 asin
log
17 exp
-=- gamma
0.4 — 9
0.2 —

Vector Length

Figure 4: The speedup times observed for some mathematical functions. Note the log scale
on both axis.

12 gmatrix: GPU Computing in R

Speedup of Matrix Operations

200 p— .. L .
100 - : ;
3
o
=} .
§ Operation
(% —— Matrix Mult.
- = Transpose
1 Kronecker Prod.
0.4 —
0.2 —

Figure 5: The speedup times observed for some matrix operations. The matrix multiplication
is of two n x n matrices. The transpose is of an n x n matrix. The Kronecker product is for
two n x 5 matrices. Note the log scale on both axis.

Speedup of Indexing Operations

40 —
20 —
10
3
Q. .
§ Operation
Q — Xx[1:(n/2),]<-1
n 1 - - X[rnd,]<-1
y<-x[1:(n/2),]
y<—x[rnd,]
0.4 —
0.2 -~

Matrix Size (n x 100)

Figure 6: Speedup associated with indexing operations performed on an n x 100 matrix. For
the seqential index (i.e., 1:(n/2)) the index was calculated as 1 %to% (n/2) for the GPU
indexing operation. The variable ‘rnd’ referred to in the legend is defined as sample(1: (n/2))
and neither the creation time for ‘rnd’ nor the transfer time were included in the benchmark
calculations.

Nathan Morris

Transfer Speeds in Miliseconds

2«0 3 e
a0 - NI Wi
100 —
S 40
c
o
[&]
8 10 .
E Operation
2 —— CPU->GPU
E] - - GPU—>CPU
— Xx+1
0.4 —
0.1 —

Vector Length

Figure 7: The amount of time it takes to transfer an object of type "double" to and from
the GPU. For comparison sake we show the amount of time it would take to add 1 to all the
elements of the vector on the GPU.

	Introduction
	The gmatrix and gvector class
	Distributions and random number generation
	Multiple GPUs
	Benchmarking
	Conclusions

