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Abstract

In this paper we provide a short tutorial illustrating some new functions in the
package ggm to deal with some problems related to graphical models that use mixed
graphs. Some of these functions provide methods and implement new graph-theoretical
algorithms that generate ribbonless, summary, and ancestral graphs, which are mixed
graphs that induce the modified independence structure after marginalization over
and conditioning on nodes of directed acyclic graphs. We also provide functions to
test m-separation on these graphs, and to generate maximal graphs inducing the same
independence structure of non-maximal graphs. Finally, we provide functions that deal
with different problems related to Markov equivalences of several classes of graphical
models.

1 Introduction and background

Graphical Markov models have become a part of the mainstream of statistical theory and
application in recent years. These models use graphs to represent conditional independen-
cies among sets of random variables. Nodes of the graph correspond to random variables
and missing edges between nodes ¢ and j typically indicate independencies in the form of
i1l j|C(i,j) with a specific definition for C(i,j) depending on the model.

Mixed graphs and separation criteria. General criteria, determining whether two
disjoint subsets of variables A and B in a graphical model are independent given a third
subset C are typically path-based and called separation criteria, verifying whether there
is a path of a specific type, determined by C, between A and B. For more details see, for
instance, Lauritzen (1996).

The more general class of graphs that have been used in the literature of graphical
models is the class of so-called mized graphs. These graphs contain three types of edge,
denoted by lines, ——, arrows, —, and arcs (bi-directed arrows), <—. The class of
mixed graphs contains subclasses of graphs with fewer types of edge, such as undirected
and directed acyclic graphs. The same separation criterion, known as m-separation, applies
to all mixed graphs (Sadeghi and Lauritzen, 2011) and can be used to determine the
conditional independence of the random variables when the joint probability is faithful to
the graph; see Pearl (1988); Richardson and Spirtes (2002).



While for many subclasses of graphs a missing edge corresponds to some independence
statement, for the more complex classes of mixed graphs this is not necessarily true. A
graph where each of its missing edges is related to an independence statement is called
a mazimal graph. For a more detailed discussion on maximality of graphs and graph-
theoretical conditions for maximal graphs, see Richardson and Spirtes (2002) and Sadeghi
and Lauritzen (2011).

Marginalization, conditioning and graph stability. An essential motivation for
defining classes of graphs with three types of edge is that they are stable under marginal-
1zation and conditioning. This means that in the related models when some variables
are ignored (marginalized over) or when other variables are fixed by selecting and fixing
their value (conditioned on), there exists a graph of the same class that captures the
modified independence statements. The resulting graph, with a reduced node set ob-
tained by removing nodes involved in the marginalization and conditioning, conforms to
the modified independence statements coming from marginalization and conditioning for
the corresponding random variables.

The graphs generated after marginalization and conditioning are of particular interest
when there are unobserved or selection variables in directed acyclic graph (DAG) mod-
els. DAG models are useful since they suggest a recursive data generating process, but
unfortunately DAGs are not stable under marginalization and conditioning. We consider
three known classes of stable mixzed graphs that contain directed acyclic graphs, which are
the ribbonless graphs (RGs), (Sadeghi, 2011a) (defined as a modification of MC-graphs
(Koster, 2002)), the summary graphs (SGs) (Wermuth, 2011), and the ancestral graphs
(AGs) (Richardson and Spirtes, 2002).

Sadeghi (2011a) defines the algorithms generating stable mixed graphs of a specific
type for a given DAG or for a stable mixed graphs of the same type.

Markov equivalence. Two graphs of different types, or even two graphs of the same
type, may induce the same independencies under m-separation. Such graphs are said to
be Markov equivalent. In the literature several problems related to Markov equivalences
have been discussed. These include (a) verifying the Markov equivalence of given graphs,
(b) presenting conditions under which a graph of a specific type can be Markov equivalent
to a graph of another type, and (c) providing algorithms for generating Markov equivalent
graphs of certain type from a given graph.

Conditions for Markov equivalence for maximal ancestral graphs (MAGs) have been
given in Ali and Richardson (2004), whereas simpler conditions for Markov equivalence
for regression chain graphs (RCGs), which are subclass of MAGs, have been presented
in Wermuth and Sadeghi (2011). A summary of conditions and algorithms for the above
mentioned problems have been provided in Sadeghi (2011b) for MAGs, RCGs, and other
subclasses of graphs including undirected graphs (used in concentration models), bidirected
(used in covariance models), and DAGs.

Outline. In this paper we provide a tutorial explaining how the algorithms related to
stable mixed graphs, m-separation, Markov equivalences, and maximality can be imple-
mented in R.

We first introduce the different ways of defining mixed graphs in ggm. We then
introduce functions that generate different types of stable mixed graphs from DAGs or
from graphs of the same class. We discuss how to generate a maximal graph that induces
the same independence structure from a non-maximal graph. We then illustrate how to



verify the validity of given independence statements over the defined or generated graphs
by using the m-separation criterion. Finally, we illustrate functions to deal with different
problems related to Markov equivalence.

The functions and codes outlined in this paper have been merged as a new set of
functions into the R package ggm. For some previous contributions of ggm, see Marchetti
(2006). The package ggm has been improved and it is now more integrated with other
contributed packages related to graphs, such as graph, igraph (Csardi and Nepusz, 2006),
and gRbase (Dethlefsen and Hgjsgaard, 2005), which are now required for representing
and plotting graphs. In particular, in addition to adjacency matrices, all the functions in
the package now accept graphNEL and igraph objects as input, as well as a new character
string representation, which will be discussed later in this paper. Notice however that all
the algorithms internally use the adjacency matrix representation.

A list of available packages in graphical models with some descriptions can be found at
CRAN Task View gRaphical Models in R at http://cran.r-project.org/web/views/gR.html.

2 Defining directed acyclic graphs

We start by illustrating some ways of defining directed acyclic graphs in R. We shall use
four graph representations, that is (a) by graphNEL objects, (b) by igraph objects, (c) by
adjacency matrices, (d) by character vectors. These same representations will be extended
to general mixed graphs in the next section.

Defining DAGs as graphNEL objects. The graph package provides the graphNEL
class for graphs that are represented in terms of nodes and an edge list. These graphs
can be either directed or undirected, with no multiple edges or self-loops. The gRbase
package provides the function dag for easily defining DAGs as graphNEL objects. One way
in which the graph can be specified is by a list of formulas. For example, one can define
a DAG by the following formula, where, for example, h*p*r implies that h has parents
p and 7. For reference, we plot the DAG after the explanations related to the formula, by
using the ggm function plotGraph.

> exdag <- dag(“r, “g*r, "p, “h*p*r, ~1,
“k*1, “j*k, Ti*h*1%j)

> exdag

A graphNEL graph with directed edges

Number of Nodes = 8
Number of Edges = 8

Notice that one cannot use integers as node labels in graphNEL objects. In addition,
instead of “*” a “” can be used in the specification. To retrieve the nodes and edges of
the DAG the functions nodes and edges are used. Thus for instance,

> nodes (exdag)
[1] "r“ llq" llp" ||hll "1" llk" ||jll ||ill

To plot a DAG as a graphNEL object one can use the function plot in the Rgraphviz
package or various plotting options within the igraph package (see below). Our recom-
mended way is to use a defined function plotGraph as follows:



> plotGraph(exdag)

Defining DAGs as igraph objects. In package igraph there are many ways of defining
DAGs as igraph objects; for the full list see Csardi and Nepusz (2006). Probably the most
handy way of generating small graphs is to use graph.formula. In this function we use
“” as edges and “+” as arrowheads. For example, for the same DAG as before, we use

> exdag <- graph.formula(q+-r-+h+-p,
h-+i+-1-+k,  i+-j+-k)
> exdag

Vertices: 8

Edges: 8
Directed: TRUE
Edges:

(o] 'r* -> 'q'
[1] 'r' -> 'h'
[2] |p| -> |h|
[3] 'n' -> 'i
[4] |1| -> |i|
[5] '1' -> 'k!
[6] |j| -> it
[71 'k' -> '

It is always possible to convert igraph graphs to graphNEL objects or back using the
igraph.to.graphNEL and igraph.from.graphNel functions.

Also, the package igraph contains several options for plotting graphs such as the
function tkplot. This is a quite flexible function providing an interactive graph drawing
facility based on Tcl-Tk. Our plotGraph function is just a convenient wrapper of this
function.

Defining DAGs with adjacency matrices. Any graph can be defined by an adjacency
matriz. The adjacency matrix of a loopless directed graph G with node set V' and edge
set E is the matrix A = (aj;) of size |V| x |V| with zeros on the diagonal and

1, ifi—j;
CLij = .
0 otherwise.

An adjacency matrix can be defined directly without defining a graphNEL or igraph object.
For instance the adjacency matrix of the previous DAG can be created via:

> A <- matrix(0,8,8)

> A[8,7] <- A[8,5] <- A[6,5] <- A[5,1] <-
Al4,1] <- A[4,3] <- A[2,1] <- A[3,2] <- 1

> A



(.11 [,21 C,3] [,4]1 C(,8] [,61 [,7] [,8]
[1,] 0 0 0 0 0 0 0
[2,]
[3,]
(4,]
[5,]
(6,1]
7,1
(s,]

All functions in package ggm accept adjacency matrices as defining graphs. If the node
names are not provided, the functions would specify by default as labels the integers
(1,...,n), where n is the number nodes. Thus the defined adjacency matrix A defines the
following graph:

O OO -, =, O -
O O O O O+~ O
O O O O r OO
O O O O O O O
=, O Fr O O O O
O O O O O O
= O O O O O O
O O O O O O O

0 0

> plotGraph(4)

The node labels are obtained by including appropriate dimnames to the matrix:
> V <- C("j.", Ilj n, "k", "l n, "h", IIpH’ nqu’ nrn)
> dimnames(A) = list(V, V)

An adjacency matrix for the DAG can be also obtained using the function DAG in ggm.
This function accepts as input a model formula an returns the adjacency matrix with the
appropriate labels. For the same DAG, which we call exdag, we can write

> exdag <- DAG(i ~ j+1l+h, k"1, h"r+p, q ~ r)

The function also verifies whether the resulting graph is acyclic.

3 Defining mixed graphs

A mixed graph is a graph with at most three types of edge: directed, undirected and
bi-directed, with possibly multiple edges of different types connecting two nodes. For
instance the following graph is a mixed graph:

In ggm we provide some tools for mixed graphs that are not present in other packages.
Here we briefly illustrate some methods to define mixed graphs and use the same function,
plotGraph, to plot them.

The first method is based on a generalization of the adjacency matrix described in the
previous section. The second uses a descriptive vector and is easy to use for small graphs.
The third uses a special function makeMG that allows to combine the directed, undirected
and bi-directed components of a mixed graph.



Adjacency matrices for mixed graphs. In the adjacency matrix of a mixed graph
we code the three different edges with a binary indicator: 1 for directed, 10 for undirected
and 100 for bi-directed edges. When there are multiple edges the codes are added.

Thus the adjacency matriz of a mized graph H with node set N and edge set F' is an
|N| % |N| matrix obtained as A = B+.S+ W by adding three matrices B = (b;;), S = (s45)
and W = (w;;) defined by

b — 1, if and only if i—=j in H;
Y 0, otherwise.

10, if and only if i —j in H;

Sij = Sji

Y 7 0, otherwise.
100, if and only if i<—~7 in H;

Wii = We  —
“ 7 0, otherwise.

Notice that because of the symmetric nature of lines and arcs S and W are symmetric,
whereas B is not necessarily symmetric. Therefore, the mixed graph shown before can be
defined by the commands

> mg <- matrix(c( 0, 101, 0, 0, 110,
100, 0, 100, 0, 1,
0, 110, 0, 1, 0,
0, 0, 1, 0, 100,
110, 0, 0, 100, 0),
5,5, byrow = TRUE)

> N <_ C(IIX'" IIYH "ZII "wl! IIQ")
> dimnames (mg) <- list(N, N)
> mg

X Y Z W Q
X 0101 O 0 110
Y 100 0 100 O 1
Z 0110 O 1 0
W 0 O 1 0 100
Q 110 0 0 100 O

and can be plotted with plotGraph (mg).

Defining mixed graphs by using vectors. A more convenient way of defining small
mixed graphs is based on a simple vector coding as follows. The graph is defined by
a character vector of length 3f, where f = |F| is the number of edges, and the vector
contains a sequence of triples (type, labell, label2), where the type is the edge type
and labell and label2 are the labels of the two nodes. The edge type accepts "a" for
an directed arrow , "b" for an arcs and "1" for a line. Notice that isolated nodes may not
be created by this method. For example, the vector representation of the previous mixed
graph is

> mgv <_ C(”b”,”X”, IIYH’Hall’"X”’IIY"’HlH’"XH’HQH,
"bll’ "Q", HX", ”a”, "Yll’ ”Q", llb"’ "Y”, "Z”,
"all’ HZ"’ IIWH’ ”all’ "W”’ IIZ"’ Ilbll’ "WII’ HQ”)

Once again as in the DAG case we can use plotGraph (mgv) to plot the defined graph.



Mixed graph using the function makeMG. Finally the adjacency matrix of a mixed
graph may be built up with the function makeAG. This function requires three arguments
dg, ug and bg, corresponding respectively to the three adjacency matrices B, S and W
composing the mixed graph. These may also be obtained by the constructor functions
DG and UG of ggm for directed and undirected graphs respectively. Thus for the previous
mixed graph we can issue the command

> mg <- makeMG(dg = DG(Y"X, Z°W, W'Z, Q°X),
ug = UG(™ X*Q),
bg = UG(™ Y*X + X*Q + Q*W +Y*Z))

obtaining the same adjacency matrix (up to a permutation).

4 Generating stable mixed graphs

By “generating graphs” we mean applying the defined algorithms, e.g. those for generating
stable mixed to graphs, in order to generate new graphs.

Three main functions to generate stable mixed graphs. Three main functions RG,
SG, and AG are available to generate and plot ribbonless, summary, and ancestral graphs
from DAGs, using the algorithms in Sadeghi (2011a). These algorithms look for the paths
with three nodes and two edges in the graph whose inner nodes are being marginalized
over or condition on, and generate appropriate edges between the endpoints. These have
two important properties: (a) they are well-defined in the sense that the process can
be performed in any order and produces always the same final graph; (b) the generated
graphs induce the modified independence structure after marginalization and conditioning;
see Sadeghi (2011a) for more details.

The functions RG, SG, and AG all have three arguments: a the given input graph, M, the
marginalization set and C, the conditioning set. The graph may be of class "graphNEL"
or of class "igraph" or may be represented by a character vector, or by an adjacency
matrix, as explained in the previous sections. The sets M and C (default c()) must be
disjoint vectors of node labels, and they may possibly be empty sets. The output is always
the adjacency matrix of the generated graph. There are two additional logical arguments
showmat and plot to specify whether the adjacency matrix must be explicitly printed
(default TRUE) and the graph must be plotted (default FALSE).

Some examples. We start from a DAG defined in two ways, as an adjacency matrix
and as a character vector:

> ex <- matrix(c(0, ,0,0,0,0,

3 3 > b 3 b

k]

0,1
0,0
0,0
0,0
0,0
0,0
0,0

-

2 2

0,0,0,0,0
0,0,0,0,0
0,0,0,0,0
0,1,0,1,0,
0,0,1,0,0
0,0,0,0,0
0,0,1,0,0
0,0,1,1

2 2

2

s

-

QO O O = O R O

s 3 E

3 3 > b b >

3 b 3 > b 3 b

0,0,0,0,0,1,1,0),8,8, byrow=TRUE)
> exvec <- c("a",1,2,"a",2,3,"a",4,3,
Ilall’4’5’ Hall,4,7’ Ilall,5’6’
llaH’7,6, Ha”,8,6’ lla”,8,7)



> plotGraph (ex)

Then we define two disjoint sets M and C' to marginalize over and condition on

> C <- 3

and we generate the ribbonless, summary and ancestral graphs from the DAG with the
associated plot.

> RG(ex, M, C, plot = TRUE)

1 2 4 6 7
10 1 0 0 O
20 010 0 O
4010 O 1 1
60 0 O 0100
70 0 0 101 0

The summary graph is plotted with dashed undirected edges instead of bi-directed edges:
> plotGraph(SG(ex,M,C), dashed = TRUE)

1 2 4 6 7

1 010 0 0O O
210 010 O O
4 010 O 1 1
6 0 0 O 0 100
7 0 0 0101 O

The induced ancestral graph is obtained from the DAG defined as a vector.
> AG(exvec,M,C,showmat=FALSE, plot=TRUE)




5 Maximality, m-separation, and Markov equivalences

Function for generating maximal graphs. Given a non-maximal graph, we can
obtain the adjacency matrix of a maximal graph that induces the same independence
statements with the function Max. This function uses the algorithm by Sadeghi (2011b),
which is an extension of the implicit algorithm presented in Richardson and Spirtes (2002).
This algorithm searches for all non-adjacent pairs of nodes that are connected by a so-
called primitive inducing path and generate an appropriate edge between the pairs. The
related functions MAG, MSG, and MRG, are just handy wrappers to obtain maximal AGs, SGs
and AGs, respectively. For example,

> H <- matrix(c(0 ,100, 1, O,
100,0 ,100, O,
o ,100, 0,100,
o, 1 ,100, 0),4,4)

> plotGraph(H)

is a mixed non-maximal graph, with the missing edge between nodes 1 and 4 that is not
associated with any independence statement (because (1,2,3,4) is a primitive inducing
path). Its associated maximal graph is obtained by

> Max (H)

1 2 3 4
1 0100 0 100
2 100 0 100 1
3 1100 0 100
4 100 0 100 O

> plotGraph(Max(H))

As the graph H is an ancestral graph (as may be verified by the function isAG), we obtain
the same result with

> MAG(H)



1 2 3 4
1 0 100 0 100
2 100 0 100 1
3 1 100 0 100
4 100 0 100 O

Function to verify m-separation. The fundamental way to verify if a graphical model
implies an independence A Il B|C' is to test whether the disjoint subsets A and B of the
node set are m-separated given a third set C, and this may be done with the function
msep. The function has 4 arguments, where the first is the graph a, in one of the forms
discussed before, and the other three are the disjoint sets A, B and C. For example, for the
following graph,

>a<-DAG(WW ~ Z, Z - Y + X)

> plotGraph(a)

O
W+—~=3

the two following statements verify whether X is m-separated from Y given X, and whether
X is m-separated from Y (given the empty set):

> msep(a, "X","Y","Z")
[1] "NOT separated"

> msep(a, "X","Y")

[1] "Separated"

In this example m-separation is equivalent to its special case, the d-separation criterion
for DAGs. (Note that there is another function dSep in ggm for d-separation.)

Functions for testing Markov equivalences. The function MarkEqRcg tests whether
two regression chain graphs are Markov equivalent. This function simply finds the skeleton
and all unshielded collider V-configurations in both graphs and tests whether they are
identical, see Wermuth and Sadeghi (2011). The arguments of this function are the two
graphs a and b in one of the allowed forms. For example,

> H1 <- matrix(c( 0,100, O0, 0, O,
100, 0,100, o0, O,
0,100, 0, 0, O,
1, o0, 0, 0,100,
0, 0, 1,100, 0),5,5)
> H2 <- matrix(c(0,0,0, 0, O,
1,0,1, 0, O,
0,0,0, 0, O,

10



We can now verify Markov equivalence as follows

> MarkEqRcg (H1,H2)

[1] "Markov Equivalent"

> MarkEqRcg (H1,H3)

[1] "NOT Markov Equivalent"
> MarkEqRcg (H2,H3)

[1] "NOT Markov Equivalent"

To test Markov equivalence for maximal ancestral graphs the algorithm is computationally
much more demanding (see Ali and Richardson (2004)) and, for this purpose, the function
MarkEqMag has been provided. Of course, one can use this function for Markov equivalence
of regression chain graphs (which are a subclass of MAGs). For example,

> Al<-matrix(c( 0,100, 0, O,
100, 0,100, O,
0,100, 0,100,
0, 1,100, 0),4,4)
> A2<-matrix(c(0, 0, 0, O,
1, 0,100, O,
0,100, 0,100,
0, 1,100, 0),4,4)
> A3<-matrix(c(0,0, 0, O,
1,0, 0, O,
0,1, 0,100,
0,1,100, 0),4,4)

> plotGraph(A1); plotGraph(A2); plotGraph(A3)

11



> MarkEqMag (H1,H2)

[1] "Markov Equivalent"

> MarkEqMag (H1,H3)

[1] "NOT Markov Equivalent"
> MarkEqMag (H2,H3)

[1] "NOT Markov Equivalent"

Functions for generating Markov equivalent graphs of a specific type. Some-
times is important to verify if a given graph is capable of being Markov equivalent to a
graph of a specific class of graphs (such as DAGs, undirected graphs, or bidirected graphs),
and if so, to obtain as a result such a graph. The functions RepMarDAG, RepMarUG, and
RepMarBG do this for DAGs, undirected graphs, or bidirected graphs, respectively. For as-
sociated conditions and algorithms, see Sadeghi (2011b). For example, given the following
graph

> H <- matrix(c( 0,10, 0, O,
10, 0, 0O, O,
0o, 1, 0,100,
0, 0,100, 0),4,4)

> plotGraph(H)

we can see that it is Markov equivalent to a DAG, by

> RepMarDAG (H)

1234
10100
20010
30000
40010

> plotGraph (RepMarDAG (H))

12



On the other hand it is not Markov equivalent to an undirected graph or to a bidirected
graph.

> RepMarUG(H)
[1] "NOT Markov equivalent to a UG"
> RepMarBG(H)
[1] "NOT Markov equivalent to a BG"

This has consequence on the possibility of using standard fitting algorithms for DAG
models to estimate the parameters of a model for the first graph.
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