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Abstract

The R package gdistance provides classes and functions to calculate various distance
measures and routes in heterogeneous geographic spaces represented as grids. Least-cost
distances as well as more complex distances based on (constrained) random walks can
be calculated. Also the corresponding routes or probabilities of passing each cell can be
calculated. The package implements classes to store the data about the probability or cost
of transitioning from one cell to another on a grid in a memory-efficient sparse format.
These classes make it possible to manipulate the values of cell-to-cell movement directly,
which offers flexibility and the possibility to use asymmetric values. The novel distances
implemented in the package are used in geographical genetics (applying circuit theory),
but may also have applications in other fields of geospatial analysis.
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1. Introduction: The Crow, the Wolf, and the Drunkard

This article describes gdistance, a package written for use in the R environment (R Develop-
ment Core Team 2012). It provides functionality to calculate various distance measures and
routes in heterogeneous geographic spaces represented as grids. Distances are fundamental
to geospatial analysis (Tobler 1970). Distances and routes are closely related concepts in ge-
ography. The most commonly used geographic distance measure is the great-circle distance,
which represents the shortest line between two points, taking into account the curvature of
the earth. The great-distance distance could be conceived of as the distance measured along
a route of a very efficient traveller who knows where to go and has no obstacles to deal with.
In common language, this is referred to as a distance ‘as the crow flies’.

When travel is less goal-directed and affected by the environment, grid-based distances and
routes become relevant. The least-cost distance is implemented in most GIS software and
mimics route finding ‘as the wolf runs’1, taking into account obstacles and the local ‘friction’
of the landscape. The random walk, which is also called the drunkard’s walk, has no prede-
termined destination, so a destination point is hit by accident. The distance travelled to hit
the destination point is a measure used to characterize dispersal processes in geography.

Package gdistance was designed to determine such grid-based distances and routes and to make
it possible to use these measures in combination with other functionality available within R.
It has functionality that is comparable to other software such as ArcGIS Spatial Analyst (Mc-

1There are some variations on this expression, involving mostly other animals, or telecom cables.
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Coy and Johnston 2002), GRASS GIS (GRASS Development Team 2012), and CircuitScape
(McRae et al. 2008). The gdistance package also contains specific functionality for geograph-
ical genetic analyses, not found in other software yet. The package implements measures to
model dispersal histories first presented by van Etten and Hijmans (2010). Example 2 below
introduces with an example how gdistance can be used in geographical genetics.

2. Theory

Calculations are done in various steps in gdistance. At first, this tends to be somewhat
confusing for those who are used to distance and route calculations in GIS software, which
tend to be done in a single step. However, an important goal of gdistance is to make the
calculations of distances and routes more flexible, which also makes the package somewhat
more complicated to use. Users, therefore, need to have a basic understanding of the theory
behind distance and route calculations.

Calculations of distances and routes start with raster data. In geospatial analysis, rasters
are rectangular, regular grids that represent continuous data over geographical space. Cells
arranged in rows and columns and each holds a value. A raster is accompanied by metadata
that indicate the resolution, extent and other properties.

Distance and route calculations on rasters rely on graph theory. So as a first step, rasters are
converted into graphs by connecting cell centres to each other, which become the nodes in
the graph. This can be done in various ways (Figure 1).

� Cells can be connected orthogonally to their four immediate neighbours, which is called
the von Neumann neighbourhood.

� Cells can be connected with their eight orthogonal and diagonal nearest neighbours,
the Moore neighbourhood. The resulting graph is called the ‘king’s graph’, because it
reflects all the legal movements of the king in chess. This is the most common and often
only way to connect grids in GIS software.

� Connecting in 16 directions combines king’s and knight’s moves. The function r.cost in
the software GRASS (GRASS Development Team 2012) has this as an option, which
inspired its implementation in gdistance. The section on distance transforms in de Smith
et al. (2009) also discusses 16-cell neighbourhoods. Connecting in 16 directions may
increase the accuracy of the calculations.
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Figure 1: Rasters can be converted into graphs in different ways.

When the raster is converted into a graph, weights are given to each edge (connections between
nodes). These weights correspond to different concepts. In most GIS software, distance
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analyses are done with calculations using cost, friction or resistance values. In graph theory,
weights can also correspond to conductance (1/resistance), which is equivalent to permeability
(a term used in landscape ecology). The weights can also represent probabilities of transition.

Graphs are mathematically represented as matrices to do calculations. Matrices can include
transition probability matrices, adjacency matrices, resistance/conductance matrices, Lapla-
cian matrices, among others. In gdistance, we refer collectively to matrices that represent
graphs as ‘transition matrices’. These transition matrices are the central object in the pack-
age; all distance calculations need one or more transition matrices as an input.

In gdistance, usually conductance rather than resistance values are expected in the transition
matrix. An important advantage of using conductance is that it makes it possible to use
computer memory very efficiently, using so-called sparse matrices. Sparse matrices only record
the non-zero values and information about their location in the matrix. In most cases, cells
are connected only with adjacent cells, and the conductance for direct connections between
remote cells is zero. Consequently, most values in a conductance matrix are zero and occupy
no memory in a sparse matrix. Another reason is that in graph theory the analogy of a
graph with an electrical circuit is often used (see below). For most calculations based on this
analogy, the conductance matrix or the transition probability matrix are used.

The calculation of the actual edge weights is usually based on the values of the grid cells,
which represents a property of the landscape. For instance, from a grid with altitude, a value
for the ease of walking can be calculated for each transition between cells. It is possible to
create asymmetric matrices, in which the conductance from i to j is not always the same as the
conductance from j back to i. This is relevant, among other things, for modelling travel in hilly
terrain, as shown in Example 1 below. On the same slope, a downslope traveler experiences
less friction than an upslope traveler. In this case, the function to calculate conductance
values is non-commutative: f(i, j) 6= f(j, i).

A problem that arises in grid-based modelling is the choice of weights that should be given
to diagonal edges in proportion to orthogonal ones. For least-cost path distance and routes,
this is fairly straightforward: weights are given in proportion to the distances between the cell
centres. In a grid in which the orthogonal edges have a length of 1, the diagonal edges are

√
2

long. McRae (2006) also applies this same idea to random walks. However, as Birch (2006)
explains, this is generally not the best discrete approximation of a random walk dispersal
process in continuous space. Different orthogonal and diagonal weights could be considered
based on his analytical results.

For random walks on longitude-latitude grids, there is an additional consideration to be made.
Considering the eight neighbouring cells in a Moore’s neighbourhood, the three cells that are
located nearer to the equator are larger in area than the three cells that are closer to the
nearest pole, as the meridians approach each other. So the latter should have a slightly lower
probability of being reached during a random walk from the central cell. More theoretical
work is needed to investigate possible solutions to this problem. For projected grids, we can
safely ignore this distortion problem.

When the transition matrix has been constructed, different algorithms to calculate distances
and routes are applied.

� The least-cost distance mimics route finding ‘as the fox runs’, taking into account ob-
stacles and the local ‘friction’ of the landscape. The least-cost path between two cells
on the grid and the associated distance can be obtained with Dijkstra’s algorithm or
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similar algorithms.

� A second type of route-finding is the random walk, which has no predetermined desti-
nation (a ‘drunkard’s walk’). Commute distance represents the random walk commute
time, which is the average number of edges traversed during a random walk from an
starting point on the graph to a destination point and back again to the starting point
(Chandra et al. 1996). Resistance distance reflects the average travel cost during this
walk (McRae 2006). When taken on the same graph these two measures differ only in
their scaling (Kivimäki et al. 2012). Commute and resistance distances are calculated
using the analogy with an electrical circuit (see Doyle and Snell 1984, for an introduc-
tion). The algorithm that gdistance uses to calculate commute distances was developed
by Fouss et al. (2007).

� Randomised shortest paths are an intermediate form between shortest paths and Brow-
nian random walks, introduced by Saerens et al. (2009). van Etten and Hijmans (2010)
applied randomised shortest paths in geospatial analysis (and see Example 2 below).

3. Raster Basics

Analyses in gdistance start with one or more rasters. For this, it relies on another R package,
raster Hijmans and van Etten (2012). The raster package provides comprehensive geograph-
ical grid functionality. Here, we briefly discuss this package, referring the reader to the
documentation of raster itself for more information.

The following code shows how to create a raster object.

R> r <- raster(ncol=3,nrow=3)

R> r[] <- 1:ncell(r)

R> r

class : RasterLayer

dimensions : 3, 3, 9 (nrow, ncol, ncell)

resolution : 120, 60 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84

data source : in memory

names : layer

values : 1, 9 (min, max)

The first line loads the package. The second line creates a simple raster with 3 columns and
3 rows. The third line assigns the values 1 to 9 as the values of the cells. The resulting object
is inspected in the fourth line. As can be seen in the output, the object does not only hold
the cell values, but also holds metadata about the geographical properties of the raster.

It can also be seen that this is an object of the class RasterLayer. This class is for object
that hold only one layer of grid data. There are other classes which allow more than one
layer of data: RasterStack and RasterBrick. Collectively these classes are referred to as
Raster*.
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A class is a static entity designed to represent objects of a certain type using ‘slots’, which
each hold different information about the object. Both raster and gdistance use so-called S4
classes, a formal object-oriented system in R. An advantage of using classes is that data and
metadata stay together and remain coherent. Consistent use of classes makes it more difficult
to have contradictions in the information about an object. For instance, changing the number
of rows of a grid also has an effect on the total number of cells. Information about these two
types of information of the same object could become contradictory if we were allowed to
change one without adjusting the other. Classes make operations more rigid to avoid such
contradictions. Operations that are geographically incorrect, such as adding the values of two
rasters of different projections, are detected by first comparing the content of the slots that
hold the projection information of the two objects. If the information about the projections
used for the rasters are not compatible, the operation will produce an error.

Classes also make it easier for the users to work with complex data and functions. Since so
much information can be stored in a consistent way in objects and passed to functions, these
functions need fewer options. Functions can deduce from the class of the object that is given
to it, what it needs to do. The use of classes, if well done, tends to produce cleaner, better
readable, and more consistent scripts.

One important thing to know about raster is how grid data are stored internally in Raster*

objects. Cell numbers in rasters go from left to right and from top to bottom. The 3 x 3
raster we just created with its cell numbers is shown in Figure 2.
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Figure 2: Cell numbers of a 3 x 3 raster.

Figure 2 can be made with this code.

R> plot(r, main="r")

R> text(r)
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4. Transition* Classes

As explained in Section 2 on the theory behind gdistance, transition matrices are the backbone
of the package. The central classes in gdistance are TransitionLayer and TransitionStack.
Most operations have an object of one of these classes either as input and sometime also as
their output.

Transition* objects can be constructed from an object of class Raster*. The class Transition*
takes the necessary geographic references (projection, resolution, extent) from the original
Raster* object. It also contains a matrix which represents a transition from one cell to an-
other in the grid. Each row and column in the matrix represents a cell in the original Raster*
object. Row 1 and column 1 in the transition matrix corresponds to cell 1 in the original
raster, row 2 and column 2 to cell 2, and so on. For instance, the raster we just created would
produce a 9 x 9 transition matrix with rows and columns numbered from 1 to 9 (see Figure 3
below).

The matrix is stored in a sparse format, as discussed in Section 2. The package gdistance
makes use of sparse matrix classes and methods from the package Matrix, which gives access
to fast procedures implemented in the C language (Bates and Maechler 2012).

The construction of a Transition* object from a Raster* object is straightforward. We can
define an arbitrary function to calculate the conductance values from the values of each pair
of cells to be connected.

In the following chunk of code, the RasterLayer created earlier is used. Then we set all its
values to unit. The next line makes a TransitionLayer, setting the transition value between
each pair of cells to the mean of the two cell values that are being connected. The directions
argument is set to 8, which connects all cells to their 8 neighbours (Moore neighbourhood).

R> library("gdistance")

R> r[] <- 1

R> tr1 <- transition(r, transitionFunction=mean, directions=8)

If we inspect the object we created, we see that the resulting TransitionLayer object keeps
much information from the original RasterLayer object.

R> tr1

class : TransitionLayer

dimensions : 3, 3, 9 (nrow, ncol, ncell)

resolution : 120, 60 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84

values : conductance

matrix class: dsCMatrix

To make an asymmetric transition matrix, the symm argument in transition needs to be set
to FALSE.

R> r[] <- runif(9)

R> ncf <- function(x) max(x) - x[1] + x[2]
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R> tr2 <- transition(r, ncf, 4, symm=FALSE)

R> tr2

class : TransitionLayer

dimensions : 3, 3, 9 (nrow, ncol, ncell)

resolution : 120, 60 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84

values : conductance

matrix class: dgCMatrix

From the ‘matrix class’ we can deduce if the matrix is symmetric or not. These classes are
defined in the package Matrix (Bates and Maechler 2012). The class dsCMatrix is for matrices
that are symmetric. The class dgCMatrix holds an asymmetric matrix.

Different mathematical operations can be done with Transition* objects. This makes it
possible to flexibly model different components of landscape friction.

R> tr3 <- tr1*tr2

R> tr3 <- tr1+tr2

R> tr3 <- tr1*3

R> tr3 <- sqrt(tr1)

Operations with more than one object require that the different objects have the same reso-
lution and extent.

Also, it is possible to extract and replace values in the matrix using indices, in a similar way
to the use of indices with simple matrices.

R> tr3[cbind(1:9,1:9)] <- tr2[cbind(1:9,1:9)]

R> tr3[1:9,1:9] <- tr2[1:9,1:9]

R> tr3[1:5,1:5]

5 x 5 sparse Matrix of class "dgCMatrix"

[1,] . 0.4532410 0.5412002 0.9307281 .

[2,] 1.4742440 . 0.6291593 . 0.1387396

[3,] 1.3862849 0.4532410 . . .

[4,] 0.9967569 . . . 0.1387396

[5,] . 0.7677424 . 1.7227166 .

The functions adjacent (from raster) and adjacencyFromTransition (from gdistance) can
be used to create indices. Example 1 below gives an example.

Some functions require that Transition* objects do not contain any isolated ‘clumps’, islands
that are not connected to the rest of the raster cells. This can be avoided when creating
Transition* objects, for instance by giving conductance values between all adjacent cells a
small minimum value. It can be checked visually if there are any clumps. There are several
ways to visualize a Transition* object. For the first method, you can extract the transition
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matrix with function transitionMatrix. This gives a sparse matrix which can be vizualized
with function image. This shows the rows and columns of the transition matrix and indicates
which has a non-zero value, which represents a connection between cells (Figure 3).

R> image(transitionMatrix(tr1))

Dimensions: 9 x 9
Column

R
ow

2

4

6

8

2 4 6 8

Figure 3: Visualizing a TransitionLayer with function image.

Figure 3 shows which cells are connected to each other. A close observer of Figure 3 may
wonder why even cell 1 is connected to 5 different cells, as this cell is located in the upper
left corner of the original grid. This is explained by the extent of the grid. Since it covers
the whole world, the outer meridians (180 and -180 degrees) touch each other. The software
takes this into account and as a result the cells in the extreme left column are connected to
the extreme right column.

Figure 3 shows which cells contain non-zero values, but gives no further information about
levels of conductance. This can be visualized by transforming the transition matrix back into
a raster. To summarize the information in transition matrix, we can take means or sums
across rows or columns, for instance. You can do this with function raster. Applied to a
TransitionLayer, this function converts it to a RasterLayer. For the different options see
method?raster("TransitionLayer"). The default, shown in Figure 4, takes the column-
wise means of the non-zero values.

5. Correcting Transition Matrix Values

The function transition calculates transition values based on the values of adjacent cells
in the input raster. However, diagonal neighbours are more remote from each other than
orthogonal neighbours. Secondly, on equirectangular (longitude-latitude) grids, West-East
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R> plot(raster(tr3), main="raster(tr3)")
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Figure 4: Visualizing a TransitionLayer using the function raster.

connections are longer at the equator and become shorter towards the poles, as the meridians
approach each other. Therefore, the values in the matrix need to be corrected for these two
types of distortion. Both types of distortion can be corrected by dividing each conductance
matrix value by the distance between cell centres. This is what function geoCorrection does.

R> tr1C <- geoCorrection(tr1, type="c", multpl=FALSE)

R> tr2C <- geoCorrection(tr2, type="c", multpl=FALSE)

For least-cost type distances and routes, this works fine. However, as explained in Section 2
above, this does not work equally well for commute distances (random walks). The function
geoCorrection corrects this distortion by multiplying the North-South transition values with
the cosine of the average latitude of the cell centres. This type of correction is done by setting
the argument type to "r".

R> r3 <- raster(ncol=18, nrow=9)

R> r3 <- setValues(r3, runif(18*9)+5)

R> tr3 <- transition(r3, mean, 4)

R> tr3C <- geoCorrection(tr3, type="c", multpl=FALSE, scl=TRUE)

R> tr3R <- geoCorrection(tr3, type="r", multpl=FALSE, scl=TRUE)

As mentioned in Section 2, the effect of these distortions and corrections needs more research.

The argument scl is set to TRUE to get reasonable values. If the values are too large, commute
distance and randomized shortest path functions will not work well.

When similar Transition* objects with equal resolution and extent need to be corrected
repetitively, computational effort may be reduced by preparing an object that only needs to
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be multiplied with the Transition* object to produce a corrected version of it. The following
chunk of code is equivalent to the previous one.

R> CorrMatrix <- geoCorrection(tr3, type="r", multpl=TRUE, scl=TRUE)

R> tr3R <- tr3 * CorrMatrix

Object CorrMatrix is only calculated once. It can be multiplied with Transition* objects,
as long as they have the same extent, resolution, and directions of cell connections. We need
to take special care that the geo-correction multiplication matrix (CorrMatrix) contains all
non-zero values that are present in the Transition* object with which it will be multiplied
(tr3 in this case).

6. Calculating Distances

Only now that we have the corrected Transition* object we can calculate distances between
points. It is important to note that all distance functions require a Transition* object with
conductance values, even though distances will be expressed in 1/conductance (friction or
resistance) units (see Section 3).

To calculate distances, we need to have the coordinates of point locations. This is done by
creating a two-column matrix of coordinates. Functions will also accept a SpatialPoints

object or, if there is only one point, a vector of length two.

R> sP <- cbind(c(-100, 100, -100), c(-50, 50, 50))

Calculating a distance matrix is straightforward now.

R> costDistance(tr3C, sP)

1 2

2 1.5105050

3 0.8672558 0.9873723

R> commuteDistance(tr3R, sP)

1 2

2 1091.0908

3 1011.4789 990.0745

R> rSPDistance(tr3R, sP, sP, theta=1e-12, totalNet="total")

[,1] [,2] [,3]

[1,] 0.00000 61.83572 57.28111

[2,] 62.60077 0.00000 56.44307

[3,] 58.07582 56.47273 0.00000
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The costDistance function relies on the package igraph (Csardi and Nepusz 2006) for the
underlying calculation. It gives a symmetric or asymmetric distance matrix, depending on
the TransitionLayer that is used as input.

Commute distance represents the random walk commute time, which represents the number
of cells traversed on the trip (Chandra et al. 1996).

rSPDistance gives the cost incurred during the same walk (theta approaches zero, so the
walk is nearly random). By summing the corresponding off-diagonal elements (Dij + Dji),
we obtain the commute costs. In this case, the commute costs are only slightly higher than
(and proportional to) the commute distances. This is because the TransitionLayer object has
been scaled, so transition costs are close to unit for each step. So the total number of steps
and the total distance are in the same order.

7. Dispersal Paths

To determine dispersal paths of a (constrained) random walk, we use the function passage.
This function can be used for both random walks and randomised shortest paths. The function
calculates the number of passages through cells before arriving in the destination cell. Either
the total or net number of passages can be calculated. The net number of passages is the
number of passages that are not reciprocated by a passage in the opposite direction.

Figure 5 shows the probability of passage through each cell, assuming randomised shortest
paths with the parameter theta set to 3.

R> origin <- SpatialPoints(cbind(0, 0))

R> rSPraster <- passage(tr3C, origin, sP[3,], theta=3)
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Figure 5: Probability of passage.
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8. Path Overlap and Non-Overlap

One of the specific uses, for which package gdistance was created, is to look at trajectories
coming from the same source (van Etten and Hijmans 2010). The degree of coincidence
of two trajectories can be visualized by multiplying the probabilities of passage (Figure 6).
With a more complex formula, we can approximate the non-overlapping part of the trajectory
(Figure 7).

R> r1 <- passage(tr3C, origin, sP[1,], theta=1)

R> r2 <- passage(tr3C, origin, sP[3,], theta=1)

R> rJoint <- min(r1, r2) #Figure 6

R> rDiv <- max(max(r1, r2) * (1 - min(r1, r2)) - min(r1, r2), 0) #Figure 7
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Figure 6: Overlapping part of the two routes.
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Figure 7: Non-overlapping part of the two routes.
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With the function pathInc we can calculate measures of path overlap and non-overlap for a
large number of points. These measures can be used to predict patterns of diversity if these
are due to dispersal from a single common source (van Etten and Hijmans 2010). If the
argument type contains two elements (divergent and joint), the result is a list of distances
matrices.

R> pathInc(tr3C, origin, sP)

$function1layer1

1 2

2 1.033639

3 1.166870 1.146882

$function2layer1

1 2

2 1.393100

3 1.125216 1.196323

9. Example 1: Hiking around Maunga Whau

The previous examples were somewhat theoretical, based on randomly generated values. More
realistic examples serve to illustrate the various uses that can be given to this package.

Determining the fastest route between two points in complex terrain is useful for hikers.
Tobler’s Hiking Function provides a rough estimate for the the maximum hiking speed given
the slope of the terrain (Tobler 1993). The maximum speed of off-path hiking (in m/s) is:

speed = exp(−3.5 ∗ abs(slope + 0.05))

Note that the function is not symmetric around 0 (see Figure 8).

We use the Hiking Function to determine the shortest path to hike around the volcano Maunga
Whau (Auckland, New Zealand). First, we read in the altitude data for the volcano. This is
a geo-referenced version of a R base dataset (see ?volcano).

R> r <- raster(system.file("external/maungawhau.grd",

+ package="gdistance"))

The Hiking Function requires the slope as input.

slope = differenceinheight/distancetravelled

The units of height and distance should be identical. Here, we use meters for both. We
calculate the height differences between cells first. Then we use the function geoCorrection

to divide by the distance between cells.

R> heightDiff <- function(x){x[2] - x[1]}

R> hd <- transition(r,heightDiff,8,symm=FALSE)

R> slope <- geoCorrection(hd, scl=FALSE)
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Figure 8: Tobler’s Hiking Function.

Subsequently, we calculate the speed. We need to exercise special care, because the matrix
values between non-adjacent cells is 0, but the slope between these cells is not 0! Therefore,
we need to restrict the calculation to adjacent cells. We do this by creating an index for
adjacent cells (adj) with the function adjacent. Using this index, we extract and replace
adjacent cells, without touching the other values.

R> adj <- adjacent(r, cells=1:ncell(r), pairs=TRUE, directions=8)

R> speed <- slope

R> speed[adj] <- exp(-3.5 * abs(slope[adj] + 0.05))

Now we have calculated the speed of movement between adjacent cells. We are close to having
the final conductance values. Attainable speed is a measure of the ease of crossing from one
cell to another on the grid. However, we also need to take into account the distance between
cell centres. Travelling with the same speed, a diagonal connection between cells takes longer
to cross than a straight connection. Therefore, we use the function geoCorrection again!

R> x <- geoCorrection(speed, scl=FALSE)

This gives our final ‘conductance’ values.

What do these values mean? The function geoCorrection divides the values in the matrix
between the distance between cell centres. So, with our last command we calculated this:

conductance = speed/distance

This looks a lot like a measure that we are more familiar with:

traveltime = distance/speed

In fact, the conductance values we have calculated are the reciprocal of travel time.

1/traveltime = speed/distance = conductance
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Maximizing the reciprocal of travel time is exactly equivalent to minimizing travel time!

Now we define two coordinates, A and B, and determine the paths between them. We test
if the quickest path from A to B is the same as the quickest path from B back to A. The
following code creates the shortest paths.

R> A <- c(2667670,6479000)

R> B <- c(2667800,6479400)

R> AtoB <- shortestPath(x, A, B, output="SpatialLines")

R> BtoA <- shortestPath(x, B, A, output="SpatialLines")

And this code was used to make Figure 9.

R> plot(r, main="")

R> lines(AtoB, col="red", lwd=2)

R> lines(BtoA, col="blue")

R> text(A[1]-10,A[2]-10,"A")

R> text(B[1]+10,B[2]+10,"B")

A small part of the A-B (red) and B-A (blue) lines in Figure 9 do not overlap. This is a
consequence of the asymmetry of the Hiking Function.
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Figure 9: Quickest hiking routes on Maunga Whau (A to B is red, B to A is blue).
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10. Example 2: Geographical Genetics

The direct relation between genetic and geographic distances is known as isolation by distance
(Wright 1943). Recent work has expanded this relationship to random movement in heteroge-
neous landscapes (McRae 2006). Also, the geography of dispersal routes can explain observed
geospatial patterns of genetic diversity. For instance, diffusion from a single origin (Africa)
explains much of the current geographical patterns of human genetic diversity (Ramachan-
dran et al. 2005). As a result, the mutual genetic distance between a pair of humans from
different parts from the globe depends on the extent they share their prehistoric migration
history.

Within a single continent, however, human genetic diversity may have to do with more recent
events. Let’s look at diversity in Europe, using the data presented by Balaresque et al.
(2010). Within Europe, genetic diversity is often thought to be a result of the migration of
early Neolithic farmers from Anatolia (Turkey) to the west.

First we read in the data, including the coordinates of the populations (see Figure 10) and
mutual genetic distances.

R> Europe <- raster(system.file("external/Europe.grd",

+ package="gdistance"))

R> Europe[is.na(Europe)] <- 0

R> data(genDist)

R> data(popCoord)

R> pC <- as.matrix(popCoord[c("x","y")])

Then we create three geographical distance matrices. The first corresponds to the great-circle
distance between populations. The second is the least-cost distance between locations. Travel
is restricted to the land mass. The third is the commute distance (using the same conductance
matrix), which is related to effective resistance between points if we conceive of the grid as
an electrical circuit (Chandra et al. 1996; McRae 2006).

R> geoDist <- pointDistance(pC, longlat=TRUE)

R> geoDist <- as.dist(geoDist)

R> Europe <- aggregate(Europe,3)

R> tr <- transition(Europe, mean, directions=8)

R> trC <- geoCorrection(tr, "c", scl=TRUE)

R> trR <- geoCorrection(tr, "r", scl=TRUE)

R> cosDist <- costDistance(trC,pC)

R> resDist <- commuteDistance(trR, pC)

R> cor(genDist,geoDist)

[1] 0.5962655

R> cor(genDist,cosDist)

[1] 0.5889319

R> cor(genDist,resDist)
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Figure 10: Map of genotyped populations.

[1] 0.1921118

Amont the measure evaluated until now, the great-circle distance between points turns out
to be the best predictor of genetic distance. The other distance measures incorporate more
information about the geographic space in which geneflow takes place, but do not improve
the prediction. But how well does an expansion from Anatolia explain the spatial pattern?

R> origin <- unlist(popCoord[22,c("x","y")])

R> pI <- pathInc(trC, origin=origin, from=pC,

+ functions=list(overlap))

R> cor(genDist,pI[[1]])

[1] -0.7178576

At least at first sight, the overlap of dispersal routes explain the spatial pattern better than any
of the previous measures. The negative sign of the last correlation coefficient was expected,
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as more overlap in routes is associated with lower genetic distance. Additional work would
be needed to improve predictions and compare the different models more rigorously.

11. Future Work

Improvements of gdistance and methodological refinements are expected in various areas.

� All measures based on random walks depend critically on solving sparse linear systems.
This is the most time-consuming part of the calculations. Faster libraries could improve
the gdistance package and may become available in R in the future.

� Research on distances in graph theory is a very dynamic field in the computational
sciences. New measures and algorithms could be added to gdistance when they become
available.

� More research on the consequences of connecting grids in different ways is necessary, as
indicated in Section 2. This should bring more precision to random walk calculations
in geospatial analysis. Comparing the results of grid-based calculations to continuous
space simulations or analytical solutions would be the way forward (Birch 2006).

12. Final Remarks

Questions about the use of gdistance can be posted on the r-sig-geo email list. Bug reports
and requests for additional functionality can be mailed to jacobvanetten@yahoo.com.
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