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1 Introduction

The gRim package is an R package for gRaphical interaction models (hence the name). gRim
implements 1) graphical log–linear models for discrete data, that is for contingency tables
and 2) Gaussian graphical models for continuous data (multivariate normal data) and 3)
mixed homogeneous interaction models for mixed data (data consisiting of both discrete
and continuous variables).

The package is at an early stage of development and so is this document.

The main functions for creating models of the various types are:

• Discrete data: The dmod() function creates a hierarchical log–linear model.

• Continuous data: The cmod() function creates a Gaussian graphical model.

• Mixed data: The mmod() function creates a mixed interaction model.

The model objects created by these functions are of the respective classes dModel, cModeland
mModel. All models are also of the class iModel. To the extent possible methods are devel-
oped to act on iModel objects that the same method will do something sensible on both
discrete and continuous models.

If the Rgraphviz package is installed then iModels can be plotted.

2 Introductory examples

The arguments to the model functions are:
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> args(dmod)

function (formula, data = NULL, marginal = NULL, context, interactions = NULL,

fit = TRUE)

NULL

> args(cmod)

function (formula, data = NULL, marginal = NULL, fit = TRUE)

NULL

> args(mmod)

function (formula, data, marginal = NULL, fit = TRUE, details = 0)

NULL

Models are specified as generating classes. A generating class can be a list or a formula. In
addition, various model specification shortcuts are available. Some of these are described
in Section ??. FiXme: Ref!

2.1 A First Example – A Discrete Model

> args(dmod)

function (formula, data = NULL, marginal = NULL, context, interactions = NULL,

fit = TRUE)

NULL

Consider the reinis data from gRbase. The following two specifications of a log–linear
model are equivalent:

> data(reinis)

> dm1<-dmod(list(c("smoke","systol"),c("smoke","mental","phys")), data=reinis)

> dm1<-dmod(~smoke:systol + smoke:mental:phys, data=reinis)

> dm1

Model:

:"smoke" "systol"

:"smoke" "mental" "phys"

Fit info:

-2logL : 9391.38432131 mdim : 9

ideviance : 730.47272159 idf : 5

deviance : 3.80201740 df : 6

is graphical=TRUE is decomposable=TRUE

The ideviance and idf gives the deviance and degrees of freedom between the model and
the independence model for the same variables whereas deviance and df is the deviance
and degrees of freedom between the model and the saturated model for the same variables.
Finally mdim is the number of parameters in the model (no adjustments have been made
for sparsity of data).

The internal representation of the model is through a generating class in the slot glist.
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We have

> str(dm1$glist)

List of 2

$ : chr [1:2] "smoke" "systol"

$ : chr [1:3] "smoke" "mental" "phys"

> iplot(dm1)

smoke

systol

mental

phys

2.2 Model specification shortcuts

Below we illustrate various other ways of specifying log–linear models.

• A saturated model can be specified using ~.^. whereas ~.^2 specifies the model with
all–two–factor interactions. Using ~.^1 specifies the independence model.

• Attention can be restricted to a subset of the variables using the margin argument.

• The context argument can be used for specifying that only data for a specific slice
of the table should be used.

• Variable names can be abbreviated.

• If we want, say, at most two–factor interactions in the model we can use the interactions
argument.

The following model illustrates this:
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> dm2 <- dmod(~.^2, margin=c("smo","men","phy","sys"),

+ data=reinis, context=list("fam", "y"))

Model:

:"smoke" "mental"

:"smoke" "phys"

:"smoke" "systol"

:"smoke" "protein"

:"mental" "phys"

:"mental" "systol"

:"mental" "protein"

:"phys" "systol"

:"phys" "protein"

:"systol" "protein"

Fit info:

-2logL : 10125.40198988 mdim : 15

ideviance : 696.45587241 idf : 10

deviance : 17.46324669 df : 16

is graphical=FALSE is decomposable=FALSE

> dm3 <- dmod(list(c("smoke", "systol"), c("smoke", "mental", "phys")),

+ data=reinis, interactions=2)

Model:

:"smoke" "systol"

:"smoke" "mental"

:"smoke" "phys"

:"mental" "phys"

Fit info:

-2logL : 9397.37069914 mdim : 8

ideviance : 724.48634376 idf : 4

deviance : 9.78839523 df : 7

is graphical=FALSE is decomposable=FALSE

2.3 Plotting models

There are two main ways of plotting the dependence graph of a model: 1) iplot() creates
an igraph object and plots this. 2) A plot() method is available, but this requires that
the package Rgraphviz and the external program Graphviz is installed. The convention
for both methods is that discrete variables are drawn as grey dots and continuous variables
as white dots.

2.4 A First Example – A Continuous Model

> args(cmod)

function (formula, data = NULL, marginal = NULL, fit = TRUE)

NULL

For Gaussian models there is no such thing as a higher order interaction. Hence all Gaussian
models are graphical and therefore the following specifications define the same model:
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> data(carcass)

> cm1 <- cmod(~Fat11:Fat12:Fat13, data=carcass)

> cm1

Model:

:"Fat11" "Fat12" "Fat13"

Fit info:

-2logL : 4329.15579031 mdim : 6

ideviance : 886.10467639 idf : 3

deviance : 0.00000000 df : 0

aic : 4341.1558

bic : 4364.1996

is graphical=TRUE is decomposable=TRUE

> cm1 <- cmod(~Fat11:Fat12 + Fat12:Fat13 + Fat11:Fat13, data=carcass)

> cm1

Model:

:"Fat11" "Fat12"

:"Fat12" "Fat13"

:"Fat11" "Fat13"

Fit info:

-2logL : 4329.15579031 mdim : 6

ideviance : 886.10467639 idf : 3

deviance : 0.00000000 df : 0

aic : 4341.1558

bic : 4364.1996

is graphical=TRUE is decomposable=FALSE

FiXme: is decomposable er forkert i model nummer 2...

Notice: Internally, cmod() works on the model as it is given by the user.

2.5 A First Example – A Mixed Model

> args(mmod)

function (formula, data, marginal = NULL, fit = TRUE, details = 0)

NULL

> data(milkcomp1)

> mm1 <- mmod(~.^., data=milkcomp1)

> mm1

Mixed interaction model:

Model:

:"treat" "fat" "protein" "dm" ...

Dimension: 40 df: 0 logL -237.957537 -2logL=475.915074

> iplot(mm1)
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treat

fat

protein

dm
lactose

3 Methods for model objects

A summary() of a model:

> summary(dm1)

is graphical=TRUE; is decomposable=TRUE

generators (glist):

:"smoke" "systol"

:"smoke" "mental" "phys"

EXPERIMENTAL: components: glist isGraphical isDecomposable cliques

FiXme: Make summary() more informative

The model can be plotted if the Rgraphviz package is installed (see Fig. 1):

> iplot(dm1)

Observed and fitted values are:
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smoke

systol

mental

phys

Figure 1: A marginal model for a slice of the reinis data.

> str(fitted(dm1))

table [1:2, 1:2, 1:2, 1:2] 78.2 74.7 67.8 47.3 211.1 ...

- attr(*, "dimnames")=List of 4

..$ smoke : chr [1:2] "y" "n"

..$ systol: chr [1:2] "y" "n"

..$ mental: chr [1:2] "y" "n"

..$ phys : chr [1:2] "y" "n"

> str(dm1$data)

List of 1

$ data: table [1:2, 1:2, 1:2, 1:2] 79 82 67 40 217 156 177 109 197 258 ...

..- attr(*, "dimnames")=List of 4

.. ..$ smoke : chr [1:2] "y" "n"

.. ..$ systol: chr [1:2] "y" "n"

.. ..$ mental: chr [1:2] "y" "n"

.. ..$ phys : chr [1:2] "y" "n"

Section 8.1 describes model objects in more detail. Here we just notice that the generating
class of the model is contained in the slot glist:
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> str(dm2$glist)

List of 10

$ : chr [1:2] "smoke" "mental"

$ : chr [1:2] "smoke" "phys"

$ : chr [1:2] "smoke" "systol"

$ : chr [1:2] "smoke" "protein"

$ : chr [1:2] "mental" "phys"

$ : chr [1:2] "mental" "systol"

$ : chr [1:2] "mental" "protein"

$ : chr [1:2] "phys" "systol"

$ : chr [1:2] "phys" "protein"

$ : chr [1:2] "systol" "protein"

4 Model editing - update()

FiXme: update() method needs to be described.

5 Fundamental methods for inference

This section describes some fundamental methods for inference in gRim. As basis for the
description consider the following model shown in Fig. 2:

> dm5 <- dmod(~ment:phys:systol+ment:systol:family+phys:systol:smoke,

+ data=reinis)

Model:

:"mental" "phys" "systol"

:"mental" "systol" "family"

:"phys" "systol" "smoke"

Fit info:

-2logL : 10888.82063844 mdim : 15

ideviance : 732.29408038 idf : 10

deviance : 25.58766995 df : 16

is graphical=TRUE is decomposable=TRUE

5.1 Testing for addition and deletion of edges

Let M0 be a model and let e = {u, v} be an edge in M0. The candidate model formed by
deleting e from M0 is M1. The testdelete() function can be used to test for deletion of
an edge from a model:
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mental

phys

systol

family

smoke

Figure 2: A decomposable graphical model for the reinis data.

> testdelete(dm5, ~smoke:systol)

dev: 11.698 df: 2 p.value: 0.00288 AIC(k=2.0): 7.7 edge: smoke:systol

host: systol phys smoke

Notice: Test performed in saturated marginal model

> testdelete(dm5, ~family:systol)

dev: 1.085 df: 2 p.value: 0.58135 AIC(k=2.0): -2.9 edge: family:systol

host: systol family mental

Notice: Test performed in saturated marginal model

In the first case the p–value suggests that the edge can not be deleted. In the second
case the p–value suggests that the edge can be deleted. The reported AIC value is the
difference in AIC between the candidate model and the original model. A negative value
of AIC suggest that the candidate model is to be preferred.

Next, let M0 be a model and let e = {u, v} be an edge not in M0. The candidate model
formed by adding e to M0 is denoted M1. The testadd() function can be used to test
for deletion of an edge from a model:

> testadd(dm5, ~smoke:mental)

dev: 7.797 df: 4 p.value: 0.09930 AIC(k=2.0): 0.2 edge: smoke:mental

host: mental systol phys smoke

Notice: Test performed in saturated marginal model

The p–value suggests that no significant improvedment of the model is obtained by adding
the edge. The reported AIC value is the difference in AIC between the candidate model
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and the original model. A negative value of AIC would have suggested that the candidate
model is to be preferred.

FiXme: A function for testing addition / deletion of more general terms is needed.

5.2 Finding edges

The getInEdges() function will return a list of all the edges in the dependency graph
G defined by the model. If we set type=’decomposable’ then the edges returned are
as follows: An edge e = {u, v} is returned if G minus the edge e is decomposable. In
connection with model selection this is convenient because it is thereby possibly to restrict
the search to decomposable models.

> ed.in <- getInEdges(ugList(dm5$glist), type="decomposable")

[,1] [,2]

[1,] "phys" "mental"

[2,] "family" "mental"

[3,] "smoke" "phys"

[4,] "family" "systol"

[5,] "smoke" "systol"

The getOutEdges() function will return a list of all the edges which are not in the de-
pendency graph G defined by the model. If we set type=’decomposable’ then the edges
returned are as follows: An edge e = {u, v} is returned if G plus the edge e is decompos-
able. In connection with model selection this is convenient because it is thereby possibly
to restrict the search to decomposable models.

> ed.out <- getOutEdges(ugList(dm5$glist), type="decomposable")

[,1] [,2]

[1,] "smoke" "mental"

[2,] "family" "phys"

5.3 Labeling several edges

> args(labelInEdges)

function (object, edgeMAT, criterion = "aic", k = 2, alpha = NULL,

headlong = FALSE, details = 1, ...)

NULL

> args(labelOutEdges)

function (object, edgeMAT, criterion = "aic", k = 2, alpha = NULL,

headlong = FALSE, details = 1, ...)

NULL

The functions labelInEdges() and labelOutEdges() will test for deletion of edges and
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addition of edges. The default is to use AIC for evaluating each edge. It is possible to
specify the penalty parameter for AIC to being other values than 2 and it is possible to
base the evaluation on significance tests instead of AIC. Setting headlong=TRUE causes the
function to exit once an improvement is found. For example:

> labelInEdges(dm5, getInEdges(ugList(dm5$glist), type="decomposable"),

+ k=log(sum(reinis)))

statistic df p.value aic V1 V2 action

1 686.702943 2 0.000000e+00 671.666814 phys mental -

2 4.692559 2 9.572463e-02 -10.343569 family mental +

3 28.146937 2 7.726277e-07 13.110809 smoke phys -

4 1.084805 2 5.813498e-01 -13.951323 family systol +

5 11.698229 2 2.882450e-03 -3.337899 smoke systol +

FiXme: labelInEdges()/labelOutEdges() kunne have default værdi for 2. argument.

6 Stepwise Model Selection

Two functions are currently available for model selection: backward() and forward().
These functions employ the functions in Section 5.3)

6.1 Backward search

For example, we start with the saturated model and do a backward search.
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> dm.sat <- dmod(~.^., data=reinis)

> dm.back <- backward(dm.sat)

. BACKWARD: type=decomposable search=all, criterion=aic(2.00), alpha=0.00

. Initial model: is graphical=TRUE is decompsable=TRUE

change.AIC -19.7744 Edge deleted: systol mental

change.AIC -8.8511 Edge deleted: systol phys

change.AIC -4.6363 Edge deleted: protein mental

change.AIC -1.6324 Edge deleted: family systol

change.AIC -3.4233 Edge deleted: protein family

change.AIC -0.9819 Edge deleted: family phys

change.AIC -1.3419 Edge deleted: family smoke

> iplot(dm.back)

smoke

systol

protein

physmental

family

Default is to search among decomposable models if the initial model is decomposable.
Default is also to label all edges (with AIC values); however setting search=’headlong’

will cause the labelling to stop once an improvement has been found.

6.2 Forward search

Forward search works similarly; for example we start from the independence model:
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> dm.i <- dmod(~.^1, data=reinis)

> dm.forw <- forward(dm.i)

. FORWARD: type=decomposable search=all, criterion=aic(2.00), alpha=0.00

. Initial model: is graphical=TRUE is decompsable=TRUE

change.AIC -683.9717 Edge added: phys mental

change.AIC -25.4810 Edge added: phys smoke

change.AIC -15.9293 Edge added: mental protein

change.AIC -10.8092 Edge added: protein systol

change.AIC -2.7316 Edge added: mental family

change.AIC -1.9876 Edge added: smoke mental

change.AIC -16.4004 Edge added: smoke protein

change.AIC -12.5417 Edge added: smoke systol

> iplot(dm.forw)

family

mental

smoke

phys

protein

systol

6.3 Fixing edges/terms in model as part of model selection

The stepwise model selection can be controlled by fixing specific edges. For example we
can specify edges which are not to be considered in a bacward selection:
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> fix <- list(c("smoke","phys","systol"), c("systol","protein"))

> fix <- do.call(rbind, unlist(lapply(fix, names2pairs),recursive=FALSE))

> fix

[,1] [,2]

[1,] "phys" "smoke"

[2,] "smoke" "systol"

[3,] "phys" "systol"

[4,] "protein" "systol"

> dm.s3 <- backward(dm.sat, fixin=fix, details=1)

. BACKWARD: type=decomposable search=all, criterion=aic(2.00), alpha=0.00

. Initial model: is graphical=TRUE is decompsable=TRUE

change.AIC -19.7744 Edge deleted: systol mental

change.AIC -8.8511 Edge deleted: systol phys

change.AIC -4.6363 Edge deleted: protein mental

change.AIC -1.6324 Edge deleted: family systol

change.AIC -3.4233 Edge deleted: protein family

change.AIC -0.9819 Edge deleted: family phys

change.AIC -1.3419 Edge deleted: family smoke

There is an important detail here: The matrix fix specifies a set of edges. Submitting
these in a call to backward does not mean that these edges are forced to be in the model.
It means that those edges in fixin which are in the model will not be removed.

Likewise in forward selection:

> dm.i3 <- forward(dm.i, fixout=fix, details=1)

. FORWARD: type=decomposable search=all, criterion=aic(2.00), alpha=0.00

. Initial model: is graphical=TRUE is decompsable=TRUE

change.AIC -683.9717 Edge added: phys mental

change.AIC -25.4810 Edge added: phys smoke

change.AIC -15.9293 Edge added: mental protein

change.AIC -10.8092 Edge added: protein systol

change.AIC -1.9876 Edge added: smoke mental

change.AIC -16.4004 Edge added: smoke protein

change.AIC -12.5417 Edge added: smoke systol

change.AIC -1.0037 Edge added: protein family

change.AIC -0.1381 Edge added: family systol

Edges in fix will not be added to the model but if they are in the starting model already,
they will remain in the final model.

7 Further topics on models for contingency tables

7.1 Adjusting for sparsity

FiXme: Comment on adjustment for sparsity in testadd() and testdelete()
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7.2 Dimension of a log–linear model

The loglinDim() is a general function for finding the dimension of a log–linear model. It
works on the generating class of a model being represented as a list:

> loglinGenDim(dm2$glist, reinis)

[1] 15

Acknowledgements

8 Miscellaneous

8.1 The Model Object

It is worth looking at the information in the model object:

> dm3 <- dmod(list(c("smoke", "systol"), c("smoke", "mental", "phys")),

+ data=reinis, context=list("family", "y"))

> names(dm3)

[1] "glist" "varNames" "glistNUM" "isDecomposable"

[5] "isGraphical" "isFitted" "datainfo" "conNames"

[9] "conLevels" "fitinfo"

• The model (as a right hand sided formula) is

> dm3$formula

NULL

• The model, represented as a list of generators, is

> str(dm3[c("glist","glistNUM")])

List of 2

$ glist :List of 2

..$ : chr [1:2] "smoke" "systol"

..$ : chr [1:3] "smoke" "mental" "phys"

$ glistNUM:List of 2

..$ : int [1:2] 1 2

..$ : int [1:3] 1 3 4

• The dependency graph of the model is
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> dm3$graph

NULL

> dm3$adjmat

NULL

• Information about the variables etc. is

> str(dm3[c("varNames","conNames","conLevels")])

List of 3

$ varNames : chr [1:4] "smoke" "systol" "mental" "phys"

$ conNames : chr "family"

$ conLevels: chr "y"

• Finally isFitted is a logical for whether the model is fitted; data is the data (as a
table) and fitinfo consists of fitted values, logL, df etc.
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