Primitive array operations in the gRbase package

Sgren Hgjsgaard
gRbase version 1.6-11 as of 2013-07-01

Contents

1

1

Introduction
1.1 Arraysin R oL e
1.2 Terminology

cell2entry() and entry2cell()
nextCell() and nextCellSlice()
slice2entry()
permuteCellEntries()

factGrid() — Factorial grid

Introduction

N —

This note describes some operations on arrays in R. These operations have been implemented to
facilitate implementation of graphical models and Bayesian networks in R.

1.1 Arrays in R

The documentation of R states the following about arrays:

An array in R can have one, two or more dimensions. It is simply a vector which is
stored with additional attributes giving the dimensions (attribute "dim”) and optionally
names for those dimensions (attribute "dimnames”).

A two-dimensional array is the same thing as a matric.

One-dimensional arrays often look like vectors, but may be handled differently by some
functions.

Hence the defining characterstic of an array is that it is a vector with a dim attribute. For example

R>
R>
R>
R>
R>

1-dimensional array
##

x1 <- 1:8

dim(x1) <- 8

x1

[1]1 123456738

R>

c(is.array(x1l), is.matrix(x1))

[1] TRUE FALSE

R> ## 2-dimensional array (matrix)

R> ##

R> x2 <- 1:8

R> dim(x2) <- c(2,4)
R> x2

[,11 [,2]1 [,3] [,4]
[1,] 1 3 5 7
(2,1 2 4 6 8

R> c(is.array(x2), is.matrix(x2))
[1] TRUE TRUE

R> ## 3-dimensional array

R> ##
R> x3 <- array(1:8, dim=c(2,2,2))
R> x3
s b 1
[,11 [,2]

[1,] 1 3
[2,1] 2 4

[,1]1 [,2]
[1,] 5 7
[2,1] 6 8

R> c(is.array(x3), is.matrix(x3))
[1] TRUE FALSE

1.2 Terminology

Consider a set A = {d1,...,dx} of |A| = K factors where the factor d;, has levels I, = {1,..., Ly }.
The cross product I = I X ... X I defines an array where i = (i1,...,ix) € I is a cell. Tt is the
convention here that the first factor varies fastest. To each cell ¢ € T there is often a value f(7).

As shown above, an array is implemented as a vector x of length L = |I|, that is x = (f (), € I).

In practice z is indexed by an entry e as z[e] fore=1,..., L.
The factor levels (I1,...,Ix) are denoted adim in the code below. As an example we take the
following:

R> adim2222 <- c(2,2,2,2)
R> adim2323 <- ¢(2,3,2,3)

2 cell2entry() and entry2cell()

The map from a cell to the corresponding entry is provided by cell2entry(). The reverse
operation, going from an entry to a cell (which is much less needed) is provided by entry2cell ().

R> cell2entry(c(1,1,1,1), adim2222)
(11 1

R> entry2cell(l, adim2222)

[11 1111

R> cell2entry(c(2,1,2,1), adim2222)
(11 6

R> entry2cell(6, adim2222)

[1] 2121

3 nextCell() and nextCellSlice()

Given a cell, say ¢ = (1,1,2,1) we often want to find the next cell in the table following the
convention that the first factor varies fastest, that is (2,1,2,1). This is provided by nextCell().

R> nextCell(c(1,1,2,1), adim2222)
[11 2121
R> nextCell(c(2,2,2,1), adim2222)
[11 1112

Given A C A and acell i4 € I4 consider the cells I(i4) = {j € I|ja =ia}. For example, the cells
satisfying that factor 2 is at level 1. Given such a cell, say (2,1,1,2) we often want to find the

)) 9

next cell also satisfying this constraint following the convention that the first factor varies fastest,
that is (1,1,2,2). This is provided by nextCellSlice().

R> nextCellSlice(c(2,1,1,2), sliceset=c(2), adim2323)
[11 1122

R> nextCellSlice(c(1,3,2,1), sliceset=c(2,3), adim2323)
[11 2321

4 slice2entry()

Given A C A and a cell iy € I4. This cell defines a slice of the original array, namely the cells
I(ia) ={j € I|ja =ia}. We often want to find the entries in x for the cells I(i4). This is provided
by slice2entry(). For example, we may want the entries for the cells (x,1,2,*) or (2,2, *, %):

R> (ri<-slice2entry(slicecell=c(1,2), sliceset=c(2,3), adim2222))
[11 5 6 13 14

To verify that we indeed get the right cells:

R> do.call(rbind, lapply(rl, entry2cell, adim2222))

(.11 [,21 [,3] [,4]
[1,] 1 1 2 1
[2,] 2 1 2 1
[3,1] 1 1 2 2
(4,1 2 1 2 2

5 permuteCellEntries()

In a 2 x 3 table, entries 1,...,6 correspond to combinations (1,1),(2,1),(1,2),(2,2),(1,3),(2,3).
If we permute the table to a 3 x 2 table the entries become as follows:

R> (p<-permuteCellEntries(perm=c(2,1), adim=c(2,3)))
[1] 135246

So for example,

R> (A <- array(11:16, dim=c(2,3)))

[,11 [,21 [,3]
(1,1 11 13 15
[2,] 12 14 16

R> Ap <- A[p]
R> dim(Ap) <- <(3,2)
R> Ap
(.11 [,2]
[1,] 11 12
[2,] 13 14
[3,1] 15 16

This corresponds to
R> aperm(A, c(2,1))

[,1] [,2]
[1,] 11 12
[2,] 13 14
[3,] 15 16

6 factGrid() — Factorial grid

Using the operations above we can obtain the combinations of the factors as a matrix:

R> ff <- factGrid(adim2222)
R> head(ff)

(.11 [,21 [,3] [,4]

[1,] 1 1 1 1
[2,] 2 1 1 1
[3,] 1 2 1 1
4,1 2 2 1 1
[5,] 1 1 2 1
[6,1] 2 1 2 1

R> tail(ff)
(.11 [,21 [,3] [,4]

[11,] 1 2 1 2
[12,] 2 2 1 2
[13,] 1 1 2 2
[14,] 2 1 2 2
[15,] 1 2 2 2
[16,] 2 2 2 2

This is the same as (but faster)

R> aa <- expand.grid(list(1:2,1:2,1:2,1:2))
R> head(aa)

Varl Var2 Var3 Var4

1 1 1 1 1
2 2 1 1 1
3 1 2 1 1
4 2 2 1 1
5 1 1 2 1
6 2 1 2 1

There is a slice version as well:

R> factGrid(adim2222, slicecell=c(1,2), sliceset=c(2,3))

(1,]
2,1]
(3,1
(4,]

(,11 [,2] [,3]1 [,4]

1

2
1
2

1 2

1 2
1 2
1 2

1

1
2
2

