This R package provides tools to access Eurostat database as part of the rOpenGov project.
For contact information and source code, see the github page
Release version:
install.packages("eurostat")
Development version:
library(devtools)
install_github("ropengov/eurostat")
Overall, the eurostat package includes the following functions:
library(eurostat)
kable(as.data.frame(ls("package:eurostat")))
ls(“package:eurostat”) |
---|
candidate_countries |
clean_eurostat_cache |
dic_order |
ea_countries |
efta_countries |
eu_countries |
eurotime2date |
eurotime2num |
get_eurostat |
get_eurostat_dic |
getEurostatDictionary |
get_eurostat_toc |
getEurostatTOC |
grepEurostatTOC |
label_eurostat |
label_eurostat_tables |
label_eurostat_vars |
search_eurostat |
Function get_eurostat_toc()
downloads a table of contents of eurostat datasets. The values in column 'code' should be used to download a selected dataset.
# Load the package
library(eurostat)
library(rvest)
# Get Eurostat data listing
toc <- get_eurostat_toc()
# Check the first items
library(knitr)
kable(head(toc))
title | code | type | last.update.of.data | last.table.structure.change | data.start | data.end | values |
---|---|---|---|---|---|---|---|
Database by themes | data | folder | NA | ||||
General and regional statistics | general | folder | NA | ||||
European and national indicators for short-term analysis | euroind | folder | NA | ||||
Business and consumer surveys (source: DG ECFIN) | ei_bcs | folder | NA | ||||
Consumer surveys (source: DG ECFIN) | ei_bcs_cs | folder | NA | ||||
Consumers - monthly data | ei_bsco_m | dataset | 07.01.2016 | 07.01.2016 | 1985M01 | 2015M12 | NA |
With search_eurostat()
you can search the table of contents for particular patterns, e.g. all datasets related to passenger transport. The kable function to produces nice markdown output. Note that with the type
argument of this function you could restrict the search to for instance datasets or tables.
# info about passengers
kable(head(search_eurostat("passenger transport")))
title | code | type | last.update.of.data | last.table.structure.change | data.start | data.end | values | |
---|---|---|---|---|---|---|---|---|
5562 | Volume of passenger transport relative to GDP | tran_hv_pstra | dataset | 05.06.2015 | 04.06.2015 | 1995 | 2013 | NA |
5563 | Modal split of passenger transport | tran_hv_psmod | dataset | 05.06.2015 | 05.06.2015 | 1990 | 2013 | NA |
5602 | Railway transport - Total annual passenger transport (1 000 pass., million pkm) | rail_pa_total | dataset | 12.01.2016 | 29.10.2015 | 2004 | 2014 | NA |
5606 | International railway passenger transport from the reporting country to the country of disembarkation (1 000 passengers) | rail_pa_intgong | dataset | 17.12.2015 | 17.12.2015 | 2002 | 2014 | NA |
5607 | International railway passenger transport from the country of embarkation to the reporting country (1 000 passengers) | rail_pa_intcmng | dataset | 17.12.2015 | 17.12.2015 | 2002 | 2014 | NA |
5956 | Air passenger transport by reporting country | avia_paoc | dataset | 13.01.2016 | 13.01.2016 | 1993 | 2015Q3 | NA |
Codes for the dataset can be searched also from the Eurostat database. The Eurostat database gives codes in the Data Navigation Tree after every dataset in parenthesis.
Here an example of indicator Modal split of passenger transport. This is the percentage share of each mode of transport in total inland transport, expressed in passenger-kilometres (pkm) based on transport by passenger cars, buses and coaches, and trains. All data should be based on movements on national territory, regardless of the nationality of the vehicle. However, the data collection is not harmonized at the EU level.
Pick and print the id of the data set to download:
id <- search_eurostat("Modal split of passenger transport",
type = "table")$code[1]
print(id)
[1] “tsdtr210”
Get the corersponding table. As the table is annual data, it is more convient to use a numeric time variable than use the default date format:
dat <- get_eurostat(id, time_format = "num")
Investigate the structure of the downloaded data set:
str(dat)
'data.frame': 2520 obs. of 5 variables: $ unit : Factor w/ 1 level “PC”: 1 1 1 1 1 1 1 1 1 1 … $ vehicle: Factor w/ 3 levels “BUS_TOT”,“CAR”,..: 1 1 1 1 1 1 1 1 1 1 … $ geo : Factor w/ 35 levels “AT”,“BE”,“BG”,..: 1 2 3 4 5 6 7 8 9 10 … $ time : num 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 … $ values : num 11 10.6 NA 3.7 NA NA 9.1 11.3 NA 32.4 …
kable(head(dat))
unit | vehicle | geo | time | values |
---|---|---|---|---|
PC | BUS_TOT | AT | 1990 | 11.0 |
PC | BUS_TOT | BE | 1990 | 10.6 |
PC | BUS_TOT | BG | 1990 | NA |
PC | BUS_TOT | CH | 1990 | 3.7 |
PC | BUS_TOT | CY | 1990 | NA |
PC | BUS_TOT | CZ | 1990 | NA |
Eurostat variable IDs can be replaced with human-readable labels.
Function label_eurostat()
replaces the eurostat IDs based on
definitions from Eurostat dictionaries.
datl <- label_eurostat(dat)
kable(head(datl))
unit | vehicle | geo | time | values |
---|---|---|---|---|
Percentage | Motor coaches, buses and trolley buses | Austria | 1990 | 11.0 |
Percentage | Motor coaches, buses and trolley buses | Belgium | 1990 | 10.6 |
Percentage | Motor coaches, buses and trolley buses | Bulgaria | 1990 | NA |
Percentage | Motor coaches, buses and trolley buses | Switzerland | 1990 | 3.7 |
Percentage | Motor coaches, buses and trolley buses | Cyprus | 1990 | NA |
Percentage | Motor coaches, buses and trolley buses | Czech Republic | 1990 | NA |
Vehicle information has 3 levels. They are:
levels(datl$vehicle)
## [1] "Motor coaches, buses and trolley buses"
## [2] "Passenger cars"
## [3] "Trains"
You can get also labels for variable names
label_eurostat_vars(names(datl))
## Warning in label_eurostat(x, dic = "dimlst", lang = lang): All labels for
## dimlst were not found.
## [1] "Unit of measure"
## [2] "Vehicles"
## [3] "Geopolitical entity (reporting)"
## [4] "Period of time (a=annual, q=quarterly, m=monthly, d=daily, c=cumulated from January)"
## [5] NA
To facilititate fast plotting of standard European geographic areas, the package provides ready-made lists of the country codes used in the eurostat database for EFTA (efta_countries), Euro area (ea_countries), EU (eu_countries) and EU candidate countries (candidate_countries). This helps to select specific groups of countries for closer investigation. For conversions with other standard country coding systems, see the countrycode R package. To retrieve the country code list for EFTA, for instance, use:
data(efta_countries)
print(efta_countries)
## code name
## 1 IS Iceland
## 2 LI Liechtenstein
## 3 NO Norway
## 4 CH Switzerland
dat_eu12 <- subset(datl, geo == "European Union (28 countries)" & time == 2012)
kable(dat_eu12, row.names = FALSE)
unit | vehicle | geo | time | values |
---|---|---|---|---|
Percentage | Motor coaches, buses and trolley buses | European Union (28 countries) | 2012 | 9.3 |
Percentage | Passenger cars | European Union (28 countries) | 2012 | 83.0 |
Percentage | Trains | European Union (28 countries) | 2012 | 7.6 |
Reshaping the data is best done with spread()
in tidyr
.
library("tidyr")
dat_eu_0012 <- subset(dat, geo == "EU28" & time %in% 2000:2012)
dat_eu_0012_wide <- spread(dat_eu_0012, vehicle, values)
kable(subset(dat_eu_0012_wide, select = -geo), row.names = FALSE)
unit | time | BUS_TOT | CAR | TRN |
---|---|---|---|---|
PC | 2000 | 10.4 | 82.4 | 7.2 |
PC | 2001 | 10.2 | 82.7 | 7.1 |
PC | 2002 | 9.9 | 83.3 | 6.8 |
PC | 2003 | 9.9 | 83.5 | 6.7 |
PC | 2004 | 9.8 | 83.4 | 6.8 |
PC | 2005 | 9.9 | 83.2 | 6.9 |
PC | 2006 | 9.7 | 83.2 | 7.1 |
PC | 2007 | 9.8 | 83.1 | 7.2 |
PC | 2008 | 9.7 | 83.1 | 7.3 |
PC | 2009 | 9.2 | 83.7 | 7.1 |
PC | 2010 | 9.2 | 83.6 | 7.2 |
PC | 2011 | 9.2 | 83.4 | 7.3 |
PC | 2012 | 9.3 | 83.0 | 7.6 |
dat_trains <- subset(datl, geo %in% c("Austria", "Belgium", "Finland", "Sweden")
& time %in% 2000:2012
& vehicle == "Trains")
dat_trains_wide <- spread(dat_trains, geo, values)
kable(subset(dat_trains_wide, select = -vehicle), row.names = FALSE)
unit | time | Austria | Belgium | Finland | Sweden |
---|---|---|---|---|---|
Percentage | 2000 | 9.8 | 6.3 | 5.1 | 7.5 |
Percentage | 2001 | 9.7 | 6.4 | 4.8 | 7.9 |
Percentage | 2002 | 9.7 | 6.5 | 4.8 | 7.8 |
Percentage | 2003 | 9.5 | 6.5 | 4.7 | 7.7 |
Percentage | 2004 | 9.5 | 7.1 | 4.7 | 7.5 |
Percentage | 2005 | 9.8 | 6.6 | 4.8 | 7.7 |
Percentage | 2006 | 10.0 | 6.9 | 4.8 | 8.3 |
Percentage | 2007 | 10.1 | 7.1 | 5.0 | 8.7 |
Percentage | 2008 | 11.1 | 7.5 | 5.4 | 9.4 |
Percentage | 2009 | 11.1 | 7.5 | 5.1 | 9.5 |
Percentage | 2010 | 11.0 | 7.7 | 5.2 | 9.4 |
Percentage | 2011 | 11.0 | 7.7 | 5.0 | 8.8 |
Percentage | 2012 | 11.5 | 7.4 | 5.3 | 9.1 |
Visualizing train passenger data with ggplot2
:
library(ggplot2)
p <- ggplot(dat_trains, aes(x = time, y = values, colour = geo))
p <- p + geom_line()
print(p)
Triangle plot on passenger transport distributions with 2012 data for all countries with data.
library(tidyr)
transports <- spread(subset(dat, time == 2012, select = c(geo, vehicle, values)), vehicle, values)
transports <- na.omit(transports)
# triangle plot
library(plotrix)
triax.plot(transports[, -1], show.grid = TRUE,
label.points = TRUE, point.labels = transports$geo,
pch = 19)
For further examples, see also the blog post on the eurostat R package.
Citing the Data Kindly cite Eurostat.
Citing the R tools This work can be freely used, modified and distributed under the BSD-2-clause (modified FreeBSD) license:
citation("eurostat")
##
## Kindly cite the eurostat R package as follows:
##
## (C) Leo Lahti, Janne Huovari, Markus Kainu, Przemyslaw Biecek
## 2014-2016. eurostat R package URL:
## https://github.com/rOpenGov/eurostat
##
## A BibTeX entry for LaTeX users is
##
## @Misc{,
## title = {eurostat R package},
## author = {Leo Lahti and Janne Huovari and Markus Kainu and Przemyslaw Biecek},
## year = {2014},
## url = {https://github.com/rOpenGov/eurostat},
## }
We are grateful to all contributors and Eurostat open data portal! This rOpenGov R package is based on earlier CRAN packages statfi and smarterpoland. The datamart and reurostat packages seem to develop related Eurostat tools but at the time of writing this tutorial this package seems to be in an experimental stage. The quandl package may also provides access to some versions of eurostat data sets.
This tutorial was created with
sessionInfo()
## R version 3.2.2 (2015-08-14)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 15.10
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] plotrix_3.6-1 ggplot2_2.0.0 tidyr_0.3.1 rvest_0.3.1
## [5] xml2_0.1.2 eurostat_1.2.13 knitr_1.12
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.3 magrittr_1.5 munsell_0.4.2 colorspace_1.2-6
## [5] R6_2.1.1 stringr_1.0.0 httr_1.0.0 highr_0.5.1
## [9] plyr_1.8.3 dplyr_0.4.3 tools_3.2.2 parallel_3.2.2
## [13] grid_3.2.2 gtable_0.1.2 DBI_0.3.1 digest_0.6.9
## [17] assertthat_0.1 formatR_1.2.1 evaluate_0.8 labeling_0.3
## [21] stringi_1.0-1 scales_0.3.0