
ergm.userterms: A Template Package for Extending

statnet

David R. Hunter
The Pennsylvania State

University

Steven M. Goodreau
University of Washington

Mark S. Handcock
University of California,

Los Angeles

Abstract

Exponential-family random graph models (ERGM) represent a powerful and flexible
class of models for the statistical analysis of networks. statnet is a suite of software pack-
ages that implement these models. This paper details how the capabilities for ERGM
modeling can be expanded and customized by programming additional network statistics
that may be included in ERGMs. We describe a template R package called ergm.userterms
that can be modified for this purpose. It is designed to make this process as straightfor-
ward as possible. We also explain some of the internal workings of statnet that will help
users develop their own network analysis capabilities.

Keywords: exponential-family random graph model, Markov chain Monte Carlo, maximum
likelihood estimation, p-star model.

1. Introduction

Exponential-family random graphs models (“ERG models” or “ERGMs”) provide a powerful
and flexible family of models for conducting statistical inference on social network structure
(Frank and Strauss 1986; Handcock, Hunter, Butts, Goodreau, and Morris 2008; Hunter,
Handcock, Butts, Goodreau, and Morris 2008; Goodreau, Handcock, Hunter, Butts, and
Morris 2008). This framework has been implemented in the ergm package (Hunter et al.
2008), part of the statnet suite of packages (Handcock et al. 2008) for R (R Development Core
Team 2010). Within this framework, there is an essentially unlimited number of potential
models; for any one, the probability of a given network is a function of a set of structural
network statistics posited by the model. Equivalently, the probability of any individual tie in
the network existing, given all other tie states, is a function of changes in those same network
statistics induced by the creation of that tie.

The use of any network statistic in the ergm package requires a small amount of code to
calculate changes to that statistic induced by adding or removing a tie; some of this code is
in R, and some in C, where the most computationally intensive tasks in ergm are actually
performed. There are a variety of network statistics with substantive interpretations that are
commonly found in the literature (e.g. counts of edges, homophilous edges, nodal degrees,
triangles or k-stars), and the ergm package includes code to handle many of these. However,
the user who wishes to build a model with a network statistic term not included in the ergm
package must write new code to do so. We have developed a package—ergm.userterms—to

2 ergm.userterms: A Template for Extending statnet

make this process easier. The aims of this paper are to describe this package and explain all
of the steps of writing up new ERGM terms in order to make this process more user-friendly.

In Section 2, we provide a statistical overview of the ergm framework, with an emphasis on
the “change statistics” that must be coded to make the ergm package work. In Section 3, we
provide additional detail to explain why these statistics must be coded individually, unlike
in traditional generalized linear models. Section 4 outlines the methods of network storage
used throughout the statnet package suite; a basic familiarity with these methods aids the
coding of ergm terms considerably. In Section 5 we explain how to acquire all of the necessary
tools to build an R package from source and compile C code within Windows. Sections 6 and
7 describe the R code and C code that a user must write, respectively. Finally, Section 8
provides a complete worked example.

This paper will be most easy to follow for readers who already possess a general familiarity
with the ergm and network packages; those without such familiarity may wish to read relevant
papers in the Journal of Statistical Software special volume on statnet first (Handcock et al.
2008; Butts 2008; Hunter et al. 2008). Also, users who wish to follow along with the examples
or be able to use the instructions from this paper to write their own statistics should be sure
to obtain ergm version 2.3 or later before beginning any coding. Prior versions used different
(and less user-friendly) routines for coding terms. Although these routines are still allowed for
backward compatibility, not all routines in this paper will work in prior versions; moreover,
mixing the two approaches will likely cause unnecessary confusion.

2. Background

At the core of the ergm package (Handcock, Hunter, Butts, Goodreau, Krivitsky, and Morris
2003a) for R (R Development Core Team 2010) is a sophisticated Markov chain Monte Carlo
engine for simulating random networks. As explained by Hunter et al. (2008), simulating a
Markov chain on a set of networks whose stationary distribution is given by the exponential-
family random graph model

Pθ0(Y = y) =
exp{θ>0 g(y)}

κ(θ)
(1)

is vitally important not only for simulation but also for estimation. In equation (1), θ0 ∈ Rp

is a fixed parameter vector, g(y) is a user-defined p-vector of statistics on the network y
assumed to come from some set Y of networks, and

κ(θ) =
∑
z∈Y

exp{θ>0 g(z)} (2)

is the normalizing constant.

The MCMC scheme implemented in ergm is called a Metropolis-Hastings algorithm. In
general terms, such an algorithm proceeds from step k to step k + 1, from one network yk to
the next, by (a) selecting a candidate for the next network yk+1, (b) computing a Hastings
ratio based on yk and the candidate network, and (c) deciding whether yk+1 should be set
to the candidate network or, alternatively, whether to stay put for another iteration and set
yk+1 = yk. The selection (a) is done so that any possible network, say z, has probability
q(z,yk) of being selected, where q is some probability function known to the user. (The q

David R. Hunter, Steven M. Goodreau, Mark S. Handcock 3

function can and, in general, does place probability zero on some values of z, depending on
the value of yk.) The Hastings ratio (b) is equal to

Pθ0(Y = yk)
Pθ0(Y = z)

q(yk, z)
q(z,yk)

, (3)

where z is the candidate network selected in (a). Finally, (c) is done by selecting a real
number, say u, uniformly from the unit interval (0,1) and comparing u with the Hastings
ratio. Then

yk+1 =
{

z if u ≤ Hastings ratio;
yk if u > Hastings ratio.

In particular, note that if the Hastings ratio is greater than one, the candidate z is always
accepted as the value for yk+1.

In ergm, there are different possible choices of the probability distribution q(z,yk) used to
select z, but the default choice limits the possible choices of z to those that differ from yk

by exactly one edge indicator; in other words, z involves a single edge toggle of yk. Though
more complicated possibilities for z are possible using the ergm package, suppose here that
z is identical to yk in all except the (i, j) entry. Notationally, we would write zij = 1 − yk

ij

but zc
ij = (yk

ij)
c, where zc

ij denotes the entire network z except for the (i, j) entry. In this
case, by substituting Equation (1) into Expression (3), we see that the Hastings ratio may be
simplified to

q(yk, z)
q(z,yk)

exp{±θ>0 δ(yk)ij}, (4)

where
δ(y)ij

def= g(y+
ij)− g(y−ij) (5)

denotes the vector of change statistics, found by subtracting the two vectors of g-statistics
evaluated at the networks formed by leaving all of y unchanged except for the (i, j) entry,
which is set to 1 in y+

ij and 0 in y0
ij . The sign of the θ>0 δ(yk)ij term in (4) depends on the

value of yk
ij : If yk

ij = 1, then the term gets a plus sign; otherwise it gets a minus.

The key conclusion of all of the above development is that the calculation of change statistic
vectors is of vital importance to the running of both the simulation and the estimation routines
in the ergm. While the ergm package itself provides a large library of possible change-statistic
calculation routines (Morris, Handcock, and Hunter 2008), individual users sometimes wish to
estimate or simulate from a model that includes specialized statistics not among those already
coded in the ergm package; to do so, it is necessary for them to write code to calculate the
associated change statistics for the Metropolis-Hastings algorithm. This article describes an
R package called ergm.userterms that is designed to make this process as straightforward as
possible. It also explains some of the internal workings of the ergm package that will help
users develop their own network change statistic code.

In Section 3, we discuss the unique syntax implemented in the ergm package and explain why
it was necessary to extend the existing formula-based syntax (as used, say, by the lm and glm
functions in R) to handle models of the form found in Equation (1).

3. Syntax for a call to the ergm function

4 ergm.userterms: A Template for Extending statnet

A traditional generalized linear model, as explained in the classic book by McCullagh and
Nelder (1989), consists of a specification of the probabilistic dependence of some response
variable, usually denoted Y , on some function of a linear combination of some other predictor
variables, usually denoted X. The distribution of Y is generally a member of some known
exponential family; In its simplest form (ignoring any dispersion parameters), we may write
the density or mass function of Y , which depends on some parameter vector φ, as

fY (y) = exp{a(y)>b(φ)− c(φ)}.

Standard exponential family theory (e.g., Brown 1986) reveals that E(Y) = (∂/∂φ)c(φ). In
a generalized linear model, we presume that

E(Y) = link(X>β)

for some “link” function. Implicit in this formulation is the fact that X is considered a fixed
quantity, independent of Y ; indeed, X is often termed the independent variable. (Even when
X is random, one typically specifies a generalized linear model for the conditional distribution
of Y given X, so that X may be considered constant in this context.)
In contrast, model (1) does not in general conform to the above specifications of a generalized
linear model. While it is true that the distribution of the network Y—the “response”—is
expressed in exponential family form, there is no way to specify some fixed X and some link
function so that E(Y) = link(X>β). Essentially, this is because an ERGM involves an inher-
ent auto-dependence between the “response” and any traditional notion of the “predictors”.
In addition, there is no closed-form expression for the likelihood function in an ERGM that
can be easily evaluated. Equation (1) is generally impossible to use for the purposes of
calculation due to the fact that the κ function of Equation (2) involves an enormous number
of summands for even simple networks. Thus, even the estimation methods necessitated by
maximum likelihood estimation for an ERGM differ from those used by a generalized linear
model. In the former case, we rely on MCMC sampling to generate an approximation to
the likelihood, whereas in the latter the likelihood may be evaluated, and thus maximized,
directly.
Let us consider a typical call to the glm function in R:

R> glm (response ~ predictor1 + predictor2 + predictor3, link = binomial)

In a general ERGM, there is no way to define predictor1 through predictor3, nor is there a
closed-form way to relate the expected value of the random network to the linear combination
of the network statistics. Thus, there is no way to specify a link function and the standard
R formula (that is, response ~ predictors) does not apply. Nonetheless, there are still
analogies to standard generalized linear models, so the ergm function was designed to employ
a modified version of the standard R formula. Instead of predictors, we refer to elements of
the right-hand side of the formula as terms:

R> ergm (network ~ term1 + term2 + term3)

Numerous examples of calls to the ergm function may be found in Hunter et al. (2008) and
Goodreau et al. (2008), and a list of numerous possibilities for term1 through term3, is given
in Morris et al. (2008). Every term results in one or more network statistics being appended
to the g(y) vector. For example, the function call

David R. Hunter, Steven M. Goodreau, Mark S. Handcock 5

R> ergm (network ~ edges + degree(c(1, 3, 4)))

results in a model with four network statistics: The edges term adds a single statistic, the
number of edges in y, whereas the degree(c(1, 3, 4)) term adds three, the number of
nodes with degree 1, with degree 3, and with degree 4.

Remark: For certain choices of the vector g(y) of graph statistics, the resulting model (1)
actually implies that all of the individual yij edge indicators are jointly independent. In these
cases, model (1) is actually equivalent to a logistic regression model, which is a generalized
linear model. See Section 4.3 of Hunter et al. (2008) for more details on these so-called dyadic
independence models.

4. Network storage in ergm

An understanding of the internal storage of a network in the ergm package aids the writing
of code for a change statistic. We therefore describe this storage in some detail here. This
storage method is quite different from that of the network package, which allows for much
more general network-type objects than those of the ergm package (Butts 2008). The ergm
storage methods, on the other hand, are built to handle only edges from one node to another
so that adding, deleting, and accessing the structure of the network is as fast as possible.

3 5

Tail Node Head Node

Figure 1: A directed edge, sometimes termed an arc, from node 3 to node 5.

A network with n nodes is internally represented in ergm as a set of 2n edgelists, n for “in-
edges” and n for “out-edges”. If the directed edge 3−→5 exists in the network, then we call
3 the “tail” node and 5 the “head” node of this edge. We would say node 3 has an out-edge
to node 5 and that node 5 has an in-edge from node 3, as depicted in Figure 1. Thus, the
3rd out-edge list should contain 5 and the 5th in-edge list should contain 3. This redundant
storage scheme, requiring double the memory that a single representation of the network
would require, results in a corresponding gain in efficiency, since every edge may be accessed
via either of its nodes.

Undirected networks are effectively stored as directed networks in ergm but with the“directed”
flag set to zero rather than one. Essentially, this means that the adjacency matrix of an
undirected network is represented as having only zeros below the main diagonal; the “tail”
node is taken to be the lower-numbered node in each undirected node pair. For example, the
undirected edge 2←→4 would actually be stored as the directed edge 2−→4. Every routine
written to handle undirected networks must therefore check that the directed flag is set to
zero and that every edge is referenced as tail −→ head where tail < head.

Storage of each node’s in-edge list and out-edge list is implemented using a standard binary
tree structure (Cormen, Leiserson, and Rivest 1990, Chapter 13). This structure allows for
efficient lookup, insertion, and deletion operations that typically take O(log d) time, where d
is the degree, or number of neighbors, a particular node has. A set of binary trees representing
the network of Figure 2 is given in Figure 3. In this figure, every row of the adjacency matrix

6 ergm.userterms: A Template for Extending statnet



0 0 1 0 0 1 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 1
0 1 0 0 1 0 1 0
1 1 1 1 0 0 0 0
1 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0



1

2
3

4

5

6

7

8

Figure 2: Adjacency matrix (left) and corresponding graphical representation of a directed
8-node network (right). The rows of the adjacency matrix define the out-edge lists of Figure 3.

3

6

8

5

6

7

8

2

5

7 1

2

3

4

1

2

8

0 1

3

5

node 1: node 2: node 3: node 4: node 5: node 6: node 7: node 8:

6,8,3 5 7,6,8 2,5,7 4,2,3,1 2,1,8 None 1,5,3

Out-edge Lists

Figure 3: This is one possible ergm representation of the out-edges for the network of Figure 2.
The network would be redundantly represented as a set of in-edge trees.

in Figure 2 is represented by its own tree, indexed by the tail node, where each numbered
circular dot represents the head in a (tail,head) network edge. Even the root of the tree is
a head node, so in case the tail has no edges, the root of the (empty) tree would have label
0. Though the depiction of the trees in Figure 3 has its own network-like appearance, this
structure has nothing to do with the original network; each tree is merely an efficient storage
tool for a list of node labels. In the trees, each node may have up to two “child” nodes, shown
below it, one to the left and one to the right. The rule for constructing the tree, which enables
the fast lookup, insertion, and deletion operations of a binary tree, is that the left child’s label
(if that child exists) must always be smaller than its parent’s label while the right child’s label
must always be larger. The designation of the root node’s value in each tree is completely
arbitrary, as a particular list of node labels might be used to populate a tree in any order
desired. To avoid the worst-case performance that can result from a list of values being passed
in strictly increasing or decreasing order, each node’s edgelist is randomly permuted before it
is stored as a tree.

The binary tree routines, all written in the C language, are contained in the src/edgetree.c
file in the ergm.userterms package. The ergm package includes the same code. These routines
may be used to initialize or destroy a network object, to manipulate that object by adding or
deleting edges, and to query that object to ascertain the presence of an edge. The C language

David R. Hunter, Steven M. Goodreau, Mark S. Handcock 7

functions NetworkInitialize and NetworkDestroy are used internally by the ergm package
to create a network object and destroy it when it is no longer needed by the C code. These
two functions are not generally called by the user, though interested users may wish to look
at them. Also, the definition of the Network type, in the src/edgetree.h file, reveals that
a network keeps updated lists of every node’s in- and out-degree in addition to the actual
edges. A user may exploit these statistics when writing code for various change statistics as
described in Section 7.

5. Acquiring and setting up the necessary tools

Coding new change statistics for ergm requires two steps that users might not have previously
encountered: building an R package from source, and writing and compiling C code. These
steps requires additional tools beyond those needed by most R end users; in this section we
walk through the process of acquiring and setting up such tools in Windows or UNIX-like
operating systems (e.g., MacOS and Linux), with the emphasis on Windows. Those users
who are already familiar with this task may wish to skip ahead to Section 6.

Windows users require a bit of preliminary setup for the building-from-source step, which
we describe in the separate Section 5.1. Users of MacOS X must install the gcc compiler
for C, which is found on the Xcode Tools CD or DVD that accompanies the MacOS system.
Alternatively, the Xcode Tools may be found in the /Applications/Installers directory
or downloaded from the web from http://developer.apple.com/tools/xcode/. This is
explained in the “Installation of source packages” section of the R MacOS X FAQ that may be
reached from http://cran.r-project.org/faqs.html. Users of UNIX-like systems must
merely ensure that the gcc compiler is available, details of which may be found at gcc.gnu.
org.

5.1. Setup for Windows

Windows users will need three tools: Perl, CLT and MinGW.1 The easiest way to ac-
quire all three is through the website “Building R for Windows” (currently at http://www.
murdoch-sutherland.com/Rtools), which also provides an excellent overview of the process
described in this section. Simply download the latest version of Rtools.exe from this web-
site and install. While doing so, be sure to check “Edit the system PATH”; allow it to edit
your path so that c:\Program Files\Rtools\bin, c:\Program Files\Rtools\perl\bin,
and c:\Program Files\Rtools\MinGW\bin are up front. After these three entries, insert an
additional entry containing the bin directory of your current R installation. This is typically
C:\Program Files\R\R-X\bin, where X is your R version number.

5.2. Obtaining source code for the ergm.userterms package

When one is planning only to use an R contributed package as-is and not edit the source
code, one need only install and load it using the install.package and library commands,
respectively. When wishes to edit the content, one must download the source code, and then

1This list of necessary tools is current as of this writing. The authoritative and up-to-date source for the set
of tools necessary is Appendix D (“The Windows Toolset”) of the R Installation and Administration manual
(http://cran.r-project.org/doc/manuals/R-admin.html#The-Windows-toolset)

http://developer.apple.com/tools/xcode/
http://cran.r-project.org/faqs.html
gcc.gnu.org
gcc.gnu.org
http://www.murdoch-sutherland.com/Rtools
http://www.murdoch-sutherland.com/Rtools
http://cran.r-project.org/doc/manuals/R-admin.html#The-Windows-toolset

8 ergm.userterms: A Template for Extending statnet

build from there. For all operating systems, one should:

1. Go to www.r-project.org, click on the CRAN link in the left-hand margin, select a
nearby mirror site, and finally click on the “contributed extension packages” link.

2. Select ergm.userterms.

3. Select the source code file (with extension tar.gz) next to “Package Source”.

4. Save this file in R-working-directory\src\library. Be very careful not to place it
in R-working-directory\library. In fact, you can technically place the file anywhere
on your machine, as long as it is not in R-working-directory\library. In Windows,
your R working directory will typically be C:\Program Files\R\R-X, where X is your
R version number).

5. Untar the file by opening a DOS window in Windows (Start>Run and type cmd) or a
terminal window in UNIX-like systems, navigating to the folder where you just saved the
source code file using cd, and typing tar xfz name.of.sourcecode.file. A directory
named ergm.userterms will be extracted in your current directory.

5.3. Building ergm.userterms

For Windows, in a DOS window, go to the same directory where you saved the ergm.userterms
source file in the previous step and type:

RCMD INSTALL ergm.userterms

For UNIX-like systems, use the same syntax but split RCMD into two words: R CMD. You can
now load the basic ergm.userterms package within R with the library(ergm.userterms)
command.

In Sections 6 and 7 we will describe the process of editing the R and C code to make new
statistics. Any time you have made changes that you want to see incorporated into the version
of ergm.userterms that you are using in R, simply repeat the instructions here in section 5.3.

6. Writing change statistics using ergm.userterms: The R side

A typical call to the ergm function might look like this:

R> ergm (network ~ edges + degree(1:3) + absdiff("age"))

We refer to edges, degree, and absdiff as terms. In the ergm package, there are roughly 70
terms available as of this writing. Documentation for these terms is in Morris et al. (2008)
and is also available by typing help("ergm-terms"). Terms may take arguments, such as the
vector 1:3 or the nodal covariate name "age" above. Implementing a new term that can be
used by the ergm function involves adding two functions: One written in R and one written
in C. This section describes the former, while Section 7 describes the latter.

The R function, whose purpose is to initialize the internal representation of the model term
just after a call to the ergm function, must be called InitErgmTerm.termname. It should have

www.r-project.org

David R. Hunter, Steven M. Goodreau, Mark S. Handcock 9

a specified format and should perform certain tasks. We will examine these by considering
the absdiff term from the ergm package:

InitErgmTerm.absdiff <- function(nw, arglist, ...) {

Check the network and arguments to make sure they are appropriate.

a <- check.ErgmTerm(nw, arglist, directed=NULL, bipartite=NULL,

varnames = c("attrname","pow"),

vartypes = c("character","numeric"),

defaultvalues = list(NULL,1),

required = c(TRUE,FALSE))

Process the arguments

nodecov <- get.node.attr(nw, a$attrname)

Construct the list to return

list(name="absdiff",

coef.names = paste(paste("absdiff", if(a$pow != 1) a$pow else "",

sep = ""), a$attrname, sep = "."),

pkgname = "ergm.userterms",

inputs = c(a$pow, nodecov),

dependence = FALSE)

}

The absdiff term has one required argument, called attrname, and one optional argument,
called pow. This term will add to the model a network statistic equal to∑

i,j

yij |Xi −Xj |p,

where Xi and Xj are the values of the nodal covariate named attrname (and assumed already
to be part of the network object specified in the ergm function call) and p is the value of pow.
By default, pow is one.

We now examine the InitErgmTerm.absdiff function line by line:

Line 1: Any InitErgmTerm function must take three arguments: nw, arglist, and The
first of these will be the network object, from which any necessary information may be
extracted. The second, arglist, will be the list of arguments passed by the user of the
term, if any. Finally, the ellipsis (“...”) is necessary primarily for backward compati-
bility, as some existing InitErgmTerm arguments may be passed additional arguments,
and without the ellipsis, this could generate an error message.

Line 3: The call to the check.ErgmTerm function should be performed by every InitErgmTerm
function, and its result is typically given the name a. The first two arguments to
check.ErgmTerm are the network and argument list; these should not be modified.
However, the directed and bipartite arguments may be set to TRUE or FALSE if the
term should only be applicable to the specified types of networks. (An error results if a
term is not appropriate, for example, if a directed network is used in a call with a term for
which directed=FALSE.) Leaving directed=NULL and bipartite=NULL indicates that
the term may be used on either directed or undirected, either bipartite or unipartite
networks. In short, the values of FALSE, TRUE, and NULL for the argument directed

10 ergm.userterms: A Template for Extending statnet

indicate that the term can be used on only undirected, only directed, or both types of
networks, respectively. Likewise for bipartite.

Line 4: Each argument to a term (whether required or optional) has a name, and these names
are specified by varnames. The check.ErgmTerm function will return a list in which
each item is named corresponding to its varname. In the example, the list will have
items named attrname and pow. In the case of a term with no arguments (such as
edges), use varnames=NULL.

Line 5: In this example, the argument attrname is of type character and the argument pow is
of type numeric.

Lines 6 and 7: The attrname argument is required; i.e., an error results if the user does not specify this
argument. Therefore, the default NULL is irrelevant. However, since pow is not required,
its value will be set to the default of 1 whenever the user does not supply it.

Line 9: This line extracts a vector of nodal covariate values from the network object. The name
of this covariate was passed in by the user and is the character string called attrname
in the list returned by the check.ErgmTerm function.

Line 11: Each InitErgmTerm function should return, upon exit, a list whose items are all named.
Some names are required, and some are optional. A full list of these is given in the
header of the InitErgmTerm.users.R file in the R subdirectory of the ergm.userterms
package. The first named item shown here, name, is required. It gives the name of the
C function (when “d_” is prepended) that will calculate the change statistic(s) for this
term; see Section 7 for details. In this case, we know that the function d_absdiff will
be responsible for this calculation.

Line 12: The coef.names is another required element in the output list (the only one other than
name). It should give a vector of names for the statistic(s) that are to be added to
the model by this term. The present example adds only a single statistic whose name
contains both absdiff and the name of the nodal attribute, along with the exponent
pow if it is not one. The length of the vector of statistic names determines how many
statistics ergm will expect the term to add to the model.

Line 14: The pkgname is the name of the R package in which the C function that calculates
change statistics can be found. By default, this is ergm, but for new terms defined in
the ergm.userterms package the default must be overridden.

Line 15: The inputs vector includes any information from the network object (other than the
values of the ties) that must be made available to the C function that calculates the
change statistic. Because absdiff relies on the values of a nodal covariate, these values
must be included in this case. In addition, the value of the pow exponent must be
available. All these values are concatenated into a single numeric vector and given the
name inputs in the list. Although the order in which they are included is arbitrary, the
single values and shorter vectors are typically placed before the nodal attribute vector
in order to make the indexing easier when they are retrieved within the C.

Line 16: The dependence=FALSE means that this term does not, by itself, result in an ERGM
in which the dyads are dependent. If all terms in a model have dependence=FALSE set,

David R. Hunter, Steven M. Goodreau, Mark S. Handcock 11

then the entire model is a dyadic independence model. By default, if dependence is
omitted then it is assumed TRUE.

One additional item that can go in the output list is emptynwstats, which is a vector of the
same length as the number of statistics generated by the term being added. This vector gives
the value of the network statistic measured on a network with no edges. The reason for this is
that the empty network gives a point of reference for calculating global values of the statistics
using C code that only calculates change statistics. By default, emptynwstats is a vector of
zeros, so it is only necessary to include this item for cases where the empty network does not
have the value zero for some of the statistics. For instance, the isolates term counts the
number of zero-degree nodes in the network, and this statistic equals n when the network is
empty; thus, the InitErgmTerm.isolates function ends with the following lines:

list(name="isolates",

coef.names = "isolates",

emptynwstats = network.size(nw))

Other items that can go into the output list are described in the comments at the top
of the InitErgmTerm.users.R file in the R subdirectory of the ergm.userterms package.
Those not described above deal with curved exponential family models, which we do not
discuss here; nonetheless, the reader is encouraged to read the comments at the top of the
InitErgmTerm.users.R file.

Any InitErgmTerm function will be automatically included in the ergm.userterms package
if it is saved in a file ending with the extension .R in the R subdirectory. For instance,
a user may simply use a text editor to add new InitErgmTerm functions to the existing
InitErgmTerm.users.R file; these functions will then automatically be incorporated into the
ergm.userterms package. By analogy, the InitErgmTerm.absdiff function examined here is
found in the InitErgmTerm.R file in the R subdirectory in the ergm package; indeed, that file
contains a wealth of other examples that may be examined, copied, and modified by users
interested in producing their own model terms.

7. Writing change statistics using ergm.userterms: The C side

As explained at the beginning of Section 6, adding a term to be used with the ergm package
requires two different functions: An InitErgmTerm function written in R and a change statistic
function written in C. This section discusses the second of these, which should be placed in
a file with the extension .c in the src directory, just as the examples in the ergm.userterms
package are found in the changestats.c file. Any .c file placed in the src subdirectory
in the ergm.userterms package will automatically be compiled when the package is installed
from source. Just be sure to include the line:

#include "changestat.h"

at the beginning of the file.

Readers familiar with writing C code may at first not recognize the example d_absdiff
function shown below. This is because it uses numerous macros, named using all capitals in
the changestat.h file in the src directory, that are designed to make writing change statistic

12 ergm.userterms: A Template for Extending statnet

functions easier. For instance, an author of the absdiff term need not worry about the
arguments that will be required of the d_absdiff function; these are automatically included
by typing CHANGESTAT_FN(d_absdiff). Here, CHANGESTAT_FN is a macro defined to create
a new function whose name is supplied by the user and whose arguments agree exactly with
the arguments that will automatically be passed to it by the ergm package.

Here, then, is the code for the d_absdiff statistic:

CHANGESTAT_FN(d_absdiff) {

double change, p; Vertex t, h; int i;

ZERO_ALL_CHANGESTATS(i);

FOR_EACH_TOGGLE(i) {

t = TAIL(i); h = HEAD(i);

p = INPUT_PARAM[0];

if(p==1.0){

change = fabs(INPUT_PARAM[t] - INPUT_PARAM[h]);

}else{

change = pow(fabs(INPUT_PARAM[t] - INPUT_PARAM[h]), p);

}

CHANGE_STAT[0] += IS_OUTEDGE(t,h) ? -change : change;

TOGGLE_IF_MORE_TO_COME(i); /* Needed in case of multiple toggles */

}

UNDO_PREVIOUS_TOGGLES(i); /* Needed on exit in case of multiple toggles */

}

Following the first line, various variables are declared. The Vertex type is a safe way to
declare any integer variables that may be as large as the total number of vertices in the
network; there is also a similar Edge type. After the variable declarations, essentially every
change statistic function has the following form:

ZERO_ALL_CHANGESTATS(i);

FOR_EACH_TOGGLE(i) {

/* body of function */

TOGGLE_IF_MORE_TO_COME(i); /* Needed in case of multiple toggles */

}

UNDO_PREVIOUS_TOGGLES(i); /* Needed on exit in case of multiple toggles */

The body of the change statistic function has the goal of updating the CHANGE_STAT vector,
which has entries CHANGE_STAT[0], . . . , CHANGE_STAT[N_CHANGE_STATS-1], as appropriate
for the ith toggle specified by TAIL(i), HEAD(i). It is this portion of the function that should
be changed according to the requirements of the model statistic(s) specified by the term in
question.

Here, we briefly describe the logic of the code, consisting completely of pre-defined macros,
surrounding the body of the change statistic function. However, it is not actually necessary to
understand this logic thoroughly in order to write change statistics functions; simply copy the
syntax above. The Metropolis-Hastings proposal could possibly involve multiple edge toggles,
and the job of the change statistic function is to update the change statistics as appropriate
for the entire set of toggles. Since some of the macros, such as ZERO_ALL_CHANGESTATS and

David R. Hunter, Steven M. Goodreau, Mark S. Handcock 13

FOR_EACH_TOGGLE, require the use of a variable (such as i in the code above), it is important
that this variable be declared as type int prior to its first use.

Inside the FOR_EACH_TOGGLE(i) loop, the value of i counts from 0 to ntoggles-1, where
ntoggles is the total number of toggles being considered. In each case, the proposed toggle—
from edge to non-edge or vice-versa, depending on the current state—is to the ordered node
pair (TAIL(i), HEAD(i)). Even when the network is considered undirected, every edge is
stored as a directed edge from the “tail” node to the “head” node. After initially zeroing all of
the change statistics using the ZERO_ALL_CHANGESTATS macro, the function should, for each
edge toggle proposed, calculate how the toggle would change the network statistics of the
network. This is a subtle difference here as compared to the δ(y)th function of Equation (5),
where the change is always calculated as the edge (t, h) changes from 0 to 1. In a change
statistic function in ergm, however, the sign of the change will depend on whether the proposed
toggle is to an existing edge or not.

We may see how this is done by examining the body of the d_absdiff function below.
Remember that t and h are variables of type Vertex (which is essentially the same as type
int), whereas p and change are of type double:

t = TAIL(i); h = HEAD(i);

p = INPUT_PARAM[0];

if(p==1.0){

change = fabs(INPUT_PARAM[t] - INPUT_PARAM[h]);

}else{

change = pow(fabs(INPUT_PARAM[t] - INPUT_PARAM[h]), p);

}

CHANGE_STAT[0] += IS_OUTEDGE(t,h) ? -change : change;

The first step in the body of our change statistic function is to read the value of the exponent,
determine whether or not it equals one, and act accordingly. When the inputs vector was
added to the output list of the InitErgmTerm.absdiff function, it consisted of the exponent
followed by the values of some nodal attribute, one for each of the n nodes. All of these
inputs may be accessed now as the elements of the INPUT_PARAMS vector, which has entries
INPUT_PARAMS[0] through INPUT_PARAMS[N_INPUT_PARAMS-1]. Thus, the exponent may be
read as INPUT_PARAM[0], which is why the code above sets p to this value. It then calculates
the absolute value of the difference of the nodal attributes for the nodes numbered t and h,
for these are the nodes involved in the proposed toggle. If necessary (i.e., if p is not one),
the absolute difference is raised to the appropriate power. The change statistic—there is
only one change statistic, CHANGE_STAT[0], in this case—will then be equal to plus or minus
the exponentiated absolute difference, depending on the value returned by the IS_OUTEDGE
macro. In Section 4, we explained that each node’s full list of in-edges and out-edges is
constantly updated. Therefore, each edge is listed in two places, so that if the edge (t,h)
is currently in the network, both IS_OUTEDGE(t,h) and IS_INEDGE(h,t) would return one
rather than zero.2 In this case, it suffices to check whether (t,h) is an outedge: If it is,
then the toggle would remove the edge and so we should add -change to CHANGE_STAT[0];
otherwise, we should add change. Since each example in this article involves a term for which

2This is not the same as saying that both IS_OUTEDGE(t,h) and IS_INEDGE(t,h) would return one rather
than zero. This is particularly true for undirected networks, where the edge t←→h is always stored as t−→h
where t < h, so IS_INEDGE(t,h) would never return one when t < h.

14 ergm.userterms: A Template for Extending statnet

N_CHANGE_STATS is equal to one, the reader might benefit from examining the C code for a
term in the ergm package that can involve more than one change statistic, such as degree or
nodematch.

In some change statistic functions, it is necessary to look at all of the current neighbors of
a particular node. The macros STEP_THROUGH_OUTEDGES and STEP_THROUGH_INEDGES can
help with this. Each of these macros takes three arguments; suppose we call them (a, e, v).
The first argument (which should be declared to of type Vertex) is the node whose in- or
out-edges we wish to examine. The second argument (of type Edge) is the looping variable
that steps through each of the neighbors of a in turn. Finally, the third variable (of type
Vertex) is set by the macro to equal the number of the node corresponding to the edge. It is
important to remember that for undirected networks, each edge is only stored as (t, h), where
t < h. Therefore, to step through all of the edges of node t in an undirected network, it is
necessary to step through all of its in- and out-edges by using STEP_THROUGH_OUTEDGES(t,
e, v) followed by STEP_THROUGH_INEDGES(t, e, v). It is possible to observe examples of
these macros in the changestats.c file in the ergm package.

Other macros are described briefly in the file changestat.h in the src directory. Again,
many examples of the use of these macros are available in the changestats.c file.

8. Worked example: a term for “minimum degree”

Degree distributions are of interest in many social network applications, and the ergm package
includes a variety of terms to model the propensities for nodes to display different degrees or
degree distributions. The most straightforward is the degree term, which takes an argument
comprising a vector of non-negative integers. The term returns a statistic for each element
in the vector, representing the number of nodes whose degree equals exactly that element.
The gwd term provides one parsimonious method for capturing certain features of the degree
distribution; however, one might reasonably be interested in specifying other aspects, such as
the number of nodes of at least degree n, or of no more than degree n. The former may be
useful, for instance, in testing the hypothesis that there is some social norm against having
more than one alter, but that once one has two alters, there is no added propensity for or
against acquiring additional ones. In this case, we would want to know whether we observe
fewer nodes with degree of 2+ in our network than we would otherwise expect, and whether
this model does a good job of fitting our data. Let us define a new ergm term called mindegree
to allow us to do this.

First, to the R side, where we must add a function called InitErgmTerm.mindegree. We can
do so either in the existing InitErgmTerm.users.R file, or in another file with extension .R
that we create in the R directory of the ergm.userterms source code. To begin, we simply
define the function and its arguments, remembering the standard set of arguments that we
learned in Section 6 all such functions must have:

InitErgmTerm.mindegree <- function(nw, arglist, ...) {

More lines coming....

}

Next, we must add the call to check.ErgmTerm, where we may specify whether we want this
statistic to be usable for undirected networks, directed networks, or both, and also whether

David R. Hunter, Steven M. Goodreau, Mark S. Handcock 15

it should be usable for bipartite networks. The existing ergm term degree is limited to
undirected networks, with idegree and odegree used to capture the two types of degree (in-
degree and out-degree, respectively) for directed networks. Thus, it seems most reasonable for
us to limit mindegree to undirected networks as well; users interested in analogous statistics
for directed networks might choose to code up statistics called, for example, min.idegree
and min.odegree. Likewise, bipartite networks will typically require separate degree terms
for each of the two modes of the network. Filling in our progress so far yields:

InitErgmTerm.mindegree <- function(nw, arglist, ...) {

a <- check.ErgmTerm(nw, arglist, directed=FALSE, bipartite=FALSE,

More args to check.ErgmTerm coming....

More lines coming....

}

Next we must decide on the arguments for mindegree. Certainly we must include at least
one argument, the minimum degree. The degree term also allows the user to specify, via the
by argument, a nodal attribute on which ego and alter must match in order to be counted.
For the sake of demonstration, we shall follow suit. The degree term also has a homophily
argument, whose value is either TRUE or FALSE, and when it is FALSE the meaning of the by
argument changes. We will not duplicate the homophily option in mindegree, which is to
say we will fix it as TRUE. Note also that the degree term allows users to pass a vector of
degrees, not just a single one. In this case, it seems less likely that a user would be interested
in multiple mindegrees than in multiple degrees; we will leave this feature off, and require the
first argument to be a single non-negative integer, rather than a vector of arbitrary length.
Note that users who are interested in having multiple minimum degree statistics in a single
model still have the option of including multiple mindegree terms in their formula.

This leaves us with two arguments (let’s call them “mindeg” and “by”). These are of types
numeric and character, respectively; required and optional, respectively; and should probably
have no default values:

InitErgmTerm.mindegree <- function(nw, arglist, ...) {

a <- check.ErgmTerm(nw, arglist, directed=FALSE, bipartite=FALSE,

varnames = c("mindeg", "by"),

vartypes = c("numeric", "character"),

required = c(TRUE, FALSE),

defaultvalues = list(NULL, NULL))

More lines coming....

}

Our remaining task is to generate the list to be returned by the function, including any
processing of arguments required for that list. In our case, the values of some of our entries will
vary depending on whether we are using the homogeneous version of the statistic (i.e. without
a nodal attribute) or the attribute-specific version. One of these is the vector of attribute
values, which is commonly assigned to a vector named “nodecov” (for “nodal covariate”, a
synonym for nodal attribute), a convention we shall follow here. If there is no attribute, then
nodecov will need to be assigned some value to indicate that. Our C coding task will also be
made easier if we pass a flag (which we will call attrflag) that tells the C whether or not to

16 ergm.userterms: A Template for Extending statnet

expect nodal attribute values. Looking over the various items that need to be included in the
list returned by the function, we see one other that should vary between the homogeneous
and attribute-specific versions: the names of the statistic and coefficient, assigned to variable
coef.names. If we follow the example of the degree term, for the homogeneous version we
will want these to be named mindegreex, where x is the degree cutoff for the statistic; with
an attribute, they should be named mindegree.attrnamex, where attrname is the name of
the attribute in the by argument. For example, if the degree cutoff is 2, we want the terms
to be named mindegree2 and mindegree.attrname2, respectively. Determining the values
of attrflag, nodecov, and coef.names thus all begin with the same condition, so we can
combine them in a single if statement:

if (is.null(a$by)) {

attrflag <- 0

nodecov <- NULL

coef.names <- paste("mindegree", a$mindeg, sep=""),

} else {

attrflag <- 1

nodecov <- get.node.attr(nw, a$by)

coef.names <- paste("mindegree.", aby, amindeg, sep=""),

u <- sort(unique(nodecov))

nodecov <- match(nodecov,u)

}

For the attribute-matching case, the object nodecov contains a vector of the values of that
attribute for all the nodes following the call to get.node.attr. Within the statnet suite,
nodal attributes can be either numeric or character-based. It will much easier to write R code
converting a character-based attribute into a numeric than it will be to write C code that can
handle either a numeric or character vector. This is because it doesn’t matter what the actual
values of the attribute are for individual nodes; all that affects our statistic is whether any
two nodes have the same value or not. We can simply determine all of the unique values for
the attribute in our network, assign each a numeric value (based on its alphabetic position,
typically), and then replace the nodes’ character-based attribute values with the new numeric
ranks. In R, one example of code to do this is:

u <- sort(unique(nodecov))

nodecov <- match(nodecov,u)

which has the added benefit of handling an attribute that is passed in as numeric as well.

Some elements of the list to be returned by the function are straightforward (names, pkgname,
dependence). We have already addressed coef.names. In the inputs vector, we combine
everything that the C code will need to know the value of: mindeg as well as the attrflag
and nodecov objects we made in the previous step. For an empty network, the value of the
mindegree statistic depends on what our minimum degree cut-off is; if the cutoff is 0, then
the statistic is equal to the number of nodes in the network; but if the cut-off is any positive
integer, then the statistic is 0. Thus, our final returned list is going to be:

list(name = "mindegree",

coef.names = coef.names,

David R. Hunter, Steven M. Goodreau, Mark S. Handcock 17

pkgname = "ergm.userterms",

inputs = c(attrflag, a$mindeg, nodecov),

dependence = TRUE,

emptynwstats = (a$mindeg == 0) * network.size(nw)

)

Note that the dependence argument is not strictly needed, since the default is TRUE, but is
included for the sake of completeness.
One additional task we may wish to add is some checks on the arguments that the user has
passed. For instance, since the first argument for mindegree differs from that of degree
(constrained to be a single numeric in the first case; allowed to be a vector in the latter), we
may want to check that the user has followed whatever documentation we will write for the
statistic, rather than assuming it is exactly parallel to degree:

if(length(a$mindeg) > 1)

stop("The argument mindeg to mindegree expected a vector of length ",

"1, but received a vector of length ",length(a$mindeg))

Putting this all together gives us our complete R code:

InitErgmTerm.mindegree <- function(nw, arglist, ...) {

a <- check.ErgmTerm(nw, arglist, directed=FALSE, bipartite=FALSE,

varnames = c("mindeg", "by"),

vartypes = c("numeric", "character"),

required = c(TRUE, FALSE),

defaultvalues = list(NULL, NULL))

if(length(a$mindeg) > 1)

stop("The argument mindeg to mindegree expected a vector of length ",

"1, but received a vector of length ",length(a$mindeg))

if (is.null(a$by)) {

attrflag <- 0

nodecov <- NULL

coef.names <- paste("mindegree", a$mindeg, sep="")

} else {

attrflag <- 1

nodecov <- get.node.attr(nw, a$by)

coef.names <- paste("mindegree.", aby, amindeg, sep="")

u <- sort(unique(nodecov))

nodecov <- match(nodecov,u)

}

list(name = "mindegree",

coef.names = coef.names,

pkgname = "ergm.userterms",

inputs = c(attrflag, a$mindeg, nodecov),

dependence = TRUE,

emptynwstats = (a$mindeg == 0) * network.size(nw)

)

}

18 ergm.userterms: A Template for Extending statnet

Let us now turn to the C. Here again, we can choose to add our code to the existing file
changestats.c in the src directory of the ergm.userterms source code, or create a new file
(with extension .c) to place in the same directory. If we do the latter, we must be sure to
include the line #include "changestat.h" at the top of the file.

Following Section 7, we know that the basic structure of our C code must be:

CHANGESTAT_FN(d_mindegree) {

/* declarations to go here */

ZERO_ALL_CHANGESTATS(i);

FOR_EACH_TOGGLE(i) {

/* body of function */

TOGGLE_IF_MORE_TO_COME(i); /* Needed in case of multiple toggles */

}

UNDO_PREVIOUS_TOGGLES(i); /* Needed on exit in case of multiple toggles */

}

We will need to conduct a different analysis depending on whether attrflag is 0 or 1, so we
should first check this value. Remember that in the R code we passed the arguments to the
C (via the inputs element) in the order: attrflag, mindeg, nodecov. Remember also that,
whereas R indexes its vectors starting at position 1, C does so starting at 0. Thus:

attrflag = INPUT_PARAM[0];

if(attrflag==0){

/* homogeneous version */

}else{

/* nodal attribute-specific version */

}

The homogeneous case (attrflag=0) is easier, so let us take this first. If we were to toggle
yij , how might it change the number of nodes in the network with at least mindeg ties? If
yij = 0 (that is, a tie currently does not exist), then we will be adding a tie. In that case, if
node i currently has exactly mindeg−1 ties, adding tie yij will cause i to have mindeg ties,
and the statistic increases by 1; likewise for node j. If yij = 1 (i.e., a tie currently exists), then
toggling it removes the tie; in this case, if node i currently has exactly mindeg ties, removing
yij drops them below our threshold, and our statistic decreases by one; likewise, again, for
j. Looking in the description of the macros in changestat.h, we see that there are macros
called IN_DEG and OUT_DEG to check for the in-degree and out-degree of a node; since we are
dealing with undirected networks only, which (as mentioned earlier) are stored as directed
networks, we must check both. Thus:

CHANGESTAT_FN(d_mindegree) {

/* declarations to go here */

ZERO_ALL_CHANGESTATS(i);

FOR_EACH_TOGGLE(i) {

t = TAIL(i); h = HEAD(i);

attrflag = INPUT_PARAM[0];

mindeg = INPUT_PARAM[1];

David R. Hunter, Steven M. Goodreau, Mark S. Handcock 19

if(attrflag==0){

tdeg = IN_DEG[t]+OUT_DEG[t];

hdeg = IN_DEG[h]+OUT_DEG[h];

CHANGE_STAT[0] += IS_OUTEDGE(t,h) ?

- (tdeg==mindeg) - (hdeg==mindeg) :

(tdeg==mindeg-1) + (hdeg==mindeg-1);

}else{

/* nodal attribute-specific version */

}

TOGGLE_IF_MORE_TO_COME(i); /* Needed in case of multiple toggles */

}

UNDO_PREVIOUS_TOGGLES(i); /* Needed on exit in case of multiple toggles */

}

For the version with the nodal attribute, we need to read the values of that attribute for
both i and j and then for all of their alters. Since we are only considering those ties in
which both the actor and their alter have the same attribute value, we must first consider
whether i and j have the same value. If they do not, then toggling their tie either on or
off will not change our statistic. If they do have the same attribute value, then we need to
consider the number of ties each has to alters with the same attribute value. We then have
the same conditions for changing the statistic, depending on whether the tie is being toggled
on or toggled off. In order to determine the nodal attribute for each of the alters, we can
use two macros found in changestat.h and described in Section 7: STEP_THROUGH_OUTEDGES
and STEP_THROUGH_INEDGES. The new code, to go inside the else statement, is thus:

t_nodecov = INPUT_PARAM[t+1];

h_nodecov = INPUT_PARAM[h+1];

if (t_nodecov == h_nodecov) {

hdeg = 0;

STEP_THROUGH_OUTEDGES(h, e, node3) { /* step through outedges of head */

if(INPUT_PARAM[node3+1]==h_nodecov){++hdeg;}

}

STEP_THROUGH_INEDGES(h, e, node3) { /* step through inedges of head */

if(INPUT_PARAM[node3+1]==h_nodecov){++hdeg;}

}

tdeg = 0;

STEP_THROUGH_OUTEDGES(t, e, node3) { /* step through outedges of tail */

if(INPUT_PARAM[node3+1]==t_nodecov){++tdeg;}

}

STEP_THROUGH_INEDGES(t, e, node3) { /* step through inedges of tail */

if(INPUT_PARAM[node3+1]==t_nodecov){++tdeg;}

}

CHANGE_STAT[0] += IS_OUTEDGE(t,h) ?

- (tdeg==mindeg) - (hdeg==mindeg) :

(tdeg==mindeg-1) + (hdeg==mindeg-1);

}else{

CHANGE_STAT[0] = 0;

20 ergm.userterms: A Template for Extending statnet

}

The +1 in each of the INPUT_PARAM indices is because the input vector is indexed as 0=attrflag;
1=mindeg; 2 to popsize+1 = nodal attribute value for nodes 1 to popsize.

Declaring all of the variables that we ended up using, and putting it all together, yields:

CHANGESTAT_FN(d_mindegree) {

Vertex t, h, node3;

int i, mindeg, hdeg, tdeg;

Edge e;

int attrflag;

double t_nodecov, h_nodecov;

ZERO_ALL_CHANGESTATS(i);

FOR_EACH_TOGGLE(i) {

t = TAIL(i); h = HEAD(i);

attrflag = INPUT_PARAM[0];

mindeg = INPUT_PARAM[1];

if(attrflag==0){

hdeg = IN_DEG[h]+OUT_DEG[h];

tdeg = IN_DEG[t]+OUT_DEG[t];

CHANGE_STAT[0] += IS_OUTEDGE(t,h) ?

- (tdeg==mindeg) - (hdeg==mindeg) :

(tdeg==mindeg-1) + (hdeg==mindeg-1);

}else{

t_nodecov = INPUT_PARAM[t+1];

h_nodecov = INPUT_PARAM[h+1];

if (h_nodecov == t_nodecov) {

hdeg = 0;

STEP_THROUGH_OUTEDGES(h, e, node3) { /* step through outedges of head */

if(INPUT_PARAM[node3+1]==h_nodecov){++hdeg;}

}

STEP_THROUGH_INEDGES(h, e, node3) { /* step through inedges of head */

if(INPUT_PARAM[node3+1]==h_nodecov){++hdeg;}

}

tdeg = 0;

STEP_THROUGH_OUTEDGES(t, e, node3) { /* step through outedges of tail */

if(INPUT_PARAM[node3+1]==t_nodecov){++tdeg;}

}

STEP_THROUGH_INEDGES(t, e, node3) { /* step through inedges of tail */

if(INPUT_PARAM[node3+1]==t_nodecov){++tdeg;}

}

CHANGE_STAT[0] += IS_OUTEDGE(t,h) ?

- (tdeg==mindeg) - (hdeg==mindeg) :

(tdeg==mindeg-1) + (hdeg==mindeg-1);

}else{

David R. Hunter, Steven M. Goodreau, Mark S. Handcock 21

CHANGE_STAT[0] = 0;

}

}

TOGGLE_IF_MORE_TO_COME(i); /* Needed in case of multiple toggles */

}

UNDO_PREVIOUS_TOGGLES(i); /* Needed on exit in case of multiple toggles */

}

Once both the C and R files are completed, one need simply rebuild the package from source,
following the instructions in Section 5.3 and the new terms should appear.
We find that one useful way to test code for new statistics is by generating a wide variety of
networks for which one knows the correct values of the statistic, and then using the command:

summary(network ~ new.change.stat)

to ensure that the code is calculating the correct values.

9. Discussion

This paper describes how to extend the exponential-family random graph modeling capabili-
ties of the statnet suite of packages by explaining how users may use and modify the template
package ergm.userterms to develop custom terms that can be “plugged in” to statnet. These
terms can then use the full capabilities of the statnet suite of packages. These terms will
be computed at the C level and operate at native speeds. In addition, they will be able to
use the parallel capabilities of statnet without further changes. Finally, users may make the
new terms available to the statnet community, hence extending the analysis and modeling
capabilities of statnet.
Additional examples abound within the changestats.c file in the source code; collectively
these demonstrate the syntax for the other macros listed in changestat.h and should answer
most other questions for users. When relying on existing network statistics code as examples,
it is important to remember the caveat that versions of ergm prior to 2.3 used different
methods; these are still allowed for backward compatibility, but modifying individual snippets
of code from them and interacting them with newer code may cause problems.
The fact that the ergm.userterms package comes with a number of macros to make the coding
of change statistics easier does not preclude users from writing their own macros to further
streamline coding. For instance, the lines of code that currently must appear at the beginning
and end of each statistic’s C code could be incorporated into a macro. Macros of this type
will likely appear in a future version of the ergm.userterms package, although their use will
always remain optional.
Additional questions may be posted to the listserv for the statnet users’ group, which readers
are encouraged to join (Handcock, Hunter, Butts, Goodreau, Krivitsky, and Morris 2003b).

Acknowledgments

We would like to thank the statnet team, and in particular, Martina Morris, Carter Butts,
Pavel Krivitsky, and Ayn Leslie-Cook.

22 ergm.userterms: A Template for Extending statnet

References

Brown LD (1986). Fundamentals of Statistical Exponential Families. Institute of Mathemat-
ical Statistics, Hayward, Calif.

Butts CT (2008). “network: A Package for Managing Relational Data in R.” Journal of
Statistical Software, 24(2). URL http://www.jstatsoft.org/v24/i02/.

Cormen TH, Leiserson CE, Rivest RL (1990). Introduction to Algorithms. Massachusetts
Institute of Technology.

Frank O, Strauss D (1986). “Markov Graphs.” Journal of the American Statistical Association,
81(395), 832–842.

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008). “A statnet Tutorial.”
Journal of Statistical Software, 24(9). URL http://www.jstatsoft.org/v24/i09/.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Krivitsky PN, Morris M (2003a). ergm:
A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. Statnet
Project http://statnetproject.org/, Seattle, WA. R package version 2.0, URL http:
//CRAN.R-project.org/package=ergm.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Krivitsky PN, Morris M (2003b).
Users Group for the statnet Package Statistical Modeling of Network Data. Stat-
net Project http://statnetproject.org/, Seattle, WA. URL http://statnet.org/
statnet_users_group.shtml.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2008). “statnet: Software
Tools for the Representation, Visualization, Analysis and Simulation of Network Data.”
Journal of Statistical Software, 24(1). URL http://www.jstatsoft.org/v24/i01/.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008). “ergm: A Package to
Fit, Simulate and Diagnose Exponential-Family Models for Networks.” Journal of Statistical
Software, 24(3). URL http://www.jstatsoft.org/v24/i03/.

McCullagh P, Nelder J (1989). Generalized Linear Models. Chapman & Hall/CRC, 2nd
edition.

Morris M, Handcock MS, Hunter DR (2008). “Specification of Exponential-Family Random
Graph Models: Terms and Computational Aspects.” Journal of Statistical Software, 24(4).
URL http://www.jstatsoft.org/v24/i04/.

R Development Core Team (2010). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,
Version 2.6.1, URL http://www.R-project.org/.

Affiliation:

David R. Hunter
Department of Statistics

http://www.jstatsoft.org/v24/i02/
http://www.jstatsoft.org/v24/i09/
http://statnetproject.org/
http://CRAN.R-project.org/package=ergm
http://CRAN.R-project.org/package=ergm
http://statnetproject.org/
http://statnet.org/statnet_users_group.shtml
http://statnet.org/statnet_users_group.shtml
http://www.jstatsoft.org/v24/i01/
http://www.jstatsoft.org/v24/i03/
http://www.jstatsoft.org/v24/i04/
http://www.R-project.org/

David R. Hunter, Steven M. Goodreau, Mark S. Handcock 23

Pennsylvania State University
University Park, PA 16802, United States of America
E-mail: dhunter@stat.psu.edu
URL: http://www.stat.psu.edu/~dhunter/

mailto:dhunter@stat.psu.edu
http://www.stat.psu.edu/~dhunter/

	Introduction
	Background
	Syntax for a call to the ergm function
	Network storage in ergm
	Acquiring and setting up the necessary tools
	Setup for Windows
	Obtaining source code for the ergm.userterms package
	Building ergm.userterms

	Writing change statistics using ergm.userterms: The R side
	Writing change statistics using ergm.userterms: The C side
	Worked example: a term for ``minimum degree''
	Discussion

