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1 Introduction

Package dlsem implements estimation and path analysis functionalities for structural equation
modelling with second-order polynomial lag shapes [7]. Structural equation modelling is of great
interest in econometric problems, as they allow to perform path analysis, that is the decomposition
of the causal effect of any variable on another. Second-order polynomial lag shapes were introduced
by [7] in order to account for temporal delays in the dependence relationships among the variables.
Second-order polynomial lag shapes have several advantages, including simplicity of estimation,
and a clear interpretation of parameters for domain experts, so that prior knowledge can be taken
into account in statistical analyses by introducing simple mathematical constraints.

In this vignette, theory on structural equation modelling with second-order polynomial lag shapes
is summarized in Section 2, then the practical use of dlsem is illustrated in Section 3. Concluding
remarks are pointed out in Section 4.

2 Theory

The basic feature of SEM is a directed acyclic graph (DAG). In a DAG, variables are represented
by nodes and directed edges may connect pairs of variables without creating directed cycles (See
Figure 1). If a variable receives an edge from another variable, the latter is called parent of the
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former. A DAG encodes a factorization of the joint probability distribution:

p(V1, . . . , Vm) =

J∏
j=1

p(Vj | Πj) (1)

where Πj is the set of parents of variable Vj . As such, if some pairs of variables are not connected
by an edge, the DAG implies a set of conditional independence statements [6]. The DAG may even-
tually have a causal interpretation. If this is the case, edges represent direct causal relationships.
SEM is implemented by simultaneously applying linear regression models:

V1 = f1(Π1)

. . .

Vj = fj(Πj)

. . .

Vm = fm(Πm)

(2)

where Vj = fj(Πj) is the equation describing the linear regression model where Vj is the response
variable and its parents in the DAG are the covariates. A comprehensive review of SEM can be
found in [5].

Figure 1: A directed acyclic graph.

SEM can be employed to perform path analysis, that is the decomposition of the causal effect of
any variable on another. Path analysis in SEM must follow some tracing rules developed by [9]
(see also [8]):

� the causal effect associated to each edge in the DAG is represented by the coefficient of the
variable originating the edge in the regression model of the variable receiving the edge;

� the causal effect associated to a directed path is represented by the product of the causal
effects associated to each edge in the path;

� the causal effect of a variable on another is represented by the sum of the causal effects
associated to each directed path connecting the two variables.

Often, the causal effect of a variable on another is termed overall causal effect, the causal effect
associated to a directed path made by a single edge is called direct effect, while the causal effects
associated to the other directed paths are denoted as indirect effects.

Distributed-lag linear regression is an extension of the classic linear model including lagged in-
stances of one or more quantitative covariates:

yt = β0 +

J∑
j=1

Lj∑
l=0

βj,l xj,t−l + εt εt ∼ N(0, σ2) (3)
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where yt is the value of the response variable at time t and xj,t−l is the value of the j-th covariate
at l time lags before t. The set (βj,0, βj,1, . . . , βj,Lj ) is denoted as the lag shape of the j-th covariate
and represents its effect on the response variable at different time lags. Estimation of a distributed-
lag linear regression model using ordinary least squares is inefficient because lagged instances of
the same covariate are typically highly correlated. Also, the lag shape of a covariate is completely
unrestricted, thus problems of interpretation may arise.

Second-order polynomial lag shapes can be used to solve these drawbacks [1, Chapter 6]. They
include the endpoint-constrained quadratic lag shape:

βj,l =

{
θj

[
− 4

(bj−aj+2)2 l
2 +

4(aj+bj)
(bj−aj+2)2 l −

4(aj−1)(bj+1)
(bj−aj+2)2

]
aj ≤ l ≤ bj

0 otherwise
(4)

and the quadratic decreasing lag shape:

βj,l =

{
θj

l2−2bj l+b2j
(bj−aj)2

aj ≤ l ≤ bj
0 otherwise

(5)

(see Figure 2). The endpoint-constrained quadratic lag shape is zero for a lag l ≤ aj − 1 or
l ≥ bj + 1, and symmetric with mode equal to θj at (aj + bj)/2. The quadratic decreasing lag
shape decreases from value θj at lag aj to value 0 at lag bj according to a quadratic function. Value
aj is denoted as the gestation lag, and value bj − aj as the lag width. A second-order polynomial
lag shape is monotonic in the sign, that is βj,l is either non-negative or non-positive for any j and
l.

Figure 2: Second-order polynomial lag shapes: endpoint-constrained quadratic lag shape (straight
line), quadrating decreasing lag shape (dotted line).

A distributed-lag linear regression model with second-order polynomial lag shapes is linear in
parameters θj (j = 1, . . . , J), provided that parameters aj and bj (j = 1, . . . , J) are known. Thus,
one can use ordinary least squares to estimate the parameters of several models where the value
of aj and bj is varied within a grid of values, and then select the model with the lowest value of
the Akaike Information Criterion 1.

Distributed-lag structural equation modelling (DLSEM) is an extension of SEM, where variables
are related by distributed-lag linear regression models with second-order polynomial lag shapes
[7]. In DLSEM, the DAG does not explicitly include time lags but a special semantic holds:

1Neither the response variable nor the covariates must contain a trend in order to obtain unbiased estimates [4].
A reasonable procedure is to sequentially apply differentiation to all variables until the Dickey-Fuller test rejects
the hypothesis of unit root for all of them.
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� if an edge connects two variables, there is at least one time lag where the coefficient of the
variable originating the edge in the regression model of the variable receiving the edge is
non-zero.

As a consequence, an edge of the DAG is considered as statistically significant if there is at least one
time lag where the estimate of the coefficient of the variable originating the edge in the regression
model of the variable receiving the edge is statistically significant.

DLSEM can be employed to perform path analysis at different time lags by extending tracing rules
for SEM:

� The causal effect associated to each edge in the DAG at lag k is represented by the coefficient
at lag k of the variable originating the edge in the regression model of the variable receiving
the edge.

� The causal effect associated to a directed path at lag k is computed as follows:

1. denote the number of edges in the path as p;

2. enumerate all the possible p-uples of lags, one lag for each of the p edges, such that
their sum is equal to k;

3. for each p-uple of lags:

- for each lag in the p-uple, compute the coefficient associated to the corresponding
edge at that lag;

- compute the product of all these coefficients;

4. sum all these products.

� The causal effect of a variable on another at lag k is represented by the sum of the causal
effects at lag k associated to each directed path connecting the two variables.

A causal effect evaluated at a single lag is denoted as instantaneous causal effect. The cumulative
causal effect at a prespecified lag, say k, is obtained by summing all the instantaneous causal
effects for each lag up to k.

3 Distributed-lag structural equation modelling with dlsem

The practical use of package dlsem is illustrated by an application to a simplified impact assess-
ment problem inspired by the empirical analysis in [2]: to test whether the influence through time
of the registration of agricultural patent applications (proxy of the technological innovation in
Agriculture) on the benefits of farmers and consumers (here measured by the net entrepreneurial
income index and the price index of agricultural products, respectively) is direct and/or mediated
by the gross value added of the agricultural sector. The analysis will be conducted on the dataset
agres, containing data for 10 European countries (Austria, Germany, Spain, Finland, France, Ire-
land, Italy, Netherlands, Sweden, United Kingdom) in the period 1990-2010 from the EUROSTAT
database (http://ec.europa.eu/eurostat/data/database).

> data(agres)
> summary(agres)

COUNTRY YEAR GDP FARM_SIZE
AT : 22 Min. :1991 Min. : 85220 Min. :0.01820
BE : 22 1st Qu.:1996 1st Qu.: 218183 1st Qu.:0.03370
DE : 22 Median :2002 Median : 356676 Median :0.05104
DK : 22 Mean :2002 Mean : 879657 Mean :0.06222
EL : 22 3rd Qu.:2007 3rd Qu.:1678138 3rd Qu.:0.07544
ES : 22 Max. :2012 Max. :3158590 Max. :0.21481
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(Other):176
NPATENT GVA PPI ENTR_INCOME

Min. : 0.04 Min. : 968 Min. : 60.36 Min. : 18.75
1st Qu.: 7.75 1st Qu.: 3593 1st Qu.: 97.14 1st Qu.: 70.70
Median : 24.18 Median : 6782 Median :102.07 Median : 87.80
Mean : 55.27 Mean :13471 Mean :105.52 Mean : 91.85
3rd Qu.: 71.73 3rd Qu.:21024 3rd Qu.:111.12 3rd Qu.:107.44
Max. :472.09 Max. :41048 Max. :191.60 Max. :229.36
NA's :1 NA's :9 NA's :8

The DAG corresponding to the research question is shown in Figure 3.

NPATENT

GVA

PPI ENTR_INCOME

Figure 3: The DAG addressing the research question inspired by the empirical analysis in [2].
‘NPATENT’: number of agricultural patent applications. ‘GVA’: gross value added of the agricul-
tural sector. ‘ENTR INCOME’: net entrepreneurial income index. ‘PPI’: price index of agricul-
tural products.

3.1 The model code

The first step is the specification of the model code containing the hypothesized DAG and the lag
shapes. The model code must be a list of formulas, one for each regression model. In each formula,
the response and the covariates must be quantitative variables and operators quec( ) and qdec( ) can
be employed to specify, respectively, an endpoint-constrained quadratic or a quadratic decreasing
lag shape. Each of these operators has three arguments: the name of the variable to which the lag
shape is applied, the minimum lag with a non-zero coefficient (aj), and the maximum lag with a
non-zero coefficient (bj). If none of these two operators is applied to a variable, it is assumed that
the coefficient associated to that variable is 0 for time lags greater than 0 (no lag). The group
factor and exogenous variables must not be specified in the model code (see Subsection 3.3). The
regression model for variables with no parents besides the group factor and exogenous variables
can be omitted from the model code. In this illustration, an endpoint-constrained quadratic lag
shape between 0 and 15 time lags is assumed for all variables:

> mycode <- list(
+ GVA~quec(NPATENT,0,15),
+ PPI~quec(NPATENT,0,15)+quec(GVA,0,15),
+ ENTR_INCOME~quec(NPATENT,0,15)+quec(GVA,0,15)
+ )
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3.2 Control options

The second step is the specification of control options. Control options must be a named list
containing one or more among several components. The key component is adapt, a named vector
of logical values where each value must refer to one response variable and indicates whether values
aj and bj for each lag shape in the regression model of that variable must be selected on the basis
of the best fit to data, instead of employing the ones specified in the model code. If adaption is
requested for a regression model, three further components are taken into account: max.gestation,
min.width and sign. Each of these three components is a named list, where each component of
the list must refer to one response variable and must be a named vector including, respectively,
the maximum gestation lag, the minimum lag width and the sign (either ’+’ for non-negative, or
’-’ for non-positive) of the coefficients of one or more covariates. In this illustration, adaptation
of lag shapes is performed for all regression models with the following constraints: (i) maximum
gestation lag of 3 years, (ii) minimum lag width of 5 years, (iii) all coefficients with non-negative
sign, excepting the ones in the regression model of the price index of agricultural products, as
benefits for consumers improve with the decreasing of prices:

> mycontrol <- list(
+ adapt=c(GVA=T,PPI=T,ENTR_INCOME=T),
+ max.gestation=list(GVA=c(NPATENT=3),PPI=c(NPATENT=3,GVA=3),
+ ENTR_INCOME=c(NPATENT=3,GVA=3)),
+ min.width=list(GVA=c(NPATENT=5),PPI=c(NPATENT=5,GVA=5),
+ ENTR_INCOME=c(NPATENT=5,GVA=5)),
+ sign=list(GVA=c(NPATENT="+"),PPI=c(NPATENT="-",GVA="-"),
+ ENTR_INCOME=c(NPATENT="+",GVA="+"))
+ )

3.3 Estimation

Once the model code and control options are specified, the structural model can be estimated
from data using the command dlsem( ). The user can indicate a group factor to argument group
and one or more exogenous variables to argument exogenous. By indicating the group factor,
one intercept for each level of the group factor will be estimated in each regression model. By
indicating exogenous variables, they will be included as non-lagged covariates in each regression
model, in order to eliminate spurious effects due to differences between the levels of the group
factor. Each exogenous variable can be either qualitative or quantitative and its coefficient in each
regression model is 0 for time lags greater than 0 (no lag). Furthermore, the user can decide to
perform any number of the following operations:

� differentiation until the hypothesis of unit root is rejected by the Dickey-Fuller test for all
the quantitative variables (by setting argument uniroot.check to TRUE);

� imputation of missing values for quantitative variables using the Expectation-Maximization
algorithm [3] (by setting argument imputation to TRUE);

� apply the logarithmic transformation to all quantitative variables in order to interpret each
coefficient as an elasticity (by setting argument log to TRUE).

In this illustration, the country is indicated as the group factor, gross domestic product and average
farm size as exogenous variables, differentiation until stationarity, imputation of missing values
and logarithmic transformation is allowed for all quantitative variables:

> mod0 <- dlsem(mycode,group="COUNTRY",exogenous=c("GDP","FARM_SIZE"),
+ data=agres,control=mycontrol,uniroot.check=T,imputation=T,log=T)

Checking stationarity...
Order 1 differentiation performed
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Starting EM...
EM iteration 1. Log-likelihood: 1394.8399
EM iteration 2. Log-likelihood: 1395.3395
EM iteration 3. Log-likelihood: 1395.4016
EM iteration 4. Log-likelihood: 1395.4073
EM iteration 5. Log-likelihood: 1395.4067
EM converged after 4 iterations. Log-likelihood: 1395.4067
Start estimation...
Estimating regression model 1/4 (NPATENT)
Estimating regression model 2/4 (GVA)
Estimating regression model 3/4 (PPI)
Estimating regression model 4/4 (ENTR_INCOME)
Estimation completed

After estimating the structural model, the user can display the DAG including only statistically
significant edges.

> plot(mod0)

The result is shown in Figure 4: each edge is coloured according to the sign of its causal effect
(green for non-negative, red for non-positive), while the group factor and exogenous variables are
omitted from the DAG.

NPATENT

GVA

PPI ENTR_INCOME

Figure 4: The DAG including only statistically significant edges. Green: non-negative causal
effect. Red: non-positive causal effect.

All edges result statistically significant, excepting the one of the number of agricultural patent
applications on the net entrepreneurial income index. This provides evidence that the effect of
technological innovation on the benefits for consumers is both direct and mediated by the gross
value added of Agriculture, and the effect of the effect of technological innovation on the benefits
for farmers is only mediated by the gross value added of Agriculture.

The user can also request the summary of estimation:

> summary(mod0)

$NPATENT

Call:
"NPATENT ~ COUNTRY+GDP+FARM_SIZE"

Residuals:
Min 1Q Median 3Q Max
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-3.6255 -0.2156 0.0172 0.2146 3.8613

Coefficients:
Estimate Std. Error t value Pr(>|t|)

factor(COUNTRY)AT -0.032677 0.153155 -0.213 0.831
factor(COUNTRY)BE -0.051062 0.153745 -0.332 0.740
factor(COUNTRY)DE -0.029085 0.153605 -0.189 0.850
factor(COUNTRY)DK -0.028752 0.153359 -0.187 0.851
factor(COUNTRY)EL 0.008343 0.151246 0.055 0.956
factor(COUNTRY)ES -0.033427 0.154347 -0.217 0.829
factor(COUNTRY)FI -0.012809 0.155401 -0.082 0.934
factor(COUNTRY)FR -0.061953 0.152594 -0.406 0.685
factor(COUNTRY)IE -0.080913 0.167465 -0.483 0.629
factor(COUNTRY)IT 0.001801 0.151346 0.012 0.991
factor(COUNTRY)NL -0.063467 0.153436 -0.414 0.679
factor(COUNTRY)PT 0.028596 0.151790 0.188 0.851
factor(COUNTRY)SE -0.093923 0.154125 -0.609 0.543
factor(COUNTRY)UK -0.102351 0.154367 -0.663 0.508
GDP 2.060751 1.586265 1.299 0.195
FARM_SIZE 0.049937 0.562659 0.089 0.929

Residual standard error: 0.686 on 278 degrees of freedom
(14 observations deleted due to missingness)

Multiple R-squared: 0.008403, Adjusted R-squared: -0.04867
F-statistic: 0.1472 on 16 and 278 DF, p-value: 1

$GVA

Call:
"GVA ~ COUNTRY+quec(NPATENT,1,15)+GDP+FARM_SIZE"

Residuals:
Min 1Q Median 3Q Max

-0.298977 -0.034302 0.000572 0.041155 0.257996

Coefficients:
Estimate Std. Error t value Pr(>|t|)

factor(COUNTRY)AT -7.015e-02 5.340e-02 -1.314 0.1935
factor(COUNTRY)BE -6.750e-02 4.757e-02 -1.419 0.1605
factor(COUNTRY)DE -2.994e-02 4.272e-02 -0.701 0.4858
factor(COUNTRY)DK -2.912e-02 3.948e-02 -0.737 0.4634
factor(COUNTRY)EL -1.265e-01 6.798e-02 -1.860 0.0672 .
factor(COUNTRY)ES -1.297e-01 6.765e-02 -1.917 0.0595 .
factor(COUNTRY)FI -3.056e-02 4.268e-02 -0.716 0.4765
factor(COUNTRY)FR -1.918e-02 3.789e-02 -0.506 0.6145
factor(COUNTRY)IE -8.036e-02 4.204e-02 -1.912 0.0602 .
factor(COUNTRY)IT -5.455e-02 4.506e-02 -1.210 0.2303
factor(COUNTRY)NL -2.338e-02 3.948e-02 -0.592 0.5557
factor(COUNTRY)PT -1.879e-01 9.417e-02 -1.995 0.0501 .
factor(COUNTRY)SE -4.723e-02 3.990e-02 -1.184 0.2406
factor(COUNTRY)UK 4.418e-05 3.602e-02 0.001 0.9990
theta0_quec.NPATENT 1.015e-01 4.750e-02 2.137 0.0362 *
GDP 2.555e-01 3.358e-01 0.761 0.4494
FARM_SIZE 1.438e-01 1.372e-01 1.048 0.2982
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.08788 on 67 degrees of freedom
(224 observations deleted due to missingness)

Multiple R-squared: 0.1184, Adjusted R-squared: -0.1052
F-statistic: 0.5295 on 17 and 67 DF, p-value: 0.9282

$PPI
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Call:
"PPI ~ COUNTRY+quec(NPATENT,0,13)+quec(GVA,0,14)+GDP+FARM_SIZE"

Residuals:
Min 1Q Median 3Q Max

-0.167506 -0.036284 -0.000584 0.045151 0.132116

Coefficients:
Estimate Std. Error t value Pr(>|t|)

factor(COUNTRY)AT 0.09617 0.02959 3.250 0.00169 **
factor(COUNTRY)BE 0.07313 0.02898 2.524 0.01360 *
factor(COUNTRY)DE 0.05803 0.02540 2.285 0.02499 *
factor(COUNTRY)DK 0.08315 0.02528 3.290 0.00149 **
factor(COUNTRY)EL 0.08880 0.03868 2.296 0.02432 *
factor(COUNTRY)ES 0.09384 0.03102 3.025 0.00334 **
factor(COUNTRY)FI 0.07735 0.02576 3.002 0.00357 **
factor(COUNTRY)FR 0.06450 0.02533 2.546 0.01281 *
factor(COUNTRY)IE -0.01945 0.04607 -0.422 0.67398
factor(COUNTRY)IT 0.08050 0.02574 3.128 0.00245 **
factor(COUNTRY)NL 0.03607 0.02562 1.408 0.16303
factor(COUNTRY)PT 0.13945 0.04462 3.125 0.00248 **
factor(COUNTRY)SE 0.05435 0.02754 1.973 0.05193 .
factor(COUNTRY)UK 0.07131 0.02428 2.938 0.00432 **
theta0_quec.NPATENT -0.07098 0.02161 -3.285 0.00152 **
theta0_quec.GVA -0.17540 0.07322 -2.395 0.01893 *
GDP 2.04719 0.22917 8.933 1.19e-13 ***
FARM_SIZE 0.14364 0.09643 1.490 0.14027
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.06331 on 80 degrees of freedom
(210 observations deleted due to missingness)

Multiple R-squared: 0.641, Adjusted R-squared: 0.5602
F-statistic: 7.934 on 18 and 80 DF, p-value: 1.936e-11

$ENTR_INCOME

Call:
"ENTR_INCOME ~ COUNTRY+quec(NPATENT,1,13)+quec(GVA,1,14)+GDP+FARM_SIZE"

Residuals:
Min 1Q Median 3Q Max

-0.96399 -0.12989 0.00663 0.14634 0.56581

Coefficients:
Estimate Std. Error t value Pr(>|t|)

factor(COUNTRY)AT -0.14959 0.13458 -1.112 0.269665
factor(COUNTRY)BE -0.26243 0.13144 -1.997 0.049281 *
factor(COUNTRY)DE -0.13999 0.11580 -1.209 0.230280
factor(COUNTRY)DK -0.39852 0.11405 -3.494 0.000778 ***
factor(COUNTRY)EL -0.07998 0.16902 -0.473 0.637349
factor(COUNTRY)ES -0.24574 0.14855 -1.654 0.101998
factor(COUNTRY)FI -0.09529 0.11379 -0.837 0.404825
factor(COUNTRY)FR -0.12296 0.11267 -1.091 0.278418
factor(COUNTRY)IE 0.17533 0.16480 1.064 0.290585
factor(COUNTRY)IT -0.06445 0.11775 -0.547 0.585646
factor(COUNTRY)NL -0.10808 0.11422 -0.946 0.346867
factor(COUNTRY)PT -0.24381 0.21085 -1.156 0.250994
factor(COUNTRY)SE -0.08117 0.11962 -0.679 0.499352
factor(COUNTRY)UK -0.09867 0.10783 -0.915 0.362895
theta0_quec.NPATENT 0.16322 0.10498 1.555 0.123936
theta0_quec.GVA 0.62290 0.29551 2.108 0.038173 *
GDP -3.01030 1.01618 -2.962 0.004018 **
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FARM_SIZE -1.21328 0.42983 -2.823 0.006007 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2827 on 80 degrees of freedom
(210 observations deleted due to missingness)

Multiple R-squared: 0.2983, Adjusted R-squared: 0.1404
F-statistic: 1.889 on 18 and 80 DF, p-value: 0.02853

The summary of estimation returns estimates of parameters θj (j = 1, . . . , J). Instead, the com-
mand edgeCoeff( ) can be used to obtain estimates and confidence intervals of coefficients at the
relevant time lags βj,l (j = 1, . . . , J ; l = 0, 1, . . .):

> edgeCoeff(mod0)

$`0`
2.5% 50% 97.5%

GVA~NPATENT 0.00000000 0.00000000 0.000000000
PPI~NPATENT -0.02820862 -0.01766653 -0.007124428
PPI~GVA -0.07474607 -0.04111016 -0.007474252
ENTR_INCOME~NPATENT 0.00000000 0.00000000 0.000000000
ENTR_INCOME~GVA 0.00000000 0.00000000 0.000000000

$`1`
2.5% 50% 97.5%

GVA~NPATENT 0.001971873 0.02379354 0.04561522
PPI~NPATENT -0.052387442 -0.03280926 -0.01323108
PPI~GVA -0.139526002 -0.07673897 -0.01395194
ENTR_INCOME~NPATENT 0.000000000 0.00000000 0.00000000
ENTR_INCOME~GVA 0.010878743 0.15503301 0.29918727

$`2`
2.5% 50% 97.5%

GVA~NPATENT 0.00368083 0.04441462 0.08514840
PPI~NPATENT -0.07253646 -0.04542821 -0.01831996
PPI~GVA -0.19433979 -0.10688642 -0.01943306
ENTR_INCOME~NPATENT 0.00000000 0.00000000 0.00000000
ENTR_INCOME~GVA 0.02020338 0.28791844 0.55563350

$`3`
2.5% 50% 97.5%

GVA~NPATENT 0.00512687 0.06186322 0.11859956
PPI~NPATENT -0.08865567 -0.05552337 -0.02239106
PPI~GVA -0.23918743 -0.13155252 -0.02391761
ENTR_INCOME~NPATENT 0.00000000 0.00000000 0.00000000
ENTR_INCOME~GVA 0.02797391 0.39865630 0.76933869

$`4`
2.5% 50% 97.5%

GVA~NPATENT 0.006309994 0.07613934 0.14596869
PPI~NPATENT -0.100745081 -0.06309473 -0.02544439
PPI~GVA -0.274068932 -0.15073726 -0.02740559
ENTR_INCOME~NPATENT 0.000000000 0.00000000 0.00000000
ENTR_INCOME~GVA 0.034190336 0.48724659 0.94030285

$`5`
2.5% 50% 97.5%

GVA~NPATENT 0.007230202 0.08724300 0.16725579
PPI~NPATENT -0.108804688 -0.06814231 -0.02747994
PPI~GVA -0.298984290 -0.16444065 -0.02989701
ENTR_INCOME~NPATENT 0.000000000 0.00000000 0.00000000
ENTR_INCOME~GVA 0.038852654 0.55368931 1.06852596

$`6`
2.5% 50% 97.5%

10



GVA~NPATENT 0.007887493 0.09517418 0.18246087
PPI~NPATENT -0.112834491 -0.07066610 -0.02849771
PPI~GVA -0.313933504 -0.17266268 -0.03139186
ENTR_INCOME~NPATENT 0.000000000 0.00000000 0.00000000
ENTR_INCOME~GVA 0.041960866 0.59798445 1.15400804

$`7`
2.5% 50% 97.5%

GVA~NPATENT 0.008281867 0.09993289 0.19158391
PPI~NPATENT -0.112834491 -0.07066610 -0.02849771
PPI~GVA -0.318916576 -0.17540336 -0.03189014
ENTR_INCOME~NPATENT 0.000000000 0.00000000 0.00000000
ENTR_INCOME~GVA 0.043514972 0.62013203 1.19674908

$`8`
2.5% 50% 97.5%

GVA~NPATENT 0.008413325 0.10151913 0.19462492
PPI~NPATENT -0.108804688 -0.06814231 -0.02747994
PPI~GVA -0.313933504 -0.17266268 -0.03139186
ENTR_INCOME~NPATENT 0.000000000 0.00000000 0.00000000
ENTR_INCOME~GVA 0.043514972 0.62013203 1.19674908

$`9`
2.5% 50% 97.5%

GVA~NPATENT 0.008281867 0.09993289 0.19158391
PPI~NPATENT -0.100745081 -0.06309473 -0.02544439
PPI~GVA -0.298984290 -0.16444065 -0.02989701
ENTR_INCOME~NPATENT 0.000000000 0.00000000 0.00000000
ENTR_INCOME~GVA 0.041960866 0.59798445 1.15400804

$`10`
2.5% 50% 97.5%

GVA~NPATENT 0.007887493 0.09517418 0.18246087
PPI~NPATENT -0.088655672 -0.05552337 -0.02239106
PPI~GVA -0.274068932 -0.15073726 -0.02740559
ENTR_INCOME~NPATENT 0.000000000 0.00000000 0.00000000
ENTR_INCOME~GVA 0.038852654 0.55368931 1.06852596

$`11`
2.5% 50% 97.5%

GVA~NPATENT 0.007230202 0.08724300 0.16725579
PPI~NPATENT -0.072536459 -0.04542821 -0.01831996
PPI~GVA -0.239187432 -0.13155252 -0.02391761
ENTR_INCOME~NPATENT 0.000000000 0.00000000 0.00000000
ENTR_INCOME~GVA 0.034190336 0.48724659 0.94030285

$`12`
2.5% 50% 97.5%

GVA~NPATENT 0.006309994 0.07613934 0.14596869
PPI~NPATENT -0.052387442 -0.03280926 -0.01323108
PPI~GVA -0.194339788 -0.10688642 -0.01943306
ENTR_INCOME~NPATENT 0.000000000 0.00000000 0.00000000
ENTR_INCOME~GVA 0.027973911 0.39865630 0.76933869

$`13`
2.5% 50% 97.5%

GVA~NPATENT 0.00512687 0.06186322 0.118599563
PPI~NPATENT -0.02820862 -0.01766653 -0.007124428
PPI~GVA -0.13952600 -0.07673897 -0.013951937
ENTR_INCOME~NPATENT 0.00000000 0.00000000 0.000000000
ENTR_INCOME~GVA 0.02020338 0.28791844 0.555633502

$`14`
2.5% 50% 97.5%

GVA~NPATENT 0.00368083 0.04441462 0.085148405
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PPI~NPATENT 0.00000000 0.00000000 0.000000000
PPI~GVA -0.07474607 -0.04111016 -0.007474252
ENTR_INCOME~NPATENT 0.00000000 0.00000000 0.000000000
ENTR_INCOME~GVA 0.01087874 0.15503301 0.299187270

$`15`
2.5% 50% 97.5%

GVA~NPATENT 0.001971873 0.02379354 0.04561522
PPI~NPATENT 0.000000000 0.00000000 0.00000000
PPI~GVA 0.000000000 0.00000000 0.00000000
ENTR_INCOME~NPATENT 0.000000000 0.00000000 0.00000000
ENTR_INCOME~GVA 0.000000000 0.00000000 0.00000000

Coefficients in the regression model of the price index of agricultural products are all of negative
sign because benefits for consumers improve with the decreasing of prices.

3.4 Path analysis

Path analysis can be performed using the command pathAnal( ). The user must specify one or more
starting variables (argument from) and the ending variable (argument to). Optionally, specific time
lags on which path analysis should be focused can be provided to argument lag, otherwise all the
relevant ones are considered. Also, the user can choose whether instantaneous (argument cumul
set to FALSE, the default) or cumulative (argument cumul set to TRUE) causal effects must be
returned. Here, two path analysis tasks are performed: one from agricultural patent applications
to the net entrepreneurial income index, and the other from agricultural patent applications to
the price index of agricultural products. For both, time lags 5, 10, 15, 20 and 25 are considered,
and cumulative causal effects are requested:

> pathAnal(mod0,from="NPATENT",to="ENTR_INCOME",lag=c(5,10,15,20,25),cumul=T)

$`NPATENT*GVA*ENTR_INCOME`
2.5% 50% 97.5%

5 0.02276737 0.1082044 0.1936413
10 0.47814179 1.0839758 1.6898097
15 1.75013573 3.3444982 4.9388607
20 3.02212968 5.6050207 8.1879117
25 3.47750409 6.5807921 9.6840801

$overall
2.5% 50% 97.5%

5 0.02276737 0.1082044 0.1936413
10 0.47814179 1.0839758 1.6898097
15 1.75013573 3.3444982 4.9388607
20 3.02212968 5.6050207 8.1879117
25 3.47750409 6.5807921 9.6840801

> pathAnal(mod0,from="NPATENT",to="PPI",lag=c(5,10,15,20,25),cumul=T)

$`NPATENT*GVA*PPI`
2.5% 50% 97.5%

5 -0.09077204 -0.05435072 -0.0179294
10 -0.59019516 -0.39351888 -0.1968426
15 -1.55081124 -1.08108464 -0.6113580
20 -2.44436338 -1.71655161 -0.9887398
25 -2.84103140 -1.98134075 -1.1216501

$`NPATENT*PPI`
2.5% 50% 97.5%

5 -0.4513380 -0.2826644 -0.1139909
10 -0.9752124 -0.6107570 -0.2463017
15 -1.1283449 -0.7066610 -0.2849771
20 -1.1283449 -0.7066610 -0.2849771
25 -1.1283449 -0.7066610 -0.2849771
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$overall
2.5% 50% 97.5%

5 -0.542110 -0.3370151 -0.1319203
10 -1.565408 -1.0042759 -0.4431443
15 -2.679156 -1.7877457 -0.8963352
20 -3.572708 -2.4232126 -1.2737170
25 -3.969376 -2.6880018 -1.4066272

The output of path analysis is a list of matrices, each containing estimates and confidence intervals
of the causal effect associated to each path connecting the starting variables to the ending variable
at the requested time lags. Also, estimates and confidence intervals of the overall causal effect is
shown in the component named overall.

Since the logarithmic trasformation was applied to all quantitative variables, causal effects above
are interpreted as elasticities, that is, for a 1% of patent applications more, benefits for farmers
and consumers are expected to grow by 6.7% and 1.8%, respectively, after 30 years.

The estimated lag shape associated to an overall causal effect can be displayed using the command
lagPlot( ):

> lagPlot(mod0,from="NPATENT",to="ENTR_INCOME")

> lagPlot(mod0,from="NPATENT",to="PPI")

The result is shown in Figure 5.
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Figure 5: The estimated lag shape associated to the overall causal effect of agricultural patent
applications on the net entrepreneurial income index and the price index of agricultural products.
95% confidence intervals are shown in grey.

4 Concluding remarks

Package dlsem is conceived to perform impact analysis, that is the quantitative assessment of the
consequences on a system due to an internal or external impulse, using distributed-lag structural
equation modelling with second-order polynomial lag shapes.

Impact analysis is widely employed in econometrics, where temporal attribution is a debated
problem. In particular, there is no consensus on the formal specification of lag relationships to be
applied in a certain problem domain. Second-order polynomial lag shapes are a flexible solution,
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as they are simple to be estimated, and the interpretation of parameters is clear for domain
experts, thus prior knowledge can be taken into account in statistical analyses by introducing
simple mathematical constraints.
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