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Chapter 1

Introduction

This document provides an introduction to species distribution modeling
with R . Species distribution modeling (SDM) is also known under other names
including climate envelope-modeling, habitat modeling, and (environmental or
ecological) niche-modeling. The aim of SDM is to estimate the similarity of the
conditions at any site to the conditions at the locations of known occurrence
(and perhaps of non-occurrence) of a phenomenon. A common application of
this method is to predict species ranges with climate data as predictors.

In SDM, the following steps are usually taken: (1) locations of occurrence
of a species (or other phenomenon) are compiled; (2) values of environmental
predictor variables (such as climate) at these locations are extracted from spatial
databases; (3) the environmental values are used to fit a model to estimate
similarity to the sites of occurrence, or another measure such as abundance of
the species; (4) The model is used to predict the variable of interest across an
the region of interest (and perhaps for a future or past climate).

We assume that you are familiar with most of the concepts in SDM. If in
doubt, you could consult, for example, Richard Pearson’s introduction to the
subject: http://biodiversityinformatics.amnh.org/index.php?section_
id=111) the book by Janet Franklin (2009), the somewhat more theoretical
book by Peterson et al. (2011), or the recent review article by Elith and Leath-
wick (2009). It is important to have a good understanding of the interplay of
environmental (niche) and geographic (biotope) space — see Colwell and Rangel
(2009) and Peterson et al. (2011) for a discussion. SDM is a widely used ap-
proach but there is much debate on when and how to best use this method.
While we refer to some of these issues, in this document we do not provide an
in-depth discussion of this scientific debate. Rather, our objective is to provide
practical guidance to implemeting the basic steps of SDM. We leave it to you
to use other sources to determine the appropriate methods for your research;
and to use the ample opportunities provided by the R environment to improve
existing approaches and to develop new ones.

We also assume that you are already somewhat familiar with the R language
and environment. It would be particularly useful if you already had some ex-
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perience with statistical model fitting (e.g. the glm function) and with spatial
data handling as implemented in the packages 'raster’ and ’sp’. To famil-
iarize yourself with model fitting see, for instance, the Documentation section
on the CRAN webpage (http://cran.r-project.org/) and any introduction to R
txt. For the 'raster’ package you could consult its vignette (available at http:
//cran.r-project.org/web/packages/raster/vignettes/Raster.pdf).

When we present R code we will provide some explanation if we think it might
be difficult or confusing. We will do more of this earlier on in this document,
so if you are relatively inexperienced with R and would like to ease into it, read
this text in the presented order.

SDM have been implemented in R in many different ways. Here we focus
on the functions in the 'dismo’ and the 'raster’ packages (but we also refer
to other packages). If you want to test, or build on, some of the examples
presented here, make sure you have the latest versions of these packages, and
their dependencies, installed. If you are using a recent version of R , you can
do that with:

install.packages(c(’raster’, ’rgdal’, ’dismo’, ’rJava’))

This document consists of 4 main parts. Part I is concerned with data prepa-
ration. This is often the most time consuming part of a species distribution
modeling project. You need to collect a sufficient number of occurrence records
that document presence (and perhaps absence or abundance) of the species of
interest. You also need to have accurate and relevant environmental data (pre-
dictor variables) at a sufficiently high spatial resolution. We first discuss some
aspects of assembling and cleaning species records, followed by a discussion of
aspects of choosing and using the predictor variables. A particularly important
concern in species distribution modeling is that the species occurrence data ad-
equately represent the actual distribution of the species studied. For instance,
the species should be correctly identified, the coordinates of the location data
need to be accurate enough to allow the general species/environment to be es-
tablished, and the sample unbiased, or accompanied by information on known
biases such that these can be taken into account. Part II introduces the main
steps in SDM: fitting a model, making a prediction, and evaluating the result.
Part III introduces different modeling methods in more detail (profile methods,
regression methods, machine learning methods, and geographic methods). In
Part IV we discuss a number of applications (e.g. predicting the effect of climate
change), and a number of more advanced topics.

This is a work in progress. Suggestions are welcomed.
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Part 1

Data preparation



Chapter 2

Species occurrence data

Importing occurrence data into R is easy. But collecting, georeferencing, and
cross-checking coordinate data is tedious. Discussions about species distribution
modeling often focus on comparing modeling methods, but if you are dealing
with species with few and uncertain records, your focus probably ought to be
on improving the quality of the occurrence data (Lobo, 2008). All methods
do better if your occurrence data is unbiased and free of error (Graham et al.,
2007) and you have a relatively large number of records (Wisz et al., 2008).
While we’ll show you some useful data preparation steps you can do in R |,
it is necessary to use additional tools as well. For example, Quantum GIS,
http://www.qgis.org/l is a very useful program for interactive editing of point
data sets.

2.1 Importing occurrence data

In most cases you will have a file with point locality data representing the
known distribution of a species. Below is an example of using read.table to
read records that are stored in a text file. The R commands used are in italics
and preceded by a '>’. Comments are preceded by a hash (#). We are using
an example file that is installed with the ’dismo’ package, and for that reason
we use a complex way to construct the filename, but you can replace that with
your own filename. (remember to use forward slashes in the path of filenames!).
system.file inserts the file path to where dismo is installed. If you haven’t
used the paste function before, it’s worth familiarizing yourself with it (type
?paste in the command window).

> # loads the dismo library

> library(dismo)

> file <- paste(system.file(package="dismo"), "/ex/bradypus.csv", sep="")
> # this is the file we will use:

> file
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[1] "d:/temp/RtmpmYStGt/Rinst19e02d22666d/dismo/ex/bradypus.csv"

> # read it

> bradypus <- read.table(file, header=TRUE, sep=",")
> # inspect the values of the file

> # first rows

>

head (bradypus)
species lon lat
1 Bradypus variegatus -65.4000 -10.3833
2 Bradypus variegatus -65.3833 -10.3833
3 Bradypus variegatus -65.1333 -16.8000
4 Bradypus variegatus -63.6667 -17.4500
5 Bradypus variegatus -63.8500 -17.4000
6 Bradypus variegatus -64.4167 -16.0000
> # we only need columns 2 and 3:
> bradypus <- bradypus[,2:3]
> head(bradypus)
lon lat
1 -65.4000 -10.3833
2 -65.3833 -10.3833
3 -65.1333 -16.8000
4 -63.6667 -17.4500
5 -63.8500 -17.4000
6 -64.4167 -16.0000

You can also read such data directly out of Excel files or from a database
(see e.g. the RODBC package). Because this is a csv (comma separated values)
file, we could also have used the read.csv function. No matter how you do
it, the objective is to get a matrix (or a data.frame) with at least 2 columns
that hold the coordinates of the locations where a species was observed. Co-
ordinates are typically expressed as longitude and latitude (i.e. angular), but
they could also be Easting and Northing in UTM or another planar coordinate
reference system (map projection). The convention used here is to organize the
coordinates columns so that longitude is the first and latitude the second col-
umn (think x and y axes in a plot; longitude is x, latitude is y); they often are
in the reverse order, leading to undesired results. In many cases you will have
additional columns, e.g., a column to indicate the species if you are modeling
multiple species; and a column to indicate whether this is a 'presence’ or an ’ab-
sence’ record (a much used convention is to code presence with a 1 and absence
with a 0).

If you do not have any species distribution data you can get started by down-
loading data from the Global Biodiversity Inventory Facility (GBIF) (http:
//waw.gbif.org/)). In the dismo package there is a function ’gbif’ that you
can use for this. The data used below were downloaded (and saved to a perma-
nent data set for use in this vignette) using the gbif function like this:
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acaule = gbif("solanum", "acaulex", geo=FALSE)

If you want to understand the order of the arguments given here to gbif or
find out what other arguments you can use with this function, check out the
help file (remember you can’t access help files if the library is not loaded), by
typing: ?gbif or help(gbif). Note the use of the asterix in “acaule*” to not
only request Solanum acaule, but also variations such as the full name, Solanum
acaule Bitter, or subspecies such as Solanum acaule subsp. aemulans.

Many occurence records may not have geographic coordinates. In this case,
out of the 1366 records that GBIF returned (January 2013), there were 1082
records with coordinates (this was 699 and 54 in March 2010, a tremendous
improvement!)

> # load the saved S. acaule data
> data(acaule)

> # how many rows and colums?

> dim(acaule)

[1] 1366 25

> #select the records that have longitude and latitude data
> colnames (acaule)

[1] "species" "continent"

[3] "country" "adm1"

[6] "adm2" "locality"

[7] "lat" "lon"

[9] "coordUncertaintyM" "alt"

[11] "institution" "collection"
[13] "catalogNumber" "basisO0fRecord"
[15] "collector" "earliestDateCollected"
[17] "latestDateCollected" "gbifNotes"
[19] "downloadDate" "maxElevationM"
[21] "minElevationM" "maxDepthM"
[23] "minDepthM" "Iso2"

[25] "cloc"

> acgeo <- subset(acaule, !is.na(lon) & !is.na(lat))
> dim(acgeo)

[1] 1082 25

> # show some values
> acgeo[1:4, c(1:5,7:10)]

species continent country adml
1 Solanum acaule Bitter South America Argentina Jujuy
2 Solanum acaule Bitter South America Peru Cusco



3 Solanum acaule f. acaule <NA> Argentina <NA>

4 Solanum acaule f. acaule <NA> Bolivia <NA>
adm2 lat lon coordUncertaintyM alt
1 Santa Catalina -21.9000 -66.1000 <NA> NaN
2 Canchis -13.5000 -71.0000 <NA> 4500
3 <NA> -22.2666 -65.1333 <NA> 3800
4 <NA> -18.6333 -66.9500 <NA> 3700

Below is a simple way to make a map of the occurrence localities of Solanum
acaule. Tt is important to make such maps to assure that the points are, at least
roughly, in the right location.

> library(maptools)

> data(wrld_simpl)

> plot(wrld_simpl, xlim=c(-80,70), ylim=c(-60,10), axes=TRUE,
+ col="light yellow")

> # restore the box around the map

> box()

> # plot points

> points(acgeo$lon, acgeo$lat, col='orange', pch=20, cex=0.75)
> # plot points again to add a border, for better visibility
> points(acgeo$lon, acgeo$lat, col='red', cex=0.75)
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The wrld_simpl dataset contains rough country outlines. You can use other
datasets of polygons (or lines or points) as well. For example, you can download
higher resolution data country and subnational administrative boundaries data
with the getData function of the raster package. You can also read your own
shapefile data into R using the shapefile function in the raster package.

2.2 Data cleaning

Data ’cleaning’ is particularly important for data sourced from species dis-
tribution data warehouses such as GBIF. Such efforts do not specifically gather
data for the purpose of species distribution modeling, so you need to understand
the data and clean them appropriately, for your application. Here we provide
an example.

Solanum acaule is a species that occurs in the higher parts of the Andes
mountains of southern Peru, Bolivia and northern Argentina. Do you see any
errors on the map?

There are a few records that map in the ocean just south of Pakistan. Any
idea why that may have happened? It is a common mistake, missing minus
signs. The coordinates are around (65.4, 23.4) but they should in Northern
Argentina, around (-65.4, -23.4) (you can use the ’click” function to query the
coordintates on the map). There are two records (rows 303 and 885) that map to
the same spot in Antarctica (-76.3, -76.3). The locality description says that is
should be in Huarochiri, near Lima, Peru. So the longitude is probably correct,
and erroneously copied to the latitude. Interestingly the record occurs twice.
The orignal source is the International Potato Center, and a copy is provided
by "SINGER” that aling the way appears to have “corrected” the country to
Antarctica:

> acaule[c(303,885),1:10]

species continent country adml

303 solanum acaule acaule <NA> Antarctica <NA>

885 solanum acaule acaule BITTER <NA> Peru <NA>
adm?2 locality lat 1lon
303 <NA> <NA> -76.3 -76.3

885 <NA> Lima P. Huarochiri Pacomanta -76.3 -76.3
coordUncertaintyM alt

303 <NA> NaN

885 <NA> 3800

The point in Brazil (record acaule[98,]) should be in soutern Bolivia, so this
is probably due to a typo in the longitude. Likewise, there are also three records
that have plausible latitudes, but longitudes that are clearly wrong, as they are
in the Atlantic Ocean, south of West Africa. It looks like they have a longitude
that is zero. In many data-bases you will find values that are ’zero’ where no
data’ was intended. The gbif function (when using the default arguments) sets



coordinates that are (0, 0) to NA, but not if one of the coordinates is zero. Let’s
see if we find them by searching for records with longitudes of zero.
Let’s have a look at these records:

> lonzero = subset(acgeo, lon==0)
> # show all records, only the first 13 columns
> lonzerol[, 1:13]

species continent

1159 Solanum acaule Bitter subsp. acaule <NA>
1160 Solanum acaule Bitter subsp. acaule <NA>
1161 Solanum acaule Bitter subsp. acaule <NA>
1162 Solanum acaule Bitter subsp. acaule <NA>
1163 Solanum acaule Bitter subsp. acaule <NA>
1164 Solanum acaule Bitter subsp. acaule <NA>

country adml adm2
1159 Argentina <NA> <NA>
1160  Bolivia <NA> <NA>
1161 Peru <NA> <NA>
1162 Peru <NA> <NA>
1163 Argentina <NA> <NA>
1164  Bolivia <NA> <NA>

locality
1159 between Quelbrada del Chorro and Laguna Colorada
1160 Llave
1161 km 205 between Puno and Cuzco
1162 km 205 between Puno and Cuzco
1163 between Quelbrada del Chorro and Laguna Colorada
1164 Llave
lat lon coordUncertaintyM alt institution
1159 -23.716667 O <NA> 3400 IPK
1160 -16.083334 O <NA> 3900 IPK
1161 -6.983333 0 <NA> 4250 IPK
1162 -6.983333 0 <NA> 4250 IPK
1163 -23.716667 O <NA> 3400 IPK
1164 -16.083334 O <NA> 3900 IPK
collection catalogNumber
1159 GB WKS 30027
1160 GB WKS 30050
1161 WKS 30048 304709
1162 GB WKS 30048
1163 WKS 30027 304688
1164 WKS 30050 304711

The records are from Bolivia, Peru and Argentina, confirming that coordi-
nates are in error. Alternatively, it could have been that the coordinates were
correct, perhaps referring to a location in the Atlantic Ocean where a fish was



caught rather than a place where S. acaule was collected). Records with the
wrong species name can be among the hardest to correct (e.g., distinguishing
between brown bears and sasquatch, Lozier et al., 2009). The one record in
Ecuador is like that, there is some debate whether that is actually a specimen
of S. albicans or an anomalous hexaploid variety of S. acaule.

2.2.1 Duplicate records

Interestingly, another data quality issue is revealed above: each record in
"lonzero’ occurs twice. This could happen because plant samples are often split
and send to multiple herbariums. But in this case it seems that the IPK (The
Leibniz Institute of Plant Genetics and Crop Plant Research) provided these
data twice to the GBIF database (perhaps from seperate databases at IPK?).
The function ’duplicated’ can sometimes be used to remove duplicates.

> # which records are duplicates (only for the first 10 columns)?
> dups <- duplicated(lonzero[, 1:10])

> # remove duplicates

> lonzero <- lonzero[dups, ]

> lonzero[,1:13]

species continent

1162 Solanum acaule Bitter subsp. acaule <NA>

1163 Solanum acaule Bitter subsp. acaule <NA>

1164 Solanum acaule Bitter subsp. acaule <NA>
country adml adm2

1162 Peru <NA> <NA>

1163 Argentina <NA> <NA>
1164  Bolivia <NA> <NA>

locality
1162 km 205 between Puno and Cuzco
1163 between Quelbrada del Chorro and Laguna Colorada
1164 Llave
lat lon coordUncertaintyM alt institution
1162 -6.983333 O <NA> 4250 IPK
1163 -23.716667 O <NA> 3400 IPK
1164 -16.083334 O <NA> 3900 IPK
collection catalogNumber
1162 GB WKS 30048
1163 WKS 30027 304688
1164 WKS 30050 304711

Another approach might be to detect duplicates for the same species and
some coordinates in the data, even if the records were from collections by dif-
ferent people or in different years. (in our case, using species is redundant as
we have data for only one species)
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> # differentiating by (sub) species

> # dups2 <- duplicated(acgeol[, c('species', 'lon', 'lat')])
> # ignoring (sub) species and other naming variation
> dups2 <- duplicated(acgeo[, c('lon', 'lat')])
> # number of duplicates
> sum(dups2)

[1] 483

> # keep the records that are _not_ duplicated
> acg <- acgeo[!dups2, ]

Let’s repatriate the records near Pakistan to Argentina, and remove the
records in Brazil, Antarctica, and with longitude=0

i <- acg$lon > 0 & acg$lat > 0
acg$lon[i] <- -1 * acg$lon[i]
acg$lat[i] <- -1 * acg$lat[i]
acg <- acglacg$lon < -50 & acg$lat > -50, ]

vV V. Vv VvV

2.3 Cross-checking

It is important to cross-check coordinates by visual and other means. One
approach is to compare the country (and lower level administrative subdivi-
sions) of the site as specified by the records, with the country implied by the
coordinates (Hijmans et al., 1999). In the example below we use the coordi-
nates function from the sp package to create a SpatialPointsDataFrame, and
then the over function, also from sp, to do a point-in-polygon query with the
countries polygons.

We can make a SpatialPointsDataFrame using the statistical function nota-
tion (with a tilde):

library(sp)

coordinates(acg) <- “lon+lat
crs(acg) <- crs(wrld_simpl)
class(acg)

vV VvV VvV

[1] "SpatialPointsDataFrame"
attr(, "package")
[1] n Sp n

We can now use the coordinates to do a spatial query of the polygons in
wrld_simpl (a SpatialPolygonsDataFrame)

> class(wrld_simpl)

[1] "SpatialPolygonsDataFrame"
attr(, "package")
[1] "Sp"
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> ovr <- over(acg, wrld_simpl)

Object ’ov’ has, for each point, the matching record from wrld_simpl. We
need the variable 'NAME’ in the data.frame of wrld_simpl

> head(ovr)

FIPS IS02 IS03 UN NAME  AREA POP2005 REGION
1 AR AR ARG 32 Argentina 273669 38747148 19
2 PE PE PER 604 Peru 128000 27274266 19
3 AR AR ARG 32 Argentina 273669 38747148 19
4 BL BO BOL 68 Bolivia 108438 9182015 19
5 BL BO BOL 68 Bolivia 108438 9182015 19
6 BL BO BOL 68 Bolivia 108438 9182015 19
SUBREGION LON LAT
1 5 -65.167 -35.377
2 5 -75.552 -9.326
3 5 -65.167 -35.377
4 5 -64.671 -16.715
5 5 -64.671 -16.715
6 5 -64.671 -16.715

> cntr <- ovr$NAME

We should ask these two questions: (1) Which points (identified by their
record numbers) do not match any country (that is, they are in an ocean)?
(There are none (because we already removed the points that mapped in the
ocean)). (2) Which points have coordinates that are in a different country than
listed in the ’country’ field of the ghif record

> i <- which(is.na(cntr))

> i
integer (0)
> j <- which(cntr != acg$country)

> # for the mismatches, bind the country names of the polygons and points
> cbind(cntr, acg$country)[j,]

cntr
[1,] "27" "Argentina"
[2,] "172" "Bolivia"
[3,] "172" "Bolivia"
(4,1 "172" "Bolivia"

In this case the mismatch is probably because wrld_simpl is not very precise

as the records map to locations very close to the border between Bolivia and its
neighbors.
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> plot(acg)
> plot(wrld_simpl, add=T, border='blue', lwd=2)
> points(acglj, ], col='red', pch=20, cex=2)

See the sp package for more information on the over function. The wrld_simpl
polygons that we used in the example above are not very precise, and they
probably should not be used in a real analysis. See http://www.gadm.org/| for
more detailed administrative division files, or use the 'getData’ function from
the raster package (e.g. getData(’gadm’, country=’BOL’, level=0) to get
the national borders of Bolivia; and getData(’countries’) to get all country
boundaries).

2.4 Georeferencing

If you have records with locality descriptions but no coordinates, you should
consider georeferencing these. Not all the records can be georeferenced. Some-
times even the country is unknown (country=="UNK”). Here we select only
records that do not have coordinates, but that do have a locality description.

> georef <- subset(acaule, (is.na(lon) | is.na(lat)) & ! is.na(locality) )
> dim(georef)

[1] 131 25
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> georef[1:3,1:13]

606
607
618

606
607
618

606
607
618

606
607
618

606
607
618

species continent country adml

solanum acaule acaule BITTER <NA> Bolivia <NA>
solanum acaule acaule BITTER <NA> Peru <NA>
solanum acaule acaule BITTER <NA> Peru <NA>
adm?2
<NA>
<NA>
<NA>
locality
La Paz P. Franz Tamayo Viscachani 3 km from Huaylapuquio to Pelechuco

lat
NA
NA
NA

CIP
CIP
CIP

Puno P. San Roman Near Tinco Palca
Puno P. Lampa Saraccocha

lon coordUncertaintyM alt institution
<NA> 4000 PEROO1
<NA> 4000 PEROO1
<NA> 4100 PEROO1

collection catalogNumber

NA
NA
NA

- Potato
- Potato
- Potato

collection
collection
collection

CIP-762165
CIP-761962
CIP-762376

For georeferencing, you can try to use the dismo package function geocode
that sends requests to the Google API. We demonstrate below, but its use is
generally not recommended because for accurate georeferencing you need a de-
tailed map interface, and ideally one that allows you to capture the uncertainty
associated with each georeference (Wieczorek et al., 2004).

Here is an example for one of the records with longitude = 0, using Google’s
geocoding service. We put the function into a ’try’ function, to assure elegant
error handling if the computer is not connected to the Internet. Note that we
use the "cloc” (concatenated locality) field.

> georef$cloc[4]

[1]

"Ayacucho P. Huamanga Minas Ckucho, Peru"

> b <- try( geocode(georef$cloc[4]) )

>b

originalPlace

1 Ayacucho P. Huamanga Minas Ckucho, Peru
2 Ayacucho P. Huamanga Minas Ckucho, Peru

interpretedPlace longitude

1 Ayacucho, Buenos Aires Province, Argentina -58.48297

2

latitude

xmin

Ayacucho, Peru -74.22356
Xmax

ymin ymax

14



1 -37.15027 -58.49898 -58.46696 -37.15916 -37.14137
2 -13.16387 -74.24456 -74.18004 -13.19747 -13.11926

uncertainty
1 1731
2 4378

Before using the geocode function it is best to write the records to a table
and “clean” them in a spreadsheet. Cleaning involves traslation, expanding
abbreviations, correcting misspellings, and making duplicates exactly the same
so that they can be georeferenced only once. Then read the the table back into
R , and create unique localities, georeference these and merge them with the
original data.

2.5 Sampling bias

Sampling bias is frequently present in occurrence records (Hijmans et al.,
2001). Ome can attempt to remove some of the bias by subsampling records,
and this is illustrated below. However, subsampling reduces the number of
records, and it cannot correct the data for areas that have not been sampled at
all. It also suffers from the problem that locally dense records might in fact be
a true reflection of the relative suitable of habitat. As in many steps in SDM,
you need to understand something about your data and species to implement
them well. See Phillips et al. (2009) for an approach with MaxEnt to deal with
bias in occurrence records for a group of species.

> # create a RasterLayer with the extent of acgeo

> r <- raster(acg)

> # set the resolution of the cells to (for example) 1 degree
> res(r) <- 1

> # expand (extend) the extent of the RasterLayer a little
> r <- extend(r, extent(r)+1)

> # sample:

> acsel <- gridSample(acg, r, n=1)

> # to illustrate the method and show the result

> p <- rasterToPolygons (r)

> plot(p, border='gray')

> points(acg)

> # selected points in red

> points(acsel, cex=1, col='red', pch='x")
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Note that with the gridSample function you can also do ’chess-board’ sam-
pling. This can be useful to split the data in ’training’ and ’testing’ sets (see
the model evaluation chapter).

At this point, it could be useful to save the cleaned data set. For example
with the function write.table or write.csv so that we can use them later.
We did that, and the saved file is available through dismo and can be retrieved
like this:

> file <- paste(system.file(package="dismo"), '/ex/acaule.csv', sep='"')
> acsel <- read.csv(file)

In a real research project you would want to spend much more time on this
first data-cleaning and completion step, partly with R , but also with other
programs.

2.6 Exercises

1) Use the gbif function to download records for the African elephant (or an-
other species of your preference, try to get one with between 10 and 100
records). Use option "geo=FALSE” to also get records with no (numeri-
cal) georeference.
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2) Summarize the data: how many records are there, how many have coordi-
nates, how many records without coordinates have a textual georeference
(locality description)?

3) Use the 'geocode’ function to georeference up to 10 records without coordi-
nates

4) Make a simple map of all the records, using a color and symbol to distinguish
between the coordinates from gbif and the ones returned by Google (via
the geocode function). Use ’gmap’ to create a basemap.

5) Do you think the observations are a reasonable representation of the distri-
bution (and ecological niche) of the species?

More advanced:

6) Use the 'rasterize’ function to create a raster of the number of observations
and make a map. Use "wrld_simpl” from the maptools package for coun-
try boundaries.

7) Map the uncertainty associated with the georeferences. Some records in data
returned by ghif have that. You can also extract it from the data returned
by the geocode function.
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Chapter 3

Absence and background
points

Some of the early species distribution model algorithms, such as Bioclim
and Domain only use 'presence’ data in the modeling process. Other methods
also use ’absence’ data or ’background’ data. Logistic regression is the classical
approach to analyzing presence and absence data (and it is still much used, often
implemented in a generalized linear modeling (GLM) framework). If you have
a large dataset with presence/absence from a well designed survey, you should
use a method that can use these data (i.e. do not use a modeling method that
only considers presence data). If you only have presence data, you can still use a
method that needs absence data, by substituting absence data with background
data.

Background data (e.g. Phillips et al. 2009) are not attempting to guess at
absence locations, but rather to characterize environments in the study region.
In this sense, background is the same, irrespective of where the species has been
found. Background data establishes the environmental domain of the study,
whilst presence data should establish under which conditions a species is more
likely to be present than on average. A closely related but different concept,
that of "pseudo-absences”, is also used for generating the non-presence class for
logistic models. In this case, researchers sometimes try to guess where absences
might occur — they may sample the whole region except at presence locations,
or they might sample at places unlikely to be suitable for the species. We prefer
the background concept because it requires fewer assumptions and has some
coherent statistical methods for dealing with the “overlap” between presence
and background points (e.g. Ward et al. 2009; Phillips and Elith, 2011).

Survey-absence data has value. In conjunction with presence records, it
establishes where surveys have been done, and the prevalence of the species
given the survey effort. That information is lacking for presence-only data, a
fact that can cause substantial difficulties for modeling presence-only data well.
However, absence data can also be biased and incomplete, as discussed in the
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literature on detectability (e.g., Kéry et al., 2010).

dismo has a function to sample random points (background data) from a
study area. You can use a 'mask’ to exclude area with no data NA, e.g. areas not
on land. You can use an ’extent’ to further restrict the area from which random
locations are drawn. In the example below, we first get the list of filenames
with the predictor raster data (discussed in detail in the next chapter). We use
a raster as a 'mask’ in the randomPoints function such that the background
points are from the same geographic area, and only for places where there are
values (land, in our case).

Note that if the mask has the longitude/latitute coordinate reference sys-
tem, function randomPoints selects cells according to cell area, which varies by
latitude (as in Elith et al., 2011)

> # get the file names

> files <- list.files(path=paste(system.file(package="dismo"), '/ex',
+ sep='"'), pattern='grd', full.names=TRUE )
> # we use the first file to create a RasterLayer

> mask <- raster(files[1])

> # select 500 random points

> # set seed to assure that the examples will always

> # have the same random sample.

> set.seed(1963)

> bg <- randomPoints (mask, 500 )

And inspect the results by plotting

> # set up the plotting area for two maps
> par (mfrow=c(1,2))

> plot(!is.na(mask), legend=FALSE)

> points(bg, cex=0.5)

> # now we repeat the sampling, but limit
> # the area of sampling using a spatial extent
> e <- extent(-80, -53, -39, -22)

> bg2 <- randomPoints (mask, 50, ext=e)

> plot(!is.na(mask), legend=FALSE)

> plot(e, add=TRUE, col='red')

> points(bg2, cex=0.5)
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There are several approaches one could use to sample "pseudo-absence’ points,
i.e. points from more restricted area than ’background’. VanDerWal et al.
(2009) sampled withn a radius of presence points. Here is one way to imple-
ment that, using the Solanum acaule data.

We first read the cleaned and subsetted S. acaule data that we produced in
the previous chapter from the csv file that comes with dismo:

> file <- paste(system.file(package="dismo"), '/ex/acaule.csv', sep='")
> ac <- read.csv(file)

ac is a data.frame. Let’s change it into a SpatialPointsDataFrame

> coordinates(ac) <- “lon+lat
> projection(ac) <- CRS('+proj=longlat')

We first create a ’cricles’ model (see the chapter about geographic models),
using an arbitrary radius of 50 km

> # circles with a radius of 50 km
> x <- circles(ac, d=50000, lonlat=TRUE)

Now we use the rgeos library to ’dissolve’ the circles (remove boundaries
were circles overlap).

> library(rgeos)
> pol <- gUnaryUnion(x@polygons)

And then we take a random sample of points within the polygons. We only
want one point per grid cell.

> # sample randomly from all circles

> sampl <- spsample(pol, 250, type='random', iter=25)
> # get unique cells

> cells <- cellFromXY(mask, sampl)

> length(cells)
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[1] 250

> cells <- unique(cells)
> length(cells)

[1] 167
> xy <- xyFromCell (mask, cells)
Plot to inspect the results:

> plot(pol, axes=TRUE)
> points(xy, cex=0.75, pch=20, col='blue')

20°5 15°5 10°5 5°5

25°5

30°5

Note that the blue points are not all within the polygons (circles), as they
now represent the centers of the selected cells from mask. We could choose to
select only those cells that have their centers within the circles, using the overlay
function.

> spxy <- SpatialPoints(xy, proj4string=CRS('+proj=longlat'))
> o <- over(spxy, x@polygons)
> xyInside <- xy[!is.na(o), ]

Similar results could also be achieved via the raster functions rasterize or
extract.

> # extract cell numbers for the circles

> v <- extract(mask, x@polygons, cellnumbers=T)

> # use rbind to combine the elements in list v

> v <- do.call(rbind, v)

> # get unique cell numbers from which you could sample
> v <- unique(v[,1])

> head(v)
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[1] 15531 15717 17581 17582 17765 17767

> # to display the results

> m <- mask

> m[] <- NA

> mfv] <- 1

> plot(m, ext=extent(x@polygons)+1)
> plot(x@polygons, add=T)

c© 1.0010
o |

%} 1.0005
< 1.0000
09995
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Chapter 4

Environmental data

4.1 Raster data

In species distribution modeling, predictor variables are typically organized
as raster (grid) type files. Each predictor should be a 'raster’ representing a vari-
able of interest. Variables can include climatic, soil, terrain, vegetation, land
use, and other variables. These data are typically stored in files in some kind
of GIS format. Almost all relevant formats can be used (including ESRI grid,
geoTiff, netCDF, IDRIST). Avoid ASCII files if you can, as they tend to consid-
erably slow down processing speed. For any particular study the layers should
all have the same spatial extent, resolution, origin, and projection. If neces-
sary, use functions like crop, extend, aggregate, resample, and projec-
tRaster from the ’raster’ package to prepare your predictor variable data.
See the help files and the vignette of the raster package for more info on how
to do this. The set of predictor variables (rasters) can be used to make a
'RasterStack’, which is a collection of 'RasterLayer’ objects (see the raster
package for more info).

Here we make a list of files that are installed with the dismo package and
then create a rasterStack from these, show the names of each layer, and finally
plot them all.

> files <- list.files(path=paste(system.file(package="dismo"),

+ '/ex', sep='"), pattern='grd', full.names=TRUE )
> # The above finds all the files with extension "grd" in the

> # examples ("ex") directory of the dismo package. You do not
> # need such a complex statement to get your own files.

> files

[1] "d:/temp/RtmpmYStGt/Rinst19e02d22666d/dismo/ex/biol.grd"

[2] "d:/temp/RtmpmYStGt/Rinst19e02d22666d/dismo/ex/biol2.grd"
[3] "d:/temp/RtmpmYStGt/Rinst19e02d22666d/dismo/ex/biol6.grd"
[4] "d:/temp/RtmpmYStGt/Rinst19e02d22666d/dismo/ex/biol7.grd"
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(5]
(6]
[7]
(8]
(9]

"d:/temp/RtmpmYStGt/Rinst19e02d22666d/dismo/ex/biob.grd"
"d:/temp/RtmpmYStGt/Rinst19e02d22666d/dismo/ex/bio6.grd"
"d:/temp/RtmpmYStGt/Rinst19e02d22666d/dismo/ex/bio7.grd"
"d:/temp/RtmpmYStGt/Rinst19e02d22666d/dismo/ex/bio8.grd"

"d:/temp/RtmpmYStGt/Rinst19e02d22666d/dismo/ex/biome.grd"

> predictors <- stack(files)

> predictors

1
14

class : RasterStack
dimensions : 192, 186, 35712, 9 (nrow, ncol, ncell, nlayers)
resolution : 0.5, 0.5 (x, y)
extent : -125, -32, -56, 40 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
names : biol, biol2, biol6, biol7, biob, bio6, bio7, bio8, biome
min values -23, 0, 0, 0, 61, -212, 60, -66,
max values 289, 7682, 2458, 1496, 422, 242, 461, 323,
> names (predictors)
[1] "biol" "biol2" "biol6" "biol7" "bio5" "bio6" "bio7"
[8] "bio8" "biome"
> plot(predictors)
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We can also make a plot of a single layer in a RasterStack, and plot some
additional data on top of it. First get the world boundaries and the bradypus
data:

> library(maptools)

> data(wrld_simpl)

> file <- paste(system.file(package="dismo"), "/ex/bradypus.csv", sep="")
> bradypus <- read.table(file, header=TRUE, sep=',"')

> # we do not need the first column

> bradypus <- bradypus[,-1]

And now plot:

# first layer of the RasterStack
plot(predictors, 1)

# note the "add=TRUE" argument with plot
plot (wrld_simpl, add=TRUE)

# with the points function, "add" is implicit
points(bradypus, col='blue')
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The example above uses data representing ’'bioclimatic variables’ from the
WorldClim database (http://www.worldclim.org, Hijmans et al, 2004) and
‘terrestrial biome’ data from the WWF. (http://www.worldwildlife.org/

25


http://www.worldclim.org
http://www.worldwildlife.org/science/data/item1875.html

science/data/item1875.html, Olsen et al., 2001). You can go to these web-
sites if you want higher resolution data. You can also use the getData function
from the raster package to download WorldClim climate data.

Predictor variable selection can be important, particularly if the objective
of a study is explanation. See, e.g., Austin and Smith (1987), Austin (2002),
Mellert et al., (2011). The early applications of species modeling tended to focus
on explanation (Elith and Leathwick 2009). Nowadays, the objective of SDM
tends to be prediction. For prediction within the same geographic area, variable
selection might arguably be relatively less important, but for many prediction
tasks (e.g. to new times or places, see below) variable selection is critically
important. In all cases it is important to use variables that are relevant to the
ecology of the species (rather than with the first dataset that can be found on
the web!). In some cases it can be useful to develop new, more ecologically
relevant, predictor variables from existing data. For example, one could use
land cover data and the focal function in the raster package to create a new
variable that indicates how much forest area is available within x km of a grid
cell, for a species that might have a home range of x.

4.2 Extracting values from rasters

We now have a set of predictor variables (rasters) and occurrence points. The
next step is to extract the values of the predictors at the locations of the points.
(This step can be skipped for the modeling methods that are implemented in the
dismo package). This is a very straightforward thing to do using the ’extract’
function from the raster package. In the example below we use that function first
for the Bradypus occurrence points, then for 500 random background points. We
combine these into a single data.frame in which the first column (variable "pb’)
indicates whether this is a presence or a background point. ’biome’ is categorical
variable (called a ’factor’ in R ) and it is important to explicitly define it that
way, so that it won’t be treated like any other numerical variable.

> presvals <- extract(predictors, bradypus)

> # setting random seed to always create the same

> # random set of points for this example

> set.seed(0)

backgr <- randomPoints(predictors, 500)

absvals <- extract(predictors, backgr)

pb <- c(rep(1, nrow(presvals)), rep(0, nrow(absvals)))
sdmdata <- data.frame(cbind(pb, rbind(presvals, absvals)))
sdmdatal, 'biome'] = as.factor(sdmdatal, 'biome'])

head (sdmdata)

V V.V Vv \VvyVv

pb biol biol2 biol6 biol7 biob5 bio6 bio7 bio8 biome

1 1 263 1639 724 62 338 191 147 261 1
2 1 263 1639 724 62 338 191 147 261 1
3 1 263 3624 1547 373 329 150 179 271 1

26


http://www.worldwildlife.org/science/data/item1875.html

4 1 243 1693

5 1 243 1693

6 1 252 2501

> tail(sdmdata)
pb biol biol2

611 0 242 2648

612 0 252 1442

613 0 216 62

614 0 250 2362

615 0 267 2255

616 0 120 1094

> summary (sdmdata)
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Min.
1st Qu.:
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4 :
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: 662.

1 233.
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There are alternative approaches possible here. For example, one could ex-
tract multiple points in a radius as a potential means for dealing with mismatch
between location accuracy and grid cell size. If one would make 10 datasets
that represent 10 equally valid "samples” of the environment in that radius,
that could be then used to fit 10 models and explore the effect of uncertainty in
location.

To visually investigate colinearity in the environmental data (at the presence
and background points) you can use a pairs plot. See Dormann et al. (2013)
for a discussion of methods to remove colinearity.

> # pairs plot of the values of the climate data
> # at the bradypus occurrence sites.
> pairs(sdmdatal,2:5], cex=0.1, fig=TRUE)
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Part 11

Model fitting, prediction,
and evaluation
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Chapter 5

Model fitting

Model fitting is technically quite similar across the modeling methods that
exist in R . Most methods take a "formula’ identifying the dependent and inde-
pendent variables, accompanied with a data.frame that holds these variables.
Details on specific methods are provided further down on this document, in part
II.

A simple formula could look like: y ~ x1 + x2 + x3, i.e. y is a function
of x1, x2, and x3. Another example is y ~ ., which means that y is a func-
tion of all other variables in the data.frame provided to the function. See
help(’formula’) for more details about the formula syntax. In the example
below, the function ’glm’ is used to fit generalized linear models. glm returns a
model object.

Note that in the examples below, we are using the data.frame 'sdmdata’ that
as generated in the previous chapter.

> m1 <- glm(pb ~ biol + bio5 + biol2, data=sdmdata)
> class(mi1)

[1] Ilglmll lllmll
> summary (m1)

Call:
glm(formula = pb ~ biol + bio5 + biol2, data = sdmdata)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.80267 -0.24190 -0.09746 0.07799 0.91623

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.737e-01 1.108e-01 1.568 0.11740
biol 1.388e-03 3.989e-04 3.478 0.00054 x**x
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biob -1.576e-03 4.814e-04 -3.273 0.00112 **
biol2 1.265e-04 1.728e-05 7.320 7.81le-13 *xx

Signif. codes:
0 '"sxx' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.1212146)
Null deviance: 94.156 on 615 degrees of freedom
Residual deviance: 74.183 on 612 degrees of freedom

AIC: 454.24

Number of Fisher Scoring iterations: 2

> m2 = glm(pb ~ ., data=sdmdata)

> m2
Call: glm(formula = pb ~ ., data = sdmdata)
Coefficients:
(Intercept) biol biol2 biol6
0.3068028 -0.0004620 0.0003667 -0.0005045
biol7 biob bio6 bio7
-0.0005712 -0.0262929 0.0258837 0.0251293
bio8 biome2 biome3 biomed
0.0005556 -0.0881303 -0.1039929 -0.0975245
biomeb biome7 biome8 biome9
-0.0614565 -0.2076457 -0.0372665 -0.0705417
biomel0 biomell biomel?2 biomel3
-0.0851303 -0.3587741 -0.0220212 0.0221579
biomel4d
-0.0585088

Degrees of Freedom: 615 Total (i.e. Null); 595 Residual
Null Deviance: 94.16
Residual Deviance: 69.93 AIC: 451.8

Models that are implemented in dismo do not use a formula (and most
models only take presence points). Bioclim is an example. It only uses presence
data, so we use 'presvals’ instead of ’sdmdata’.

> bc <- bioclim(presvals[,c('biol', 'bio5', 'bio12')])
> class(bc)

[1] "Bioclim"
attr(, "package")
[1] "dismo"
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> bc

class

variables:

: Bioclim

presence points: 116
biol biob

263
263
253
243
243

338
338
329
318
318

252
240
275
271
274
...

© 00N O WN -

-
o

> pairs(bc)

biol2
1639
1639
3624
1693
1693
2501
1214
2259
2212
2233

.9

biol biob5 biol2

presence

250 300 350
1 1 1

bio1

0.94
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200
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Chapter 6

Model prediction

Different modeling methods return different type of 'model’ objects (typically
they have the same name as the modeling method used). All of these ‘'model’ ob-
jects, irrespective of their exact class, can be used to with the predict function
to make predictions for any combination of values of the independent variables.
This is illustrated in the example below where we make predictions with the
glm model object 'm1’” and for bioclim model 'b¢’, for three records with values
for variables biol, bio5 and biol2 (the variables used in the example above to
create the model objects).

> biol c(40, 150, 200)

> bio5 = c(60, 115, 290)

> biol2 = c¢(600, 1600, 1700)

> pd = data.frame(cbind(biol, bio5, biol2))
> pd

biol biob biol2
1 40 60 600
150 115 1600
3 200 290 1700

N

> predict(ml, pd)

1 2 3
0.2105789 0.4030509 0.2093338

> predict(bc, pd)

Making such predictions for a few environments can be very useful to explore
and understand model predictions. For example it used in the response function
that creates response plots for each variable, with the other variables at their
median value.

> response (bc)
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predicted value
predicted value
predicted val

02
02
02

150 200 250 200 250 300 350 2000 4000 6000

biot bios biol2

In most cases, howver, the purpose is SDM is to create a map of suitability
scores. We can do that by providing the predict function with a Raster® object
and a model object. As long as the variable names in the model object are
available as layers (layerNames) in the Raster* object.

> names (predictors)

[1] "biol" "biol2" "biol6" "biol7" "biob5" "bio6" "bioT7"
[8] "bio8" "biome"

> p <- predict(predictors, m1)
> plot(p)
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Chapter 7

Model evaluation

It is much easier to create a model and make a prediction than to assess how
good the model is, and whether it is can be used for a specific purpose. Most
model types have different measures that can help to assess how good the model
fits the data. It is worth becoming familiar with these and understanding their
role, because they help you to assess whether there is anything substantially
wrong with your model. Most statistics or machine learning texts will provide
some details. For instance, for a GLM one can look at how much deviance is
explained, whether there are patterns in the residuals, whether there are points
with high leverage and so on. However, since many models are to be used for
prediction, much evaluation is focused on how well the model predicts to points
not used in model training (see following section on data partitioning). Before
we start to give some examples of statistics used for this evaluation, it is worth
considering what else can be done to evaluate a model. Useful questions include:

- Does the model seem sensible, ecologically?

- Do the fitted functions (the shapes of the modeled relationships) make
sense?

- Do the predictions seem reasonable? (map them, and think about them)?

- Are there any spatial patterns in model residuals? (see Leathwick and
Whitehead 2001 for an interesting example)

Most modelers rely on cross-validation. This consists of creating a model
with one ’training’ data set, and testing it with another data set of known
occurrences. Typically, training and testing data are created through random
sampling (without replacement) from a single data set. Only in a few cases,
e.g. Elith et al., 2006, training and test data are from different sources and
pre-defined.

Different measures can be used to evaluate the quality of a prediction (Field-
ing and Bell, 1997, Liu et al., 2011; and Potts and Elith (2006) for abundance
data), perhaps depending on the goal of the study. Many measures for eval-
uating models based on presence-absence or presence-only data are ’threshold
dependent’. That means that a threshold must be set first (e.g., 0.5, though 0.5
is rarely a sensible choice — e.g. see Lui et al. 2005). Predicted values above
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that threshold indicate a prediction of 'presence’, and values below the thresh-
old indicate ’absence’. Some measures emphasize the weight of false absences;
others give more weight to false presences.

Much used statistics that are threshold independent are the correlation co-
efficient and the Area Under the Receiver Operator Curve (AUROC, generally
further abbreviated to AUC). AUC is a measure of rank-correlation. In unbi-
ased data, a high AUC indicates that sites with high predicted suitability values
tend to be areas of known presence and locations with lower model prediction
values tend to be areas where the species is not known to be present (absent or
a random point). An AUC score of 0.5 means that the model is as good as a
random guess. See Phillips et al. (2006) for a discussion on the use of AUC in
the context of presence-only rather than presence/absence data.

Here we illustrate the computation of the correlation coefficient and AUC
with two random variables. p (presence) has higher values, and represents the
predicted value for 50 known cases (locations) where the species is present, and
a (absence) has lower values, and represents the predicted value for 50 known
cases (locations) where the species is absent.

> p <- rnorm(50, mean=0.7, sd=0.3)

> a <- rnorm(50, mean=0.4, sd=0.4)

> par(mfrow=c(1, 2))

> plot(sort(p), col='red', pch=21)

> points(sort(a), col='blue', pch=24)

> legend(1, 0.95 * max(a,p), c('presence', 'absence'),

+ pch=c(21,24), col=c('red', 'blue'))

> comb = c(p,a)

> group = c(rep('presence', length(p)), rep('absence', length(a)))
> boxplot (comb~group, col=c('blue', 'red'))
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We created two variables with random normally distributed values, but with
different mean and standard deviation. The two variables clearly have different
distributions, and the values for 'presence’ tend to be higher than for ’absence’.
Here is how you can compute the correlation coefficient and the AUC:

> group = c(rep(1, length(p)), rep(0, length(a)))
> cor.test(comb, group)$estimate

cor
0.3375294

> mv <- wilcox.test(p,a)
> auc <- as.numeric(mv$statistic) / (length(p) * length(a))
> auc

[1] 0.6872

Below we show how you can compute these, and other statistics more con-
veniently, with the evaluate function in the dismo package. See 7evaluate for
info on additional evaluation measures that are available. ROC/AUC can also
be computed with the ROCR package.

> e <- evaluate(p=p, a=a)
> class(e)

[1] "ModelEvaluation"
attr(, "package")

[1] "dismo"

> e

class : ModelEvaluation
n presences : 50

n absences : 50

AUC : 0.6872

cor : 0.3375294

max TPR+TNR at : 0.3449397
> par(mfrow=c(1, 2))

> density(e)
> boxplot(e, col=c('blue', 'red'))
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Now back to some real data, presence-only in this case. We’ll divide the data
in two random sets, one for training a Bioclim model, and one for evaluating
the model.

> samp <- sample(nrow(sdmdata), round(0.75 * nrow(sdmdata)))

> traindata <- sdmdatal[samp, ]

> traindata <- traindatal[traindatal,1] == 1, 2:9]

> testdata <- sdmdata[-samp,]

> bc <- bioclim(traindata)

> e <- evaluate(testdata[testdata==1,], testdatal[testdata==0,], bc)
> e

class : ModelEvaluation
n presences : 26

n absences ;128

AUC 1 0.7777945

cor : 0.3619074

max TPR+TNR at : 0.06656667

> plot(e, 'ROC')
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In real projects, you would want to use k-fold data partitioning instead of a
single random sample. The dismo function kfold facilitates that type of data
partitioning. It creates a vector that assigns each row in the data matrix to a a
group (between 1 to k).

Let’s first create presence and background data.

> pres <- sdmdatal[sdmdatal[,1] == 1, 2:9]
> back <- sdmdatal[sdmdatal,1] == 0, 2:9]

The background data will only be used for model testing and does not need
to be partitioned. We now partition the data into 5 groups.

>k <-5
> group <- kfold(pres, k)
> group[1:10]

[11 5125413453
> unique (group)
[1] 61243

Now we can fit and test our model five times. In each run, the records
corresponding to one of the five groups is only used to evaluate the model, while
the other four groups are only used to fit the model. The results are stored in
a list called ’e’.
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> e <= 1list()
> for (i in 1:k) {

+ train <- pres[group != i,]

+ test <- pres[group == i,]

+ bc <- bioclim(train)

+ e[[i]] <- evaluate(p=test, a=back, bc)
+ }

We can extract several things from the objects in ’e’, but let’s restrict our-
selves to the AUC values and the "maximum of the sum of the sensitivity (true
positive rate) and specificity (true negative rate)” (this is sometimes uses as a
threshold for setting cells to presence or absence).

> auc <- sapply( e, function(x){slot(x, 'auc’')} )
> auc

[1] 0.7836522 0.7813478 0.7148750 0.8107391 0.7198261

> mean (auc)

[1] 0.762088

> sapply( e, function(x){ x@t[which.max(x@TPR + x@TNR)] } )
[1] 0.06441613 0.09667419 0.02163913 0.08592151 0.03215806

> # equivalent
> # sapply( e, function(x){ x@t[which.max(x@TPR + x@TNR)] } )

The use of AUC in evaluating SDMs has been criticized (Lobo et al. 2008,
Jiménez-Valverde 2011). A particularly sticky problem is that the values of
AUC vary with the spatial extent used to select background points. Generally,
the larger that extent, the higher the AUC value. Therefore, AUC values are
generally biased and cannot be directly compared. Hijmans (2012) suggests that
one could remove “spatial sorting bias” (the difference between the distance from
testing-presence to training-presence and the distance from testing-absence to
training-presence points) through "point-wise distance sampling”.

nr <- nrow(bradypus)

s <- sample(nr, 0.25 * nr)
pres_train <- bradypus[-s, ]
pres_test <- bradypus([s, ]
nr <- nrow(backgr)

s <- sample(nr, 0.25 * nr)
back_train <- backgr[-s, ]

>
>
>
>
>
>
>
> back_test <- backgr[s, ]

v

sb <- ssb(pres_test, back_test, pres_train)

sb[,1] / sb[,2]

v
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%
0.06870376

sb[,1] / sb[,2] is an indicator of spatial sorting bias (SSB). If there is no SSB
this value should be 1, in these data it is close to zero, indicating that SSB is
very strong. Let’s create a subsample in which SSB is removed.

> i <- pwdSample(pres_test, back_test, pres_train, n=1, tr=0.1)
> pres_test_pwd <- pres_test[!is.na(i[,1]), ]

> back_test_pwd <- back_test[na.omit(as.vector(i)), ]

> sb2 <- ssb(pres_test_pwd, back_test_pwd, pres_train)

> sb2[1]/ sb2[2]

[1] 1.006228
Spatial sorting bias is much reduced now; notice how the AUC dropped!

> bc <- bioclim(predictors, pres_train)
> evaluate(bc, p=pres_test, a=back_test, x=predictors)

class : ModelEvaluation
n presences : 29

n absences 1 1256

AUC : 0.7605517

cor : 0.1765035

max TPR+TNR at : 0.03438276

> evaluate(bc, p=pres_test_pwd, a=back_test_pwd, x=predictors)

class : ModelEvaluation
n presences ¢ 12

n absences : 12

AUC : 0.21875

cor : -0.5111598

max TPR+TNR at : -1le-04
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Part 111

Modeling methods
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Chapter 8

Types of algorithms & data
used in examples

A large number of algorithms has been used in species distribution mod-
eling. They can be classified as ’profile’, 'regression’, and 'machine learning’
methods. Profile methods only consider 'presence’ data, not absence or back-
ground data. Regression and machine learning methods use both presence and
absence or background data. The distinction between regression and machine
learning methods is not sharp, but it is perhaps still useful as way to clas-
sify models. Another distinction that one can make is between presence-only
and presence-absence models. Profile methods are always presence-only, other
methods can be either, depending if they are used with survey-absence or with
pseudo-absence/backround data. An entirely different class of models consists of
models that only, or primarily, use the geographic location of known occurences,
and do not rely on the values of predictor variables at these locations. We refer
to these models as 'geographic models’. Below we discuss examples of these
different types of models.

Let’s first recreate the data we have used so far, such that you can step into
the code starting here:

> files <- list.files(path=paste(system.file(package="dismo"),

+ '/ex', sep='"'), pattern='grd', full.names=TRUE )
> predictors <- stack(files)

> file <- paste(system.file(package="dismo"), "/ex/bradypus.csv", sep="")
> bradypus <- read.table(file, header=TRUE, sep=',')

> bradypus <- bradypus[,-1]

> presvals <- extract(predictors, bradypus)

> set.seed(0)

> backgr <- randomPoints(predictors, 500)

> absvals <- extract(predictors, backgr)

> pb <- c(rep(1, nrow(presvals)), rep(0, nrow(absvals)))

> sdmdata <- data.frame(cbind(pb, rbind(presvals, absvals)))
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> sdmdatal[, 'biome'] = as.factor(sdmdatal, 'biome'])

We will use the same data to illustrate all models, except that some models
cannot use categorical variables. So for those models we drop the categorical
variables from the predictors stack.

> pred_nf <- dropLayer(predictors, 'biome')

We use the Bradypus data for presence of a species. First we make a training
and a testing set.

> group <- kfold(bradypus, 5)
> pres_train <- bradypus[group != 1, ]
> pres_test <- bradypus[group == 1, ]

To speed up processing, let’s restrict the predictions to a more restricted
area (defined by a rectangular extent):

> ext = extent(-90, -32, -33, 23)

Background data for training and a testing set. The first layer in the Raster-
Stack is used as a 'mask’. That ensures that random points only occur within
the spatial extent of the rasters, and within cells that are not NA, and that there
is only a single absence point per cell. Here we further restrict the background
points to be within 12.5% of our specified extent ’ext’.

> backg <- randomPoints(pred_nf, n=1000, ext=ext, extf = 1.25)
> colnames(backg) = c('lon', 'lat')

> group <- kfold(backg, 5)

> backg_train <- backglgroup != 1, ]

> backg_test <- backglgroup == 1, ]

r = raster(pred_nf, 1)

plot(!is.na(r), col=c('white', 'light grey'), legend=FALSE)
plot(ext, add=TRUE, col='red', lwd=2)

points(backg_train, pch='-', cex=0.5, col='yellow')
points(backg_test, pch='-', cex=0.5, col='black')
points(pres_train, pch= '+', col='green')

points(pres_test, pch='+', col='blue')

vV VVVVVYV
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Chapter 9

Profile methods

The three methods described here, Bioclim, Domain, and Mahal. These
methods are implemented in the dismo package, and the procedures to use
these models are the same for all three.

9.1 Bioclim

The BIOCLIM algorithm has been extensively used for species distribution
modeling. BIOCLIM is a classic ’climate-envelope-model’ (Booth et al., 2014).
Although it generally does not perform as good as some other modeling methods
(Elith et al. 2006), particularly in the context of climate change (Hijmans and
Graham, 2006), it is still used, among other reasons because the algorithm is
easy to understand and thus useful in teaching species distribution modeling.
The BIOCLIM algorithm computes the similarity of a location by comparing
the values of environmental variables at any location to a percentile distribution
of the values at known locations of occurrence (’training sites’). The closer to
the 50th percentile (the median), the more suitable the location is. The tails
of the distribution are not distinguished, that is, 10 percentile is treated as
equivalent to 90 percentile. In the ’dismo’ implementation, the values of the
upper tail values are transformed to the lower tail, and the minimum percentile
score across all the environmental variables is used (i.e., BIOCLIM uses an
approach like Liebig’s law of the minimum). This value is subtracted from 1
and then multiplied with two so that the results are between 0 and 1. The
reason for scaling this way is that the results become more like that of other
distribution modeling methods and are thus easier to interpret. The value 1 will
rarely be observed as it would require a location that has the median value of
the training data for all the variables considered. The value 0 is very common
as it is assigned to all cells with a value of an environmental variable that is
outside the percentile distribution (the range of the training data) for at least
one of the variables.

Earlier on, we fitted a Bioclim model using data.frame with each row repre-
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senting the environmental data at known sites of presence of a species. Here we
fit a bioclim model simply using the predictors and the occurrence points (the
function will do the extracting for us).

> bc <- bioclim(pred_nf, pres_train)
> plot(bc, a=1, b=2, p=0.85)
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We evaluate the model in a similar way, by providing presence and back-
ground (absence) points, the model, and a RasterStack:

> e <- evaluate(pres_test, backg_test, bc, pred_nf)
> e

class : ModelEvaluation
n presences : 23

n absences : 200

AUC : 0.6632609

cor : 0.1803688

max TPR+TNR at : 0.08592151

Find a threshold

> tr <- threshold(e, 'spec_sens')
> tr
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[1] 0.08592151

And we use the RasterStack with predictor variables to make a prediction
to a RasterLayer:

> pb <- predict(pred_nf, bc, ext=ext, progress='")
> pb

class : RasterLayer

dimensions : 112, 116, 12992 (nrow, ncol, ncell)

resolution : 0.5, 0.5 (x, y)

extent : -90, -32, -33, 23 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
data source : in memory

names : layer

values : 0, 0.7741935 (min, max)

par (mfrow=c(1,2))

plot(pb, main='Bioclim, raw values')

plot (wrld_simpl, add=TRUE, border='dark grey')
plot(pb > tr, main='presence/absence')

plot (wrld_simpl, add=TRUE, border='dark grey')
points(pres_train, pch='+")
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Please note the order of the arguments in the predict function. In the ex-
ample above, we used predict (pred_nf, bc) (first the RasterStack, then the
model object), which is little bit less efficient than predict(bc, pred_nf) (first the
model, than the RasterStack). The reason for using the order we have used, is
that this will work for all models, whereas the other option only works for the
models defined in the dismo package, such as Bioclim, Domain, and Maxent,
but not for models defined in other packages (random forest, boosted regression
trees, glm, etc.).
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9.2 Domain

The Domain algorithm (Carpenter et al. 1993) has been extensively used
for species distribution modeling. It did not perform very well in a model
comparison (Elith et al. 2006) and very poorly when assessing climate change
effects (Hijmans and Graham, 2006). The Domain algorithm computes the
Gower distance between environmental variables at any location and those at
any of the known locations of occurrence ('training sites’).

The distance between the environment at point A and those of the known
occurrences for a single climate variable is calculated as the absolute difference in
the values of that variable divided by the range of the variable across all known
occurrence points (i.e., the distance is scaled by the range of observations). For
each variable the minimum distance between a site and any of the training
points is taken. The Gower distance is then the mean of these distances over all
environmental variables. The algorithm assigns to a place the distance to the
closest known occurrence (in environmental space).

To integrate over environmental variables, the distance to any of the variables
is used. This distance is subtracted from one, and (in this R implementation)
values below zero are truncated so that the scores are between 0 (low) and 1
(high).

Below we fit a domain model, evaluate it, and make a prediction. We map
the prediction, as well as a map subjectively classified into presence / absence.

> dm <- domain(pred_nf, pres_train)
> e <- evaluate(pres_test, backg_test, dm, pred_nf)
> e

class : ModelEvaluation
n presences : 23

n absences : 200

AUC : 0.7258696

cor : 0.2290855

max TPR+TNR at : 0.6911933

pd = predict(pred_nf, dm, ext=ext, progress='')
par (mfrow=c(1,2))

plot(pd, main='Domain, raw values')

plot (wrld_simpl, add=TRUE, border='dark grey')
tr <- threshold(e, 'spec_sens')

plot(pd > tr, main='presence/absence')

plot (wrld_simpl, add=TRUE, border='dark grey')
points(pres_train, pch='+")

VVVVVVVYV
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9.3 Mahalanobis

The mahal function implements a species distribution model based on the
Mahalanobis distance (Mahalanobis, 1936). Mahalanobis distance takes into
account the correlations of the variables in the data set, and it is not dependent
on the scale of measurements.

> mm <- mahal (pred_nf, pres_train)
> e <- evaluate(pres_test, backg_test, mm, pred_nf)
> e

class : ModelEvaluation
n presences : 23

n absences : 200

AUC : 0.8013043

cor : 0.150431

max TPR+TNR at : -1.993326

pm = predict(pred_nf, mm, ext=ext, progress='')
par (mfrow=c(1,2))

pm[pm < -10] <- -10

plot(pm, main='Mahalanobis distance')
plot(wrld_simpl, add=TRUE, border='dark grey')
tr <- threshold(e, 'spec_sens')

plot(pm > tr, main='presence/absence')

plot (wrld_simpl, add=TRUE, border='dark grey')
points(pres_train, pch='+"')
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Chapter 10

Regression models

The remaining models need to be fit with presence and absence (background)
data. With the exception of 'maxent’, we cannot fit the model with a Raster-
Stack and points. Instead, we need to extract the environmental data values
ourselves, and fit the models with these values.

> train <- rbind(pres_train, backg_train)

> pb_train <- c(rep(1, nrow(pres_train)), rep(0, nrow(backg_train)))
> envtrain <- extract(predictors, train)

> envtrain <- data.frame( cbind(pa=pb_train, envtrain) )

> envtrain[, 'biome'] = factor(envtrain[, 'biome'], levels=1:14)

> head(envtrain)

pa biol biol2 biol6 biol7 biob5 bio6 bio7 bio8 biome
1 263 1639 724 62 338 191 147 261
263 1639 724 62 338 191 147 261
243 1693 775 186 318 150 168 264
240 1214 516 146 317 150 168 261
275 2269 956 208 335 231 104 270
271 2212 807 281 327 220 107 266

O WN -
N e
L N

testpres <- data.frame( extract(predictors, pres_test) )
testbackg <- data.frame( extract(predictors, backg_test) )
testpres[ ,'biome'] = factor(testpres[ ,'biome'], levels=1:14)
testbackg[ , 'biome'] = factor(testbackg[ ,'biome'], levels=1:14)

vV V. Vv VvV

10.1 Generalized Linear Models

A generalized linear model (GLM) is a generalization of ordinary least squares
regression. Models are fit using maximum likelihood and by allowing the linear
model to be related to the response variable via a link function and by allow-
ing the magnitude of the variance of each measurement to be a function of its
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predicted value. Depending on how a GLM is specified it can be equivalent to
(multiple) linear regression, logistic regression or Poisson regression. See Guisan
et al (2002) for an overview of the use of GLM in species distribution modeling.

In R, GLM is implemented in the ’glm’ function, and the link function and
error distribution are specified with the ’family’ argument. Examples are:

family = binomial(link = "logit")

family = gaussian(link = "identity")

family = poisson(link = "log")

Here we fit two basic glm models. All variables are used, but without inter-
action terms.

> # logistic regression:

> gml <- glm(pa ~ biol + bio5 + bio6 + bio7 + bio8 + biol2 + biol6 + biol7,
+ family = binomial(link = "logit"), data=envtrain)

> summary(gmi)

Call:
glm(formula = pa ~ biol + bio5 + bio6 + bio7 + bio8 + biol2 +
biol6 + biol7, family = binomial(link = "logit"), data = envtrain)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.08020 -0.48082 -0.19140 -0.04699 2.85160

Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) 4.4891909 1.6420237 2.734 0.00626 x*x*

biol 0.0083071 0.0532014 0.156 0.87592
biob -0.0111564 0.2782106 -0.040 0.96801
bio6 -0.0017678 0.2780362 -0.006 0.99493
bio7 -0.0391306 0.2775435 -0.141 0.88788
bio8 -0.0018952 0.0237822 -0.080 0.93648
biol2 0.0020173 0.0007182 2.809 0.00498 x*x
biol6 -0.0026832 0.0015359 -1.747 0.08064 .
biol7 -0.0049693 0.0016051 -3.096 0.00196 **
Signif. codes:

0 '"xkk' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 " ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 596.69 on 892 degrees of freedom
Residual deviance: 426.30 on 884 degrees of freedom

AIC: 444.3

Number of Fisher Scoring iterations: 8

]



> coef (gm1)

(Intercept) biol biob5 bio6
4.489190877 0.008307062 -0.011156406 -0.001767827
bio7 bio8 biol2 biol6
-0.039130606 -0.001895200 0.002017296 -0.002683183
biol7
-0.004969321

> gm2 <- glm(pa ~ biol+biob5 + bio6 + bio7 + bio8 + biol2 + biol6 + biol7,
+ family = gaussian(link = "identity"), data=envtrain)
> evaluate(testpres, testbackg, gml)

class : ModelEvaluation
n presences : 23

n absences : 200

AUC : 0.8143478

cor : 0.3039256

max TPR+TNR at : -1.721293

> ge2 <- evaluate(testpres, testbackg, gm2)

> ge2

class : ModelEvaluation
n presences : 23

n absences : 200

AUC : 0.7926087

cor : 0.359821

max TPR+TNR at : 0.1257459

pg <- predict(predictors, gm2, ext=ext)

par (mfrow=c(1,2))

plot(pg, main='GLM/gaussian, raw values')

plot (wrld_simpl, add=TRUE, border='dark grey')
tr <- threshold(ge2, 'spec_sens')

plot(pg > tr, main='presence/absence')
plot(wrld_simpl, add=TRUE, border='dark grey')
points(pres_train, pch='+"')
points(backg_train, pch='-', cex=0.25)
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10.2 Generalized Additive Models

Generalized additive models (GAMs; Hastie and Tibshirani, 1990; Wood,
2006) are an extension to GLMs. In GAMSs, the linear predictor is the sum of
smoothing functions. This makes GAMs very flexible, and they can fit very com-
plex functions. It also makes them very similar to machine learning methods.
In R, GAMs are implemented in the 'mgev’ package.
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Chapter 11

Machine learning methods

There is a variety of machine learning (sometimes referred to data mining)
methods in R . For a long time there have been packages to do Artifical Neural
Networks (ANN) and Classification and Regression Trees (CART). More re-
cent methods include Random Forests, Boosted Regression Trees, and Support
Vector Machines. Through the dismo package you can also use the Maxent
program, that implements the most widely used method (maxent) in species
distribution modeling. Breiman (2001a) provides a accessible introduction to
machine learning, and how it contrasts with ’classical statistics’ (model based
probabilistic inference). Hastie et al., 2009 provide what is probably the most
extensive overview of these methods.

All the model fitting methods discussed here can be tuned in several ways.
We do not explore that here, and only show the general approach. If you want
to use one of the methods, then you should consult the R help pages (and other
sources) to find out how to best implement the model fitting procedure.

11.1 Maxent

MaxEnt (Maximum Entropy; Phillips et al., 2006) is the most widely used
SDM algorithm. Elith et al. (2010) provide an explanation of the algorithm
(and software) geared towards ecologists. MaxEnt is available as a stand-
alone Java program. Dismo has a function 'maxent’ that communicates with
this program. To use it you must first download the program from http:
//www.cs.princeton.edu/"schapire/maxent/. Put the file 'maxent.jar’ in
the ’java’ folder of the ’dismo’ package. That is the folder returned by sys-
tem.file("java", package="dismo"). Please note that this program (maxent
cannot be redistributed or used for commercial purposes.

Because MaxEnt is implemented in dismo you can fit it like the profile meth-
ods (e.g. Bioclim). That is, you can provide presence points and a RasterStack.
However, you can also first fit a model, like with the other methods such as glm.
But in the case of MaxEnt you cannot use the formula notation.
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> # checking if the jar file is present. If not, skip this bit

> jar <- paste(system.file(package="dismo"), "/java/maxent.jar", sep='")
> if (file.exists(jar)) {

+ xm <- maxent (predictors, pres_train, factors='biome')

+ plot (xm)

+ } else {

+ cat ('cannot run this example because maxent is not available')

+ plot (1)

+ }

Variable contribution
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A response plot:

> if (file.exists(jar)) {

+ response (xm)

+ } else {

+ cat('cannot run this example because maxent is not available')
+ plot(1)

+ F
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if (file.exists(jar)) {
e <- evaluate(pres_test, backg_test, xm, predictors)
e
px <- predict(predictors, xm, ext=ext, progress='")
par (mfrow=c(1,2))
plot (px, main='Maxent, raw values')
plot (wrld_simpl, add=TRUE, border='dark grey')
tr <- threshold(e, 'spec_sens')
plot(px > tr, main='presence/absence')
plot(wrld_simpl, add=TRUE, border='dark grey')
points(pres_train, pch='+"')
} else {
plot(1)
}
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11.2 Boosted Regression Trees

Boosted Regression Trees (BRT) is, unfortunately, known by a large num-
ber of different names. It was developed by Friedman (2001), who referred
to it as a "Gradient Boosting Machine” (GBM). It is also known as "Gradient
Boost”, "Stochastic Gradient Boosting”, "Gradient Tree Boosting”. The method
is implemented in the 'gbm’ package in R .

The article by Elith, Leathwick and Hastie (2009) describes the use of BRT
in the context of species distribution modeling. Their article is accompanied
by a number of R functions and a tutorial that have been slightly adjusted and
incorporated into the 'dismo’ package. These functions extend the functions in
the 'gbm’ package, with the goal to make these easier to apply to ecological data,
and to enhance interpretation. The adapted tutorial is available as a vignette
to the dismo package. You can access it via the index of the help pages, or with
this command: vignette(’gbm’, ’dismo’)

11.3 Random Forest

The Random Forest (Breiman, 2001b) method is an extension of Classifica-
tion and regression trees (CART; Breiman et al., 1984). In R it is implemented
in the function ‘randomForest’ in a package with the same name. The function
randomForest can take a formula or, in two separate arguments, a data.frame
with the predictor variables, and a vector with the response. If the response
variable is a factor (categorical), randomForest will do classification, otherwise
it will do regression. Whereas with species distribution modeling we are of-
ten interested in classification (species is present or not), it is my experience
that using regression provides better results. rfl does regression, rf2 and rf3 do
classification (they are exactly the same models). See the function tuneRF for
optimizing the model fitting procedure.

> library(randomForest)

> model <- pa ~ biol + biob5 + bio6 + bio7 + bio8 + biol2 + biol6 + biol7
> rfl <- randomForest(model, data=envtrain)

> model <- factor(pa) ~ biol + bio5 + bio6 + bio7 + bio8 + biol2 + biol6 + biol7
> rf2 <- randomForest(model, data=envtrain)

> rf3 <- randomForest(envtrain[,1:8], factor(pb_train))

> erf <- evaluate(testpres, testbackg, rfl)

> erf

class : ModelEvaluation

n presences : 23

n absences : 200

AUC : 0.8330435

cor : 0.4159016

max TPR+TNR at : 0.05713333
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pr <- predict(predictors, rfl, ext=ext)

par (mfrow=c(1,2))

plot(pr, main='Random Forest, regression')
plot(wrld_simpl, add=TRUE, border='dark grey')
tr <- threshold(erf, 'spec_sens')

plot(pr > tr, main='presence/absence')
plot(wrld_simpl, add=TRUE, border='dark grey')
points(pres_train, pch='+"')
points(backg_train, pch='-', cex=0.25)
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11.4 Support Vector Machines

Support Vector Machines (SVMs; Vapnik, 1998) apply a simple linear method
to the data but in a high-dimensional feature space non-linearly related to the
input space, but in practice, it does not involve any computations in that high-
dimensional space. This simplicity combined with state of the art performance
on many learning problems (classification, regression, and novelty detection) has
contributed to the popularity of the SVM (Karatzoglou et al., 2006). They were
first used in species distribution modeling by Guo et al. (2005).

There are a number of implementations of svm in R . The most useful im-
plementations in our context are probably function ’ksvm’ in package ’kernlab’
and the 'svm’ function in package ’¢1071’. ’ksvm’ includes many different SVM
formulations and kernels and provides useful options and features like a method
for plotting, but it lacks a proper model selection tool. The ’svm’ function in
package ’e1071” includes a model selection tool: the ’tune’ function (Karatzoglou
et al., 2006)

> library(kernlab)
> svm <- ksvm(pa ~ biol+bio5+bio6+bio7+bio8+biol2+biol6+biol7, data=envtrain)
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Using automatic sigma estimation (sigest) for RBF or laplace kernel

> esv <- evaluate(testpres, testbackg, svm)

> esv

class : ModelEvaluation
n presences : 23

n absences : 200

AUC : 0.5534783

cor : 0.1930113

max TPR+TNR at : 0.07126803

ps <- predict(predictors, svm, ext=ext)

par (mfrow=c(1,2))

plot(ps, main='Support Vector Machine')

plot (wrld_simpl, add=TRUE, border='dark grey')
tr <- threshold(esv, 'spec_sens')

plot(ps > tr, main='presence/absence')
plot(wrld_simpl, add=TRUE, border='dark grey')
points(pres_train, pch='+"')
points(backg_train, pch='-', cex=0.25)
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Chapter 12

Combining model
predictions

Rather than relying on a single "best” model, some auhtors (e.g. Thuillier,
2003) have argued for using many models and applying some sort of model
averaging. See the biomod2 package for an implementation. You can of course
implement these approaches yourself. Below is a very brief example. We first
make a RasterStack of our individual model predictions:

> models <- stack(pb, pd, pm, pg, pr, ps)

> names (models) <- c("bioclim", "domain", "mahal", "glm", "rf", "svm")
> plot(models)
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Now we can compute the simple average:

m <- mean(models)
plot(m, main='average score')
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However, this is a problematic approach as the values predicted by the mod-
els are not all on the same (between 0 and 1) scale; so you may want to fix that
first. Another concern could be weighting. Let’s combine three models weighted
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by their AUC scores. Here, to create the weights, we substract 0.5 (the random
expectation) and square the result to give further weight to higher AUC values.

> auc <- sapply(list(ge2, erf, esv), function(x) x@auc)

> w <= (auc-0.5)"2

> m2 <- weighted.mean( models[[c("glm", "rf", "svm")1], w)
> plot(m2, main='weighted mean of three models')

weighted mean of three models
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Chapter 13

Geographic models

The ’geographic models’ described here are not commonly used in species
distribution modeling. They use the geographic location of known occurences,
and do not rely on the values of predictor variables at these locations. We are
exploring their use in comparing and contrasting them with the other approaches
(Bahn and McGill, 2007); in model evaluation as as null-models (Hijmans 2012);
to sample background points; and generally to help think about the duality
between geographic and environmental space (Colwel and Rangel, 2009). Below
we show examples of these different types of models.

13.1 Geographic Distance

Simple model based on the assumption that the closer to a know presence
point, the more likely it is to find the species.

> # first create a mask to predict to, and to use as a mask
> # to only predict to land areas

> seamask <- crop(predictors[[1]], ext)

> distm <- geoDist(pres_train, lonlat=TRUE)

> ds <- predict(seamask, distm, mask=TRUE)

> e <- evaluate(distm, p=pres_test, a=backg_test)

>

e
class : ModelEvaluation
n presences : 23

n absences : 200

AUC : 0.8954348

cor : 0.4299512

max TPR+TNR at : 7.062e-05

> par(mfrow=c(1,2))
> plot(ds, main='Geographic Distance')
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plot(wrld_simpl, add=TRUE, border='dark grey')
tr <- threshold(e, 'spec_sens')

plot(ds > tr, main='presence/absence')
plot(wrld_simpl, add=TRUE, border='dark grey')
points(pres_train, pch='+")
points(backg_train, pch='-', cex=0.25)
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13.2 Convex hulls

This model draws a convex hull around all ’presence’ points.

> hull <- convHull(pres_train, lonlat=TRUE)
> e <- evaluate(hull, p=pres_test, a=backg_test)
> e

class : ModelEvaluation
n presences : 23

n absences : 200

AUC : 0.7415217

cor : 0.2940656

max TPR+TNR at : 0.9999

h <- predict (seamask, hull, mask=TRUE)

plot(h, main='Convex Hull')

plot (wrld_simpl, add=TRUE, border='dark grey')
points(pres_train, pch='+")
points(backg_train, pch='-', cex=0.25)

vV V. Vv VvV
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Convex Hull

13.3 Circles

>

This model draws circles around all 'presence’ points.

circ <- circles(pres_train, lonlat=TRUE)

> pc <- predict(seamask, circ, mask=TRUE)

> e <- evaluate(circ, p=pres_test, a=backg_test)
> e

class : ModelEvaluation

n presences : 23

n absences : 200

AUC : 0.8447826

cor : 0.4836175

max TPR+TNR at : 0.9999

vV VVVVYVVYV

par (mfrow=c(1,2))

plot(pc, main='Circles')

plot(wrld_simpl, add=TRUE, border='dark grey')
tr <- threshold(e, 'spec_sens')

plot(pc > tr, main='presence/absence')
plot(wrld_simpl, add=TRUE, border='dark grey')
points(pres_train, pch='+")
points(backg_train, pch='-', cex=0.25)
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Circles presencefabsence
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13.4 Presence/absence

Spatial-only models for presence/background (or absence) data are also avail-
able through functions geoIDW, voronoiHull, and general geostatistical meth-
ods such as indicator kriging (available in the gstat pacakge).

> idwm <- geoIDW(p=pres_train, a=data.frame(back_train))
> e <- evaluate(idwm, p=pres_test, a=backg_test)

> e

class : ModelEvaluation
n presences : 23

n absences : 200

AUC : 0.893913

cor : 0.5344381

max TPR+TNR at : 0.0602782

iw <- predict (seamask, idwm, mask=TRUE)

par (mfrow=c(1,2))

plot(iw, main='Inv. Dist. Weighted')

plot (wrld_simpl, add=TRUE, border='dark grey')
tr <- threshold(e, 'spec_sens')

pa <- mask(iw > tr, seamask)

plot(pa, main='presence/absence')

plot (wrld_simpl, add=TRUE, border='dark grey')
points(pres_train, pch='+")
points(backg_train, pch='-', cex=0.25)
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> # take a smallish sample of the background training data
va <- data.frame(back_train[sample (nrow(back_train), 100), ])
> vorm <- voronoiHull (p=pres_train, a=va)

\

PLEASE NOTE: The components "delsgs" and "summary" of the
object returned by deldir() are now DATA FRAMES rather than
matrices (as they were prior to release 0.0-18).

See help("deldir").

PLEASE NOTE: The process that deldir() uses for determining
duplicated points has changed from that used in version
0.0-9 of this package (and previously). See help("deldir").

> e <- evaluate(vorm, p=pres_test, a=backg_test)

> e

class : ModelEvaluation
n presences : 23

n absences : 200

AUC : 0.495

cor : -0.03226025

max TPR+TNR at : 0.9999

vo <- predict (seamask, vorm, mask=T)
plot(vo, main='Voronoi Hull')

points(pres_train, pch='+")

>
>
> plot(wrld_simpl, add=TRUE, border='dark grey')
>
>

1
2

points(backg_train, pch='-

cex=0.25)
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Part 1V

Additional topics

71



Chapter 14

Model transfer in space and
time

14.1 Transfer in space

14.2 Transfer in time: climate change
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Chapter 15

To do list

You can ignore this chapter, it is the authors’ to-do list.

There are many sophistications that are required by the realities that (a)
there are multiple end uses of models, and (b) there are numerous issues with
ecological data that mean that the assumptions of the standard methods don’t
hold. Could include:

- spatial autocorrelation

- imperfect detection

- mixed models (for nested data, hierarchical stuff)

- Bayesian methods

- resource selection functions

- measures of niche overlap, linked to thoughts about niche conservatism

- link to phylogeography

- additional predictors including remote sensing variables, thinking about
extremes

- species that don’t "mix” with grids — freshwater systems etc.

- quantile regression

- model selection literature (AIC etc etc)

- multispecies modeling: Mars, gdm

- SDMTools

- Dealing with uncertainty; using uncertainty field in georeferences. How to
target the "important” uncertainties (will vary with the application), an exam-
ple of partial plots with standard errors, and predicting the upper and lower
bounds; the idea of testing sensitivity to decisions made in the modeling process
(including dropping out points etc.).
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