The crs Package

Jeffrey S. Racine
McMaster University

Abstract

This vignette outlines the implementation of the regression spline method contained in the
R crs package, and also presents a few illustrative examples.
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Introduction

The crs package implements a framework for nonparametric regression splines that admits both
continuous and categorical predictors. The categorical predictors can be handled in two ways,
(i) using kernel weighting where the kernel functions are tailored to the discrete support of the
categorical predictors (Racine and Li 2004), and (ii) using indicator basis functions. The practical
difference between these two approaches is that the use of indicator basis functions consume degrees
of freedom, while kernel weighting does not.

This package implements the approaches described in (Ma, Racine, and Yang 2010) and (Ma and
Racine 2011) when the option kernel=TRUE is selected as described below. As well, this package
implements a range of related methods and has options that (hopefully) make it appealing for
applied projects, research, and pedagogical purposes alike.

Data-driven methods can be used for selecting the spline degree, number of segments/knots, and
bandwidths (leave-out-out cross-validation (cv.func = "cv.1ls") Stone 1974, Stone 1977, gener-
alized cross-validation (cv.func="cv.gcv") Craven and Wahba 1979, and the information-based
criterion (cv.func="cv.aic") proposed by Hurvich, Simonoff, and Tsai 1998). Details of the im-
plementation are as follows:

(i) the degree of the spline and number of segments (i.e. knots minus one) for each continu-
ous predictor can be set manually as can the bandwidths for each categorical predictor (if
appropriate)

(ii) alternatively, any of the data-driven criteria (i.e. cv.func=) could be used to select either
the degree of the spline (holding the number of segments/knots minus one fixed at any user-
set value) and bandwidths for the categorical predictors (if appropriate), or the number of
segments (holding the degree of the spline fixed at any user-set value) and bandwidths for the
categorical predictors (if appropriate), or the number of segments and the degree of the spline
for each continuous predictor and bandwidths for each categorical predictor (if appropriate)
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(iii) when indicator basis functions are used instead of kernel smoothing, whether to include each
categorical predictor or not can be specified manually or chosen via any cv.func method

(iv) we allow the degree of the spline for each continuous predictor to include zero, the inclusion
indicator for each categorical predictor to equal zero, and the bandwidth for each categorical
predictor to equal one, and when the degree/inclusion indicator is zero or the bandwidth is
one, the variable is thereby removed from the regression: in this manner, irrelevant predictors
can be automatically removed by any cv.func method negating the need for pre-testing (Hall,
Racine, and Li 2004, Hall, Li, and Racine 2007)

The design philosophy of the crs package aims to closely mimic the behavior of the 1m function.
Indeed, the implementation relies on 1m for computation of the spline coefficients, obtaining fitted
values, prediction and the like. 95% confidence bounds for the fit and derivatives are constructed
from asymptotic formulae and automatically generated. Below we describe in more detail the
specifics of the implementation for the interested reader.

Implementation

Spline regression methods can be limited in their potential applicability as they are predicated
on continuous predictors. However, in applied settings we often encounter categorical predictors
such as strength of preference (“strongly prefer”, “weakly prefer”, “indifferent” etc.) and so forth.
When confronted with categorical predictors, researchers typically break their data into subsets
governed by the values of the categorical predictors (i.e. they break their data into ‘cells’) and then
conduct regression using only the response and continuous predictors lying in each cell. Though
consistent, this ‘frequency’ approach can be inefficient. Recent developments in the kernel smooth-
ing of categorical data (Li and Racine 2007) suggest more efficient estimation approaches in such
settings. The crs package considers two complementary approaches that seamlessly handles the

mix of continuous and categorical predictors often encountered in applied settings.

The Underlying Model

We presume the reader wishes to model the unknown conditional mean in the following location-
scale model,
V=9X,Z)+0(X,Z)e,

where g(-) is an unknown function, X = (Xy,...,X,)" is a g-dimensional vector of continuous
predictors, and Z = (Z1,.. .,ZT)T is an r-dimensional vector of categorical predictors. Letting
z = (zs),_,, we assume that zs takes ¢y different values in Dy = {0,1,...,¢s — 1}, s=1,...,7, and

let cs be a finite positive constant.

For the continuous predictors the regression spline model employs the B-spline routines in the GNU
Scientific Library. The B-spline function is the maximally differentiable interpolative basis function
(B-spline stands for ‘basis-spline’), and a B-spline with no internal knots is a Bézier curve.

Heuristically, we conduct linear (in parameter) regression using the R function 1m. However, we
replace the continuous predictors with B-splines of potentially differing order for every continuous
predictor. For the tensor product bases we set intercept=TRUE for each univariate spline basis,
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while for the additive spline bases we adopt the intercept=FALSE variants (the B-splines will
therefore not sum to one, i.e., an order m B-spline with one segment (two knots/breakpoints) has
m+ 1 columns and we drop the first as is often done) and include instead an intercept in the model.
This allows multiple bases to coexist when there is more than one continuous predictor without
introducing singularities. The tensor product basis is given by

B ®By® -+ @ By,

where ® is the Kronecker product where the products operate column-wise and B; is the basis
matrix for predictor j as outlined above.

When additive B-spline bases are employed we have a semiparametric ‘additive’ spline model (no
interaction among variables), otherwise when the tensor product is employed we have a fully non-
parametric model (interaction among all variables). Whether to use the additive or tensor product
bases can be automatically determined via any cv.func method (see the options for basis= in
7crs).

We offer the option to use categorical kernel weighting (1m(. .. ,weights=L)) to handle the presence
of categorical predictors (see below for a description of L). We also offer the option of using indicator
basis functions for the categorical predictors (again taking care to remove one column to avoid
singularity given the presence of the intercept term in the model). These bases are then treated
similar to the bases B; for continuous predictors described above.

Example: A B-spline and its First Derivative.

The figure below presents an example of a B-spline and its first derivative (the spline derivatives
are required in order to compute derivatives from the spline regression model).
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Above we plot a degree-5 B-spline (left) with one segment (two knots) and its 1st-order derivative
(right).
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Least-Squares Estimation of the Underlying Model

We estimate (3 (z) by minimizing the following weighted least squares criterion,

~

B (z) = arg min Z{Yg—B(Xi)Tﬂ(z)}QL(Zi,z,/\).

B(z)eRKn =1

Placement of Knots

The user can determine where knots are to be placed using one of two methods:

(i) knots can be placed at equally spaced quantiles whereby an equal number of observations lie
in each segment (‘quantile knots’)

(ii) knots can be placed at equally spaced intervals (‘uniform knots’)

Kernel Weighting

Let Z; be an r-dimensional vector of categorical/discrete predictors. We use zs to denote the s-th

. . d
component of z, we assume that z; takes ¢, different values in Dy </ {0,1,...,¢s—1},s=1,...,r,
and let ¢s > 2 be a finite positive constant. For expositional simplicity we will consider the case in
which the components of z are unordered.

For an unordered categorical predictor, we suggest using a variant of the kernel function outlined
in (Aitchison and Aitken 1976) defined as

1, when Z;; = zg,

UZis: 25, Xs) { )s, otherwise. (1)
Let 1(A) denote the usual indicator function, which assumes the value one if A holds true, zero
otherwise. Using (1), we can construct a product kernel function given by

L(Z’Lv 2, )\) - H Z(Zz‘s’ Zs, )\s) = H A;(le7ézs)
s=1 s=1

Note that when A; = 1 all observations are ‘pooled’ hence the variable z; is removed from the
resulting estimate, while when A; = 0 only observations lying in a given cell are used to form the
estimate.

Estimation Details

Estimating the model requires construction of the spline bases and their tensor product (if specified)
along with the categorical kernel weighting function. Then, for a given degree and number of
segments for each continuous predictor and bandwidth for each categorical predictor (or indicator
bases if kernel=FALSE), the model is fit via least-squares.
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All smoothing parameters can be set manually by the user if so desired. You must use the option
cv="none" otherwise the values specified manually will become the starting points for search when
cv="nomad" (‘nonsmooth mesh adaptive direct search’, see (Abramson, Audet, Couture, Dennis
Jr., and Le Digabel 2011) and (Le Digabel 2011) and the references therein).

The degree and bandwidth vector can be jointly determined via any cv.func method by setting
the option cv="nomad" or cv="exhaustive" (exhaustive search).

Setting the option cv="nomad" computes NOMAD-based cross-validation directed search while set-
ting cv="exhaustive" computes exhaustive cross-validation directed search for each unique com-
bination of the degree and segment vector for each continuous predictor from degree=degree.min
through degree=degree.max (default 0 and 10, respectively) and from segments=segments.min
through segments=segments.max (default 1 and 10, respectively).

When kernel=TRUE setting the option cv="exhaustive" computes bandwidths (€ [0,1]) obtained
via numerical minimization (see optim) for each unique combination of the degree and segment
vectors (restarting can be conducted via restarts=). When conducting cv="nomad" the number
of multiple starts can be controlled by nmulti=. The model possessing the lowest criterion function
value is then selected as the final model.

Note that cv="exhaustive" is often unfeasible (this combinatoric problem can become impossibly
large to compute in finite time) hence cv="nomad" is the default. However, with cv="nomad" one
should set nmulti= to some sensible value greater than zero (say, 10 or larger) to avoid becoming
trapped in local minima.

Data-Driven Smoothing Parameter Criteria

We incorporate three popular approaches for setting the smoothing parameters of the regres-
sion spline model, namely least-squares cross-validation, generalized cross-validation, and an AIC
method corrected for use in nonparametric settings.

Let the fitted value from the spline regression model be denoted Y; = Bm(Xi)TB(ZZ-). Letting
é; = Y; — Y; denote the ith residual from the categorical regression spline model, the least-squares
cross-validation function is given by

cvoly g
o n izl (1 — hii)g

and this computation can be done with effectively one pass through the data set, where h;; denotes
the ith diagonal element of the spline basis projection matrix (see below for details). Since hy;
is computed routinely for robust diagnostics by many statistics programs, this can be computed
along with (and hence as cheaply as) the vector of spline coefficients themselves. Thus least-squares
cross-validation is computationally appealing, particularly for large data sets.

Let H denote the n x n weighting matrix such that Y = HY with its ith diagonal element given
by H;; where tr(H) means the trace of H which is equal to )" | hj;. The matrix H is often called
the ‘hat matrix’ or ‘smoother matrix’ and depends on X but not on Y. The ‘generalized’ cross-
validation function is obtained by replacing h;; in the above formula with its average value denoted
tr(H)/n (Craven and Wahba 1979).
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The information-based criterion proposed by (Hurvich et al. 1998) is given by

1+ tr(H)/n
1—{tr(H)+2}/n’

AIC, = In(6%) +

where
n

=-Y & =Y'(I-H)(I-HY/n
s
Each of these criterion functions can be minimized with respect to the unknown smoothing param-
eters either by numerical optimization procedures or by exhaustive search.

Though each of the above criteria are asymptotically equivalent in terms of the bandwidths they
deliver (tr(H)/n — 0 as n — oo), they may differ in finite-sample settings for a small smoothing
parameter (large tr(H)/n) with the AIC, criterion penalizing more heavily when undersmooth-
ing than either the least-squares cross-validation or generalized cross-validation criteria (the AIC,
criterion effectively applies an infinite penalty for tr(H)/n > 1/2).

Pruning

Once a model has been selected via cross-validation (i.e. degree, segments, include or lambda
have been selected), there is the opportunity to (potentially) further refine the model by adding
the option prune=TRUE to the crs function call. Pruning is accomplished by conducting stepwise
cross-validated variable selection using a modified version of the stepAIC function in the R MASS
package where the function extractAIC is replaced with the function extractCV with additional
modifications where necessary. Pruning of potentially superfluous bases is undertaken, however, the
pruned model (potentially containing a subset of the bases) is returned only if its cross-validation
score is lower than the model being pruned. When this is not the case a warning is issued to this
effect. A final pruning stage is commonplace in the spline framework and may positively impact
on the finite-sample efficiency of the resulting estimator depending on the rank of the model being
pruned. Note that this option can only be applied when kernel=FALSE.

Illustrative Examples

Next we provide a few illustrative examples that may be of interest to the reader.

Example: One Categorical/One Continuous Predictor

By way of illustration we consider a simple example involving one continuous and one discrete
predictor.

R> set.seed(42)
R> n <- 1000

R> x <- runif(n)

R> z <- rbinom(n,1,.5)

R> y <- cos(2*pi*x) + z + rnorm(n,sd=0.25)
R> z <- factor(z)
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R> model <- crs(y~x+z)
R> summary (model)

Call:
crs.formula(formula = y ~ x + z)

Kernel Weighting/B-spline Bases Regression Spline

There is 1 continuous predictor

There is 1 categorical predictor

Knot type: quantiles

Model complexity proxy: degree-knots

Spline degree/number of segments for x: 3/2

Bandwidth for z: 0.000615

Basis type: additive

Training observations: 1000

Rank of model frame: 5

Residual standard error: 0.2457 on 995 degrees of freedom
Multiple R-squared: 0.9266, Adjusted R-squared: 0.9263
Cross-validation score: 0.061313573

The function crs called in this example returns a crs object. The generic functions fitted
and residuals extract (or generate) estimated values and residuals. Furthermore, the functions
summary, predict, and plot (options mean=FALSE, deriv=FALSE, ci=FALSE, plot.behavior =
c("plot", "plot-data", "data")) support objects of this type. The figure below presents sum-
mary output in the form of partial regression surfaces (predictors not appearing on the axes are
held constant at their medians/modes). Note that for this simple example we used the option
plot (model,mean=TRUE).
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Example: Regression Discontinuity Design

By way of illustration we consider a simple example involving two continuous predictors and one
categorical predictor. In this example there is a ‘discontinuity’ in the regression surface potentially
demarcated by the discrete predictor.

R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>

set.seed(1234)

n <- 1000

x1 <- runif(n)

x2 <- runif(n)

dgp <- numeric(n)

z <- ifelse(x1>.5,1,0)
dgp <- cos(2*pi*x1)+sin(2*pi*x2)+2*z
z <- factor(z)

y <- dgp + rnorm(n,sd=1)
model <- crs(y~x1+x2+z)
summary (model)
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Call:
crs.formula(formula = y ~ x1 + x2 + 2z)

Kernel Weighting/B-spline Bases Regression Spline

There are 2 continuous predictors

There is 1 categorical predictor

Knot type: quantiles

Model complexity proxy: degree-knots

Spline degree/number of segments for x1: 3/1

Spline degree/number of segments for x2: 3/1

Bandwidth for z: 0.000684

Basis type: additive

Training observations: 1000

Rank of model frame: 7

Residual standard error: 0.9784 on 993 degrees of freedom
Multiple R-squared: 0.6717, Adjusted R-squared: 0.6697
Cross-validation score: 0.97464903

The figure below plots the resulting estimate. The discontinuity occurs when 7 > 0.5 but the nature
of the discontinuity is unknown as is the functional form on either side of the potential discontinuity.
The categorical regression spline is able to detect this ‘break’ and testing for a significant break
involves nothing more than an (asymptotic) F-test as the following illustrates (note the argument
include=0 says to drop the one categorical predictor or, say, c(1,1,...,0,1...,1) for multivariate
categorical predictors).

R> ## When kernel=FALSE, we could use the anova() function

R> model.res <- crs(y~x1+x2+z,cv="none",degree=model$degree, basis=model$basis,include=0)
R> ## anova(model.res$model.lm,model$model.1m)

R> ## We could also do this manually...

R> F <- model$df.residual*(sum(residuals(model.res) ~2)

+ -sum (residuals (model) ~2))/sum(residuals (model) ~2)

R> F

[1] -1.63

R> ## Compute the P-value for the F-statistic
R> P <- 1-pf(F,1,model$df.residual)
R> P

(1] 1

Note that summary supports the option sigtest=TRUE that conducts an F-test for significance for
each predictor.
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R> summary (model, sigtest=TRUE)

Call:
crs.formula(formula = y ~ x1 + x2 + z)

Kernel Weighting/B-spline Bases Regression Spline

There are 2 continuous predictors

There is 1 categorical predictor

Knot type: quantiles

Model complexity proxy: degree-knots

Spline degree/number of segments for x1: 3/1

Spline degree/number of segments for x2: 3/1

Bandwidth for z: 0.000684

Basis type: additive

Training observations: 1000

Rank of model frame: 7

Residual standard error: 0.9784 on 993 degrees of freedom
Multiple R-squared: 0.6717, Adjusted R-squared: 0.6697
Cross-validation score: 0.97464903
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