
The coxme function in S

Terry Therneau
Mayo Clinic

March 30, 2015

Contents

1 Introduction 2

2 Main program 2
2.1 Basic setup . 3
2.2 Fixed effects . 6
2.3 Random effects . 7
2.4 Creating the C and F matrices . 15

3 The model formula 17
3.1 Introduction . 17
3.2 Parsing the formula . 17
3.3 Random terms . 22
3.4 Miscellaneous . 23

4 Variance families 24
4.1 Structure . 24
4.2 Sparseness . 26
4.3 coxmeFull . 26
4.4 coxmeMlist . 42

5 Fitting 47
5.1 Penalty matrix . 48
5.2 C routines . 50
5.3 Setup . 55
5.4 Doing the fit . 58
5.5 Finishing up . 60

6 Methods for the random effects 63

7 lmekin 65

8 Matrix conversions 74

1

1 Introduction

The coxme function for mixed effects analyses based on a Cox proportional hazards model is
one of the later additions to my survival functions in S 1. It is easily the most complex bit of
code in this ecosystem from all points of view: mathematical, algorithmic, and R code wise.
As such, it seems like a natural candidate for documentation and maintainance using the literal
programming model.

Let us change or traditional attitude to the construction of programs. Instead of
imagining that our main task is to instruct a computer what to do, let us concentrate
rather on explaining to humans what we want the computer to do. (Donald E. Knuth,
1984).

This document is my first foray into said domain. Time will tell if it is successful in creating
both more reliable and better understood code.

Note that almost all of the code uses a .Rnw suffix, taking advantage of the very capable
emacs modes that are part of the ESS pacakge. However, it is not processed by the Sweave or
knitR packages, both of which are designed for reports containing exectuted S code. In contrast
this document makes use of the noweb package to document (weave) and generate the R source
code (tangle) from a single file. The noweb weave command is considerably simpler than that
for knitr since it does not have to evaluate code, while its tangle function is more complex.

2 Main program

The coxme code starts with a fairly standard argument list.

〈coxme 〉=
coxme <- function(formula, data,

weights, subset, na.action, init,

control, ties= c("efron", "breslow"),

varlist, vfixed, vinit,

x=FALSE, y=TRUE,

refine.n=0, random, fixed, variance, ...) {

#time0 <- proc.time() #debugging line

ties <- match.arg(ties)

Call <- match.call()

〈process-standard-arguments 〉
〈decompose-formula 〉
〈build-control-structures 〉
〈call-computation-routine 〉
〈finish-up 〉

}
1S is a statistical language with R and S-Plus being implementations of that language. I use R daily, but still

refer to my code as S

2

The arguments to the function are described below, omitting those that are identical to the
coxph function.

formula The formula desribing the fixed and random effects. This will be discussed in detail
below.

varlist An optional list, with one element per random term, that describes the variance structure
of the random effects. It need not be a list if there is only one random term.

vfixed An optional list (or vector) of fixed values for selected variance components.

vinit Initial value(s) for the variance components in the iteration.

refine.n The number of Monte Carlo iterations to be done at the final iteration, to refine the
Laplace approximation of the likelihood.

random, fixed, variance These are included for backwards compatability with the first verion
of coxme. They may be removed at some point in the future.

The sparse option has been moved to the coxme.control function. Cox model variance
matrices are never sparse, but we have found that in one very particular instance we can ignore
many off-diagonal elements. This combined with the naturally sparse structure of the penalty
matrix can lead to substantial reductions in computational time. The ignorable elements arise
for a random intercept term. In this case the diagonal elements of the usual Cox model variance
matrix are O(pi) and the off diagonals are O(pipj), where pi is the fraction of subjects in group i.
If both pi and pj are sufficiently small the corresponding off-diagonal may be effectively ignored.
For a particular family study that motivated the code there were over twenty thousand subjects,
with a random intercept per subject, and the computation was not feasable without this addition.
Based on fairly limited experience, the lower level for the approximation is set at p = 1/50. The
default values for the sparse option state that the approximation should only be used if there
are > 50 levels for the grouping factor, and only for those groups representing .02 or less of the
total. If there are multiple random effects only one is allowed a sparse representation, nor are
random slopes ever represented in this way. Further reseach may reveal wider circumstances in
which the approximation is workable, but for now only the one known case is allowed.

2.1 Basic setup

The coxme code starts its model handling with a nod to backwards compatability. The argument
list starts with the usual (formula, data, weights, ... set, but also allows random and fixed

as optional arguments. If they are present, it assumes that someone is using the old style, and
glues the fixed and random parts together into a single formula. Because the old form had fixed

as its first argument, we also need to allow for the case where the user has assumed that the first,
unnamed argument to the call, which now maps to the formula argument, is the fixed portion.

The other change was that the old variance argument became vfixed. This set of names
makes a lot mores sense for the user as it is now in parallel with vinit.

〈process-standard-arguments 〉=
if (!missing(fixed)) {

if (missing(formula)) {

3

formula <- fixed

warning("The ’fixed’ argument of coxme is depreciated")

}
else stop("Both a fixed and a formula argument are present")

}
if (!missing(random)) {

warning("The random argument of coxme is depreciated")

if (class(random) != ’formula’ || length(random) !=2)

stop("Invalid random formula")

j <- length(formula) #will be 2 or 3, depending on if there is a y

Add parens to the random formula and paste it on

formula[[j]] <- call(’+’, formula[[j]], call(’(’, random[[2]]))

}

if (!missing(variance)) {
warning("The variance argument of coxme is depreciated")

vfixed <- variance

}

A formula in S is represented as a list of length 2 or 3, whose first element is as.name(’ ’), then
the left hand side, if present, then the right hand side. Note that the old version of coxme
contains almost the same code, since to correctly handle missing values it needed to retrieve all
the relevant variables, both fixed and random, with a single list.

The program then executes a fairly standard step to retrieve the model frame. The model.frame
function does not correctly handle vertical bars in a random term, the subbar function replaces
each of these with a ’+’.

〈process-standard-arguments 〉=
temp <- call(’model.frame’, formula= subbar(formula))

for (i in c(’data’, ’subset’, ’weights’, ’na.action’))

if (!is.null(Call[[i]])) temp[[i]] <- Call[[i]]

if (is.R()) m <- eval.parent(temp)

else m <- eval(temp, sys.parent())

The final line is one of the few in the code that is specific to the particular S engine being used.
One question that comes up when first seeing this code, is “why not the simpler code”

temp <- model.frame(formula, data=data, subset=subset,

weights=weights, na.action=na.action)

The answer is that if any of the optional arguments were missing, then we would get an er-
ror. What the code above does is to create the above call bit by bit. The starting point only
includes the formula argument, which is required. Then any optional arguments that are actu-
ally present are copied over from Call (what the user typed) to the temp variable. Many older
S functions take a different approach by the way. They first made a complete copy of the call, e.g.
temp <- Call, and then remove arguments that they don’t want temp$ties <- NULL; temp$rescale <- NULL

4

etc. I don’t like this approach, since every time that a new argument is added to the function,
we need to remember to also add it to this x-out list. Another alternate, found in much of the
newer R code is

alist <- match(names(Call), c(’formula’,’data’, ’subset’, ’weights’,

’na.action’)

temp <- Call[c(1, which(!is.na(alist)))]

temp\Verb!1! <- as.name(’model.frame’)

My code above automatically forces an error if the formula is missing.
The model frame that we have created will contain all the variables found in both the fixed

and random portions of the model. The next step is a usual one — pull out special terms such as
the response, offset, etc. Penalized terms are supported in coxph but are not allowed in coxme

The most common penalized terms in coxph are frailty terms terms and psplines (smoothing
splines, similar to generalized additive models). Frailty terms are simple shared random effects,
it was an early way to get some of the functionality of coxme by grafting a new capability onto
coxph. Pspline terms could be supported, in theory, in coxme, but the effort to do so appears
daunting and it is left for some future coder.

〈process-standard-arguments 〉=
Y <- model.extract(m, "response")

n <- nrow(Y)

if (n==0) stop("No observations remain in the data set")

if (!inherits(Y, "Surv")) stop("Response must be a survival object")

type <- attr(Y, "type")

if (type!=’right’ && type!=’counting’)

stop(paste("Cox model doesn’t support ’", type,

"’ survival data", sep=’’))

weights <- model.weights(m)

if (length(weights) ==0) weights <- rep(1.0, n)

else if (any(weights <=0))

stop("Negative or zero weights are not allowed")

offset <- model.offset(m)

if (length(offset)==0) offset <- rep(0., n)

Check for penalized terms; the most likely is pspline

pterms <- sapply(m, inherits, ’coxph.penalty’)

if (any(pterms)) {
stop("You cannot have penalized terms in coxme")

}

if (missing(control)) control <- coxme.control(...)

if (missing(init)) init <- NULL

5

2.2 Fixed effects

The mixed effects Cox model is written as

λ(t) = λ0(t)eXβ+Zb

b ∼ N(0,Σ(θ))

The coefficient vectors β and b correspond the the fixed and random effects, respectively, with
X and Z as the respective design matrices.

It is now time to build X, the design matrix for the fixed effects. We first separate the model
into random and fixed effects terms using the formula1 function. As an argument it takes
the model formula as given by the user and it returns a list containing the fixed and random
parts of the formula, respectively. If any vertical bars remain in the fixed result, then there is a
problem with the supplied formula, usually a random effects term that was missing the enclosing
parentheses.

〈decompose-formula 〉=
flist <- formula1(formula)

if (hasAbar(flist$fixed))

stop("Invalid formula: a ’|’ outside of a valid random effects term")

special <- c("strata", "cluster")

Terms <- terms(flist$fixed, special)

attr(Terms,"intercept")<- 1 #Cox model always has \Lambda_0
strats <- attr(Terms, "specials")$strata

cluster<- attr(Terms, "specials")$cluster

if (length(cluster)) {
stop ("A cluster() statement is invalid in coxme")

}
if (length(strats)) {

temp <- untangle.specials(Terms, ’strata’, 1)

if (length(temp$vars)==1) strata.keep <- m[[temp$vars]]

else strata.keep <- strata(m[,temp$vars], shortlabel=T)

strats <- as.numeric(strata.keep)

X <- model.matrix(Terms[-temp$terms], m)[,-1,drop=F]

}
else X <- model.matrix(Terms, m)[,-1,drop=F]

The key tools for building the matrix are the terms and model.matrix functions, which are
common to all S modeling routines. The terms function takes a standard formula, and returns
an object that is used for later processing. The specials argument asks the function to note
any calls to cluster or strata in the formula, this makes it possible for us to pull out those terms
for special processing.

The cluster() function is used in coxph to obtain a generalized estimating equation (GEE)
type of variance estimate. Random effects and GEE are two different ways to approach correlated
outcomes, but they cannot be mixed. Thus such a term is invalid in a coxme model.

6

In a Cox model the baseline hazard λ0 plays the role of an intercept, but the X matrix does
not explicitly contain an intercept. Nevertheless, contrasts terms, such as the dummy variable
codings for factors, need to be formed as though there were an intercept term. We thus mark
the model as containing an intercept column by setting the intercept attribute of terms (and
completely ignore any “-1” that the user put into the model) before calling model.matrix. After
then remove the unneeded intercept column from the returned matrix. The resulting X matrix
might have only one column; the drop=F option causes it to remain a matix and not become a
vector. If there are only random effects in the model, X could even have 0 columns.

If there are strata, they are removed from the model formula before forming the X matrix,
since strata effect only the baseline hazard. The variable strata.keep retains the strata levels as
specified by the user. The variable strats has values of 1,2, . . . and is simpler for the underlying
C code to deal with.

2.3 Random effects

Creating the random effects components is more complicated than the fixed effects.

• We need to create both the Z matrix and Σ.

• The actual form of Z depends on the type of random effect, but often looks like the design
matrix for a one way anova. There are many possible correlation structures Σ.

• If there are multiple random terms, each creates a block of columns in Z and block of
values in Σ.

• For efficiency, any class variables in Z are represented in compressed form, i.e., random
intercepts. Such variables are stored in a matrix F which has a single column for each
class variable, with integer values of 1,2, . . . that state which coefficient each observation
contributes to.. Z will contain the remaining columns.

The basic flow of the routine is to process the random terms one at a time. The varlist

argument describes a variance family for each term; and we do two calls for each. The first
call is to the initialize member of the family, giving it the G containing the grouping variables
along with covariates C and whether or not the left hand side contained an intercept, and
appropriate portions of the initial values (vinit) or fixed variance (vfixed) specification. It returns
corresponding columns of F , Z and a mapping zmap for each column of Z, a vector itheta

containing the initial values for the non-fixed variance parameters (possibly on a transformed
scale), and a private parameter list which will be passed forward to the matching generate and
wrapup routines. Any transformation is private to the variance family function.

The formula2 function is desribed later; it is responsible for further separating the com-
ponents of each random terms for us: whether the left hand side has an intercept, any other
variables on the left, grouping variables, and optional interaction.

Our first action is to check out the varlist option. This is complicated by the fact that users
can give a partial one, or none, allowing the default to be used for other elements. In general
varlist is a named list with one list element per random term. Each element of the list can be:

• A matrix or list of matrices. This is useful for genetic data in particular.

7

• A function which generates a coxme variance family object (of class coxmevar), or the
result of a call to such a function.

We are not backwards compatable with all old-stlye coxme calls, in particular the use of the
unevaluated bdsI function in a list. This was mostly used to generate models that can now be
directly stated.

The first task is to decide which element of the list goes to which term. If the list is a collection
of coxmevar objects, then they are used one by one and any remaining random terms get the
default action of coxmeFull. If there is only one random term then varlist is not required to
be a list of one element, but we immediately make it so. A single list of variance matrices can
be ambiguous, for instance if there were 2 random terms and one list with two matrices: is this
a pair of matrices for the first term, or one matrix for each? We force the user to resolve the
ambiguity.

〈build-control-structures 〉=
nrandom <- length(flist$random)

if (nrandom ==0) stop("No random effects terms found")

vparm <- vector(’list’, nrandom)

is.variance <- rep(TRUE, nrandom) #penalty fcn returns a variance or penalty?

ismat <- function (x) {
inherits(x, "matrix") || inherits(x, "bdsmatrix") | inherits(x, "Matrix")

}
if (missing(varlist) || is.null(varlist)) {

varlist <- vector(’list’, nrandom)

for (i in 1:nrandom) varlist[[i]] <- coxmeFull() #default

}
else {

if (is.function(varlist)) varlist <- varlist()

if (class(varlist)==’coxmevar’) varlist <- list(varlist)

else if (ismat(varlist))

varlist <- list(coxmeMlist(list(varlist)))

else {
if (!is.list(varlist)) stop("Invalid varlist argument")

if (all(sapply(varlist, ismat))) {
A list of matrices

if (nrandom >1)

stop(paste("An unlabeled list of matrices is",

"ambiguous when there are multiple random terms"))

else varlist <- list(coxmeMlist(varlist))

}
else { #the user gave me a list, not all matrices

for (i in 1:length(varlist)) {
if (is.function(varlist[[i]]))

varlist[[i]] <-varlist[[i]]()

if (ismat(varlist[[i]]))

varlist[[i]] <- coxmeMlist(list(varlist[[i]]))

if (class(varlist[[i]]) != ’coxmevar’) {

8

if (is.list(varlist[[i]])) {
if (all(sapply(varlist[[i]], ismat)))

varlist[[i]] <- coxmeMlist(varlist[[i]])

else stop("Invalid varlist element")

}
else stop("Invalid varlist element")

}
}

}
}

while(length(varlist) < nrandom) varlist <- c(varlist, list(coxmeFull()))

}

if (!is.null(names(varlist))) { # put it in the right order

vname <- names(varlist)

stop("Cannot (yet) have a names varlist")

indx <- pmatch(vname, names(random), nomatch=0)

if (any(indx==0 & vname!=’’))

stop(paste("Varlist element not matched:", vname[indx==0 & vname!=’’]))

if (any(indx>0)) {
temp <- vector(’list’, nrandom)

temp[indx] <- varlist[indx>0]

temp[-indx]<- varlist[indx==0]

varlist <- temp

}
}

#check validity (result is never used)

check <- sapply(varlist, function(x) {
fname <- c("initialize", "generate", "wrapup")

indx <- match(fname, names(x))

if (any(is.na(x)))

stop(paste("Member not found in variance function:",

fname(is.na(indx))))

if (length(x) !=3 || any(!sapply(x, is.function)))

stop("Varlist objects must consist of exaclty three functions")

})

At this point we have a valid varlist object, which is a list with one element per random term,
each element is an object of class ‘coxmevar’. The current options for these elements are

coxmeFull All variance/covariance terms between random elements are present. For instance
the term (1+age | group) specifies a random intercept and slope. The variance structure
will have 3 parameters: the variance of the intercepts, the variance of the slopes, and their
covariance.

9

coxmeMlist The variance is assumed to be of the form σ2
1A1 + σ2

2A2 + . . . for a set of fixed
matrices A1, A2, This is commonly used in genetic studies where A1 would be the
kinship matrix for a set of subjects/families and A2 might be the identity-by-descent (IBD)
matrix for a particular locus.

other a user-defined varlist function.

Now we proceed through the list one element at a time, and do the necessary setup. The
itheta vector will contain starting values for all of the variance parameters that are not fixed,
and ntheta[i] the number of values that each random term contributed. The final θ vector will
be null if all the parameters are fixed. The ncoef matrix has a row for each term, containing the
number of intercepts and slopes for that term. The definition of 4 helper functions is deferred
until later.

〈build-control-structures 〉=
〈get-cmat 〉
〈get-groups 〉
〈make-vinit 〉
〈newzmat 〉
fmat <- zmat <- matrix(0, nrow=n, ncol=0)

ntheta <- integer(nrandom)

ncoef <- matrix(0L, nrandom, 2, dimnames=list(NULL, c("intercept", "slope")))

itheta <- NULL #initial values of parameters to iterate over

for (i in 1:nrandom) {
f2 <- formula2(flist$random[[i]])

if (f2$intercept & f2$group==1)

stop(paste("Error in random term ", i,

": Random intercepts require a grouping variable", sep=’’))

vfun <- varlist[[i]]

if (!is.null(f2$interaction)) stop("Interactions not yet written")

cmat <- getcmat(f2$fixed, m)

groups <- getgroups(f2$group, m)

ifun <- vfun$initialize(vinit[[i]], vfixed[[i]], intercept=f2$intercept,

groups, cmat, control)

if (!is.null(ifun$error))

stop(paste("In random term ", i, ": ", ifun$error, sep=’’))

vparm[[i]] <- ifun$parms

if (!is.null(ifun$is.variance)) is.variance[i] <- ifun$is.variance

itheta <- c(itheta, ifun$theta)

ntheta[i] <- length(ifun$theta)

if (f2$intercept) {
if (!is.matrix(ifun$imap) || nrow(ifun$imap) !=n)

stop(paste("In random term ", i,

": Invalid intercept matrix F", sep=’’))

10

temp <- sort(unique(c(ifun$imap)))

if (any(temp != 1:length(temp)))

stop(paste("In random term ", i,

": intercept matrix has an invalid element", sep=’’))

if (ncol(fmat) >0) fmat <- cbind(fmat, ifun$imap + max(fmat))

else fmat <- ifun$imap

ncoef[i,1] <- 1+ max(ifun$imap) - min(ifun$imap)

}

if (length(cmat)>0) {
if (is.null(ifun$xmap) || is.null(ifun$X) ||

!is.matrix(ifun$xmap) || !is.matrix(ifun$X) ||

nrow(ifun$xmap) !=n || nrow(ifun$X) != n ||

ncol(ifun$xmap) != ncol(ifun$X))

stop(paste("In random term ", i,

"invalid X/xmap pair"))

if (f2$intercept) xmap <- ifun$xmap - max(ifun$imap)

else xmap <- ifun$xmap

if (any(sort(unique(c(xmap))) != 1:max(xmap)))

stop(paste("In random term ", i,

": xmap matrix has an invalid element", sep=’’))

temp <- newzmat(ifun$X, xmap)

ncoef[i,2] <- ncol(temp)

zmat <- cbind(zmat, temp)

}
}
if (any(is.variance) & !all(is.variance))

stop("All variance terms must have the same is.variance setting")

The matrix F holds the columns associated with intercept terms, so has columns added only
if the new random terms has a 1 on the left side of the formula. It is also (at present) the only
case in which sparse computation is known to be valid. Further discussion of this rather subtle
topic is found in the section on variance functions. The underlying C programs can’t deal with
holes in a factor variable. That is, every column of fmat must be integers, with minimum 1 and
no gaps.

Now to fill in a few blanks from the above discussion. First the vector (list) of initial values
vinit or fixed variance values vfixed given by the user may not be complete. We want to
expand them out to to lists, and have the same length as varlist. In the case of multiple
terms, we allow the user to specify a subset of them, using the names of the grouping variables.
If names are not used (or are not unique) things match in order. If there is a single random
term we allow a numeric vector. In the case of a single term someone might use a list, allow
that too. The list(unlist(vinit)) construct below might look odd, what it does is transform
list(sigma=.1) to a list with element name “” (the name of the term) and whose first element
is a vector of length 1 with an element name of “sigma”, which is what the routine wants in the

11

end. That is, it looks like the result of list(c(sigma=.1)).

〈make-vinit 〉=
if (missing(vinit) || is.null(vinit)) vinit <- vector(’list’, nrandom)

else {
if (nrandom==1) {

if (is.numeric(vinit)) vinit <- list(vinit)

else if (is.list(vinit)) vinit <- list(unlist(vinit))

}
if (!is.list(vinit)) stop("Invalid value for ‘vinit‘ parameter")

if (length(vinit) > nrandom)

stop (paste("Vinit must be a list of length", nrandom))

if (!all(sapply(vinit, function(x) (is.null(x) || is.numeric(x)))))

stop("Vinit must contain numeric values")

if (length(vinit) < nrandom)

vinit <- c(vinit, vector(’list’, nrandom - length(vinit)))

tname <- names(vinit)

if (!is.null(tname)) {
stop("Named initial values not yet supported")

#temp <- pmatch(tname, names(flist$random), nomatch=0)

#temp <- c(temp, (1:nrandom)[-temp])

#vinit <- vinit[temp]

}
}

if (missing(vfixed) || is.null(vfixed)) vfixed <- vector(’list’, nrandom)

else {
if (nrandom==1) {

if (is.numeric(vfixed)) vfixed <- list(vfixed)

else if (is.list(vfixed)) vfixed <- list(unlist(vfixed))

}
if (!is.list(vfixed)) stop("Invalid value for ‘vfixed‘ parameter")

if (length(vfixed) > nrandom)

stop (paste("Vfixed must be a list of length", nrandom))

if (!all(sapply(vfixed, function(x) (is.null(x) || is.numeric(x)))))

stop("Vfixed must contain numeric values")

if (length(vfixed) < nrandom)

vfixed <- c(vfixed, vector(’list’, nrandom - length(vfixed)))

tname <- names(vfixed)

if (!is.null(tname)) {
temp <- pmatch(tname, names(flist$random), nomatch=0)

temp <- c(temp, (1:nrandom)[-temp])

12

vfixed <- vfixed[temp]

}
}

The actual computation of the model is done in coxme.fit. This was separated from the
main routine to leave the code in managable chunks.

〈call-computation-routine 〉=
fit <- coxme.fit(X, Y, strats, offset, init, control, weights=weights,

ties=ties, row.names(m),

fmat, zmat, varlist, vparm,

itheta, ntheta, ncoef, refine.n,

is.variance = any(is.variance))

Then we finish up by packaging up the results for a user. The first few lines are the case where
a fatal error occured, in which case the result contains only the failure line. (Is this needed?)

〈finish-up 〉=
if (is.character(fit)) {

fit <- list(fail=fit)

oldClass(fit) <- ’coxme’

return(fit)

}

Now add labels to the fixed and random coefficients. The coefficients portion of the
returned object conttains the values for β̂ (fixed). and for the variances θ̂. The frail component

contains the values for b̂, a historical label.

〈finish-up 〉=
fcoef <- fit$coefficients

nvar <- length(fcoef)

if (length(fcoef)>0 && any(is.na(fcoef))) {
vars <- (1:length(fcoef))[is.na(fcoef)]

msg <-paste("X matrix deemed to be singular; variable",

paste(vars, collapse=" "))

warning(msg)

}
if (length(fcoef) >0) {

names(fit$coefficients) <- dimnames(X)[[2]]

}

Add up the part of the linear predictor due to random terms, and add this to the fixed
portion to get an overall linear predictor.

〈finish-up 〉=
rlinear <- rep(0., nrow(Y))

if (length(fmat)) {
for (i in 1:ncol(fmat)) {

rlinear <- rlinear + fit$frail[fmat[,i]]

13

}
}

if (length(zmat)) {
indx <- if (length(fmat)>0) max(fmat) else 0

for (i in 1:ncol(zmat))

rlinear <- rlinear + fit$frail[indx+i]*zmat[,i]

}

if (nvar==0) fit$linear.predictor <- rlinear

else fit$linear.predictor <- as.vector(rlinear + c(X %*% fit$coef))

Our last action for the random terms is to call the wrapup functions, which retransform (if
needed) θ back to the user’s scale, re-insert (if needed) any fixed parameters, label the vector,
and label/arrange the random coefficients b.

Intercept terms always come first in the random coefficients. In a model with (trt|group)

+ (1|group) on the right, the ncoef object will be

intercept slope

[1,] 0 5

[2,] 5 0

which means that the first 5 elements of b= fit$frail belong to term2, and the second five to
term 1. (Also that my example data had 5 levels for the group variable). The creation of bindex
below depends on the fact that R stores matrices in row major order so it will go through the
intercepts first and the other random coefficients second.

〈finish-up 〉=
newtheta <- random.coef <- list()

nrandom <- length(varlist)

sindex <- rep(1:nrandom, ntheta) # which thetas to which terms

bindex <- rep(row(ncoef), ncoef) # which b’s to which terms

for (i in 1:nrandom) {
temp <- varlist[[i]]$wrapup(fit$theta[sindex==i], fit$frail[bindex==i],

vparm[[i]])

newtheta <- c(newtheta, temp$theta)

if (!is.list(temp$b)) {
temp$b <- list(temp$b)

names(temp$b) <- paste("Random", i, sep=’’)

}
random.coef <- c(random.coef, temp$b)

}
fit$frail <- random.coef

fit$vcoef <- newtheta

fit$theta <- NULL

Last fill in a set of miscellaneous members of the structure

14

〈finish-up 〉=
fit$n <- c(sum(Y[,ncol(Y)]), nrow(Y))

fit$terms <- Terms

fit$assign <- attr(X, ’assign’)

fit$formulaList <- flist

na.action <- attr(m, "na.action")

if (length(na.action)) fit$na.action <- na.action

if (x) {
fit$x <- X

if (length(strats)) fit$strata <- strata.keep

}
if (y) fit$y <- Y

if (!is.null(weights) && any(weights!=1)) fit$weights <- weights

fit$formula <- as.vector(attr(Terms, "formula"))

fit$call <- Call

fit$ties <- ties

names(fit$loglik) <- c("NULL", "Integrated", "Penalized")

oldClass(fit) <- ’coxme’

fit

2.4 Creating the C and F matrices

To create the columns for F there are 3 steps. First we get the variables from the data frame,
treating each of them as a factor. This is then submitted to the appropriate coxme variance
family function, which creates the integer matrix of codes that are actually used.

We extract the list of variable names for the nesting portion, at the same time checking that
it consists of nothing but variables and slash operators.

〈get-groups 〉=
getGroupNames <- function(x) {

if (is.call(x) && x[[1]]==as.name(’/’))

c(getGroupNames(x[[2]]), getGroupNames(x[[3]]))

else deparse(x)

}

getgroups <- function(x, mf) {
if (is.numeric(x)) return(NULL) # a shrinkage effect like (x1+x2 | 1)

varname <- getGroupNames(x)

indx <- match(varname, names(mf), nomatch=0)

if (any(indx==0)) stop(paste("Invalid grouping factor", varname[indx==0]))

else data.frame(lapply(mf[indx], as.factor))

}

A common task for the variance functions is to expand school/teacher type terms into a set of
unique levels, i.e., to find all the unique combinations of the two variables. Teacher 1 in school 1

15

is not the same person as teacher 1 in school 2. We can’t use the usual processing functions such
as model.matrix to create the nesting variables, since it also expands the factors into multiple
columns of a matrix. (This is how lmer does it.) We will use the strata function from the
standard survival library.

〈expand.nested 〉=
expand.nested <- function(x) {

xname <- names(x)

x[[1]] <- as.factor(x[[1]])[,drop=T]

if (length(x) >1) {
for (i in seq(2, length(x), by=1)) {

x[[i]] <- strata(x[[i-1]], x[[i]], shortlabel=TRUE, sep=’/’)

xname[i] <- paste(xname[i-1], xname[i], sep=’/’)

}
}

names(x) <- xname

x

}

Creation of the C matrix is just a bit more work. One issue is that none of the standard
S contrast options is correct. With a Gaussian random effect, either a random intercept or a
random slope, the proper constraint is b′Σ = 0; this is familiar from older statistics textbooks for
ANOVA as the “sum constraint”. For a random effect this constraint is automatically enforced
by the penalized optimization, so the proper coding of a factor with k levels is as k indicator
variables. We do this by imposing our own contrasts.

Update. I’ve realized that factors are more of a problem than I thought. The issue is that
the downstream routine has to know when to use a common variance for two columns of cmat,
and when not to. This means that it has to look at the and (even harder) that the correlation
between an intercept and a factor is not clear. The variance function will examine the assign

attribute of the model matrix to know which terms go together.

〈get-cmat 〉=
getcmat <- function(x, mf) {

if (is.null(x) || x==1) return(NULL)

Terms <- terms(eval(call("~", x)))

attr(Terms, ’intercept’) <- 0 #ignore any "1+" that is present

varnames <- attr(Terms, ’term.labels’)

ftemp <- sapply(mf[varnames], is.factor)

if (any(ftemp)) {
clist <- lapply(mf[varnames[ftemp]],

function(x) diag(length(levels(x))))

model.matrix(Terms, mf, contrasts.arg =clist)

}
else model.matrix(Terms, mf)

}

16

The initial function returns both a set of covariates X and a coefficient map for each column
of X, showing for each row of data which coefficient the term maps to. If the map has multiple
columns and/or any one of the columns has a lot of levels then Z can get very large. Additionally,
if Z has p columns then the Hessian matrix for the corresponding parameters is p by p. This is
an area where the code could use more sparse matrix intelligence, i.e., so that the expanded Z
need never be created.

〈newzmat 〉=
newzmat <- function(xmat, xmap) {

n <- nrow(xmap)

newz <- matrix(0., nrow=n, ncol=max(xmap))

for (i in 1:ncol(xmap))

newz[cbind(1:n, xmap[,i])] <- xmat[,i]

newz

}

3 The model formula

3.1 Introduction

The first version of coxme followed the lme convention of using separate formulas for the fixed
and random portions of the model. This worked, but has a couple of limitations. First, it has
always seemed clumsy and unintuitive. A second more important issue is that it does not allow
for variables that participate in both the fixed and random effects. The new form is similar (but
not identical) to the direction taken by the lmer project. Here is a moderately complex example
modivated by a multi-institutional study where we are concerned about possible different patient
populations (and hence effects) in each enrolling institution.

coxme(Surv(time, status) ~ age + (1+ age | institution) * strata(sex))

This model has a fixed overall effect for age, along with random intercept and slope for each
of the enrolling institutions. The study has a separate baseline hazard for males and females,
along with an interaction between strata and the random effect. The fitted model will include
separate estimates of the variance/covariance matrix of the random effects for the two genders.
This is a type of model that could not be specified in the prior mode where fixed and random
effects were in separate statements.

3.2 Parsing the formula

The next step is to decompose the formula into its component parts, namely the fixed and the
random effects. The standard formula manipulation tools in R are not up to this task; we do it
ourselves using primarily two routines called, not surprisingly formula1 and formula2. The first
breaks the formula into fixed and random components, where the fixed component is a single
formula and the random component may be a list of formulas if there is more than one random
term.

Formulas in S are represented as a parse tree. For example, consider the formula y ~ x1 + x2*(x3 + x4).
It’s tree is shown in figure 1. At each level the figure lists the class of the object along with its

17

formula: ~

y call: +

x1 call: *

(: (

call: +

x3 x4

x2

Figure 1: The parse tree for y ~x1 + (x3 + x4)* x2.

18

name; to lessen crowding in the plot objects of class ‘name’ do not have the class listed. The
arguments to a call are the branches below each call. A formula is structured like a call to the
“~” operator, and a parenthesised expression like a call with a single argument.

The formula1 routine is called with the model formula, the response and the fixed parts
are returned as the fixed component, the random parts are separated into a list. The primary
concern of this function is to separate out the random terms; by definition this is a parenthesised
term whose first child in the parse tree is a call to the vertical bar function. A random term
is separated from the rest of the equation by one of the four operators +, -, *, or :, thus the
parsing routine only has to worry about those four, anything else can safely be lumped into the
fixed part of the equation.

We first deal with the top level call (the formula), and with parentheses. There are two cases.
In the first, we have by definition found a random effects term. (The routine formula2 will be
used to check each random term for validity later). The second case is a random term found
inside two sets of parentheses; this is redundant but legal. By simply passing on the list from
the inner call the routine removes the extra set.

〈formula 〉=
formula1 <- function(x) {

if (class(x)==’formula’) { #top level call

n <- length(x) # 2 if there is no left hand side, 3 otherwise

temp <- formula1(x[[n]])

if (is.null(temp$fixed)) x[[n]] <- 1 # only a random term!

else x[[n]] <- temp$fixed

return(list(fixed=x, random=temp$random))

}

if (class(x) == ’(’) {
if (class(x[[2]])== ’call’ && x[[2]][[1]] == as.name(’|’)) {

return(list(random = list(x)))

}

temp <- formula1(x[[2]]) # look inside the parenthesised object

if (is.null(temp$fixed)) return(temp) #doubly parenthesised random

else {
A random term was inside a set of parentheses, pluck it out

An example would be (age + (1|group))

if (length(temp$fixed) <= 2) x <- temp$fixed #remove unneeded (

else x[[2]] <- temp$fixed

return(list(fixed= x, random=temp$random))

}
}

Next we deal with the four operators one by one, starting with “+”. We know that this call has
exactly two arguments; the routine recurs on the left and then the right hand portions, and then
merges the results. The merger has to deal with 5 cases, the left term either did or did not have
a fixed effect term, and the right arm either does not exist, exists and does not have a random

19

effect, or exists without a random effect. The first case arises when someone accidentally has
an extra sign such as age + + sex + (1|grp); easy to do on a multi-line formula. We re-paste
the two fixed effect portions together. The random terms are easier since they are lists, which
concatonate properly even if one of them is null.

〈formula 〉=
if (class(x) == ’call’ && x[[1]] == as.name(’+’)) {

temp1 <- formula1(x[[2]])

if (length(x)==2) return(temp1) #no merge needed

temp2 <- formula1(x[[3]])

if (is.null(temp1$fixed)) {
The left-hand side of the ’+’ had no fixed terms

return(list(fixed=temp2$fixed,

random=c(temp1$random, temp2$random)))

}
else if (is.null(temp2$fixed)) # right had no fixed terms

return(list(fixed=temp1$fixed,

random=c(temp1$random, temp2$random)))

else {
return(list(fixed= call(’+’, temp1$fixed, temp2$fixed),

random=c(temp1$random, temp2$random)))

}
}

The code for “-” is identical except for one extra wrinkle: you cannot have a random term after
a minus sign. Becase the expressions are parsed from left to right ~ age-1 + (1|group) will be
okay (though -1 makes no sense in a Cox model), but ~ age - (1 + (1|group)) will fail.

〈formula 〉=
if (class(x)== ’call’ && x[[1]] == as.name(’-’)) {

temp1 <- formula1(x[[2]])

if (length(x)==2) return(temp1)

temp2 <- formula1(x[[3]])

if (!is.null(temp2$random))

stop("You cannot have a random term after a - sign")

if (is.null(temp1$fixed)) #no fixed terms to the left

return(list(fixed=temp2$fixed,

random= temp1$random))

else { #there must be fixed terms to the right

return(list(fixed= call(’-’, temp1$fixed, temp2$fixed),

random= temp1$random))

}
}

For the last line: we know there is something to the right of the ’-’, and it is not a naked random
effects term, so it must be fixed.

20

Interactions are a bit harder. The model formula ~ (age + (1|group))*sex for instance
has an age*sex fixed term and a (1|group)*sex random term. Interactions between random
effects are not defined. I don’t know what they would mean if they were

〈formula 〉=
if (class(x)== ’call’ && (x[[1]] == ’*’ || x[[1]] == ’:’)) {

temp1 <- formula1(x[[2]])

if (length(x) ==2) return(temp1)

temp2 <- formula1(x[[3]])

if (is.null(temp1$random) && is.null(temp2$random))

return(list(fixed=x)) # The simple case, no random terms

if (!is.null(temp1$random) && !is.null(temp2$random))

stop ("The interaction of two random terms is not defined")

Create the new “fixed” term. In the case of (1|group):sex, there is no fixed term in the result.
For (1|group) *sex the fixed term will be “sex”. These are the two cases (and their mirror
images) where only one of the left or right parts has a fixed portion. If both have a fixed portion
then we glue them together.

〈formula 〉=
if (is.null(temp1$fixed) || is.null(temp2$fixed)) {

if (x[[1]] == ’:’) fixed <- NULL

else if (is.null(temp1$fixed)) fixed <- temp2$fixed

else fixed <- temp1$fixed

}
else fixed <- call(deparse(x[[1]]), temp1$fixed, temp2$fixed)

Create the new random term. The lapply is needed for (((1|group) + (1|region)) * sex,
i.e., there are multiple groups in the random list. I can’t imagine anyone using this, but if I leave
it out they surely will and confuse the parser.

〈formula 〉=
if (is.null(temp2$random)) #left hand side was random

random <- lapply(temp1$random,

function(x,y) call(’:’, x, y), y=temp2$fixed)

else #right side was

random = lapply(temp2$random,

function(x,y) call(’:’, x, y), y=temp1$fixed)

if (is.null(fixed)) return(list(random= random))

else return(list(fixed=fixed, random=random))

}

The last bit of the routine is for everything else, we treat it as a fixed effects term. A possible
addition would be look for any vertical bars, which by definition are not a part of a random term
— we’ve already checked for parentheses —and issue an error message. We do this instead in
the parent routine.

21

〈formula 〉=
return(list(fixed=x))

}

3.3 Random terms

Each random term is subjected to further analysis using the formula2 routine. This has a lot
of common code with formula1, since they both walk a similar tree. The second routine breaks a
given random part into up to four parts, for example the result of (1 + age + weight | region):sex

will be a list with elements:

• intercept: TRUE

• variates: age + weight

• group: region

• interaction: sex

We can count on formula1 to have put any interaction term on the far right, which means
that it will be the first thing we encounter.

〈formula 〉=
formula2 <- function(term) {

if (is.call(term) && term[[1]] == as.name(’:’)) {
interact <- term[[3]]

term <- term[[2]]

}
else interact <- NULL

if (class(term) != ’(’ || !is.call(term[[2]]) ||

term[[2]][[1]] != as.name(’|’))

stop("Formula error: Expected a random term")

term <- term[[2]] # move past the parenthesis

out <- list(intercept=findIntercept(term[[2]]))

out$group<- term[[3]]

out$interaction <- interact

out$fixed <- term[[2]]

out

}

This routine looks for an intercept term - that’s all. It would be easiest to use the built in
terms function for this, since the intercept could be anywhere, and someone might have put in
a -1 term which makes it trickier. However, we can’t: the default S strategy would claim that
(age+weight) |1) has an intercept. As an advantage, we know that there can be no operators
except “+” or “-” signs in the subformula at hand.

22

〈formula 〉=
findIntercept <- function(x) {

if (is.call(x)) {
if (x[[1]] == as.name(’+’)) findIntercept(x[[2]]) |findIntercept(x[[3]])

else FALSE

}
else if (x==1) TRUE

else FALSE

}

3.4 Miscellaneous

Here is the simple function to look for any vertical bars. You might think of recurring on any
function with two arguments, e.g., if length(x)==3 on the fourth line. (The findbars routine
in lmer, 3/2009, does this for instance, which shows that it must be a pretty sound idea, given
the extensive use that code has seen.) However, that line would recur into other functions,
like logb(x5, 2) for instance. The following is legal but has a vertical bar we wish to ignore:
I(x1 | x2). I have never seen an actual use of such a phrase, but nevertheless I’m taking the
paranoid route.

〈formula 〉=
hasAbar <- function(x) {
if (class(x)== ’call’) {

if (x[[1]]== as.name(’|’)) return(TRUE)

else if (x[[1]]==as.name(’+’) || x[[1]]== as.name(’-’) ||

x[[1]]==as.name(’*’) || x[[1]]== as.name(’:’))

return(hasAbar(x[[2]]) || hasAbar(x[[3]]))

else return(FALSE)

}
else if (class(x) == ’(’) return(hasAbar(x[[2]]))

else return(FALSE)

}

Here is a similar function which replaces each vertical bar with a ’+’ sign. This is needed
for the model.frame call, which does not properly deal with vertical bars. Given a formula it
returns a formula. We only recur on 4 standard operators to avoid looking inside functions.
An example would be ~ age + I(x1 | x2) + (1|group); we take care not to look inside the
I() or an ns() call, etc. I’m not sure that replacing the bar inside the I() function will cause
any problems for model.frame; so I may be being overly cautious. The if length(x) statement
below will most often arise from a formula with two + signs in a row. The second one is treated
as unary so only has a single argument.

〈formula 〉=
subbar <- function(x) {

if (class(x)==’formula’) x[[length(x)]] <- subbar(x[[length(x)]])

if (class(x)== ’call’) {

23

if (x[[1]]==as.name(’+’) || x[[1]]== as.name(’-’) ||

x[[1]]==as.name(’*’) || x[[1]]== as.name(’:’)) {
x[[2]] <- subbar(x[[2]])

if (length(x)==3) x[[3]] <- subbar(x[[3]])

}
}

else if (class(x)== ’(’) {
if (class(x[[2]])== ’call’ && x[[2]][[1]] == as.name(’|’))

x[[2]][[1]] <- as.name(’+’)

else x[[2]] <- subbar(x[[2]])

}
x

}

4 Variance families

4.1 Structure

Each distinct random effects term corresponds to a distinct diagonal block in the overall penalty
matrix, along with a set of penalized coefficients b. To make life easier for the maximizer, there
may also be a transformation between the displayed variance coefficients and the internal ones,
for instance a variance that is known to be > 0 will be maximized on the log scale. When there
are multiple random terms in the formula then the varfun, vinit, and variance arguments
must each be in the form of a list with one element per random term.

Variance family functions for coxme are similar in spirit to glm families: the functions set up
the structure but do not do any work. Each of them returns a list of 3 functions, initialize,
generate, and wrapup. Any optional arguments to the variance family are used to create these
three; depending on the family they might apply to any one.

The initialize function is called with the X and G matrices for the given term, along with
the sparse option and the appropriate vectors of initial and fixed values.

The return from a call to initialize is

itheta a list containing initial values for all the θ parameters that need to be optimized. Each
element of the list will be a vector of values: the parent routine will try all combinations
and then use the best as the starting value for the optim routine. If all the parameter
values are fixed the list will be null.

imap the design matrix for random intercepts

X the covariate matrix for random slopes

xmap the design matrix for any random slopes

parm a list of arguments to be passed forward to the generate and wrapup functions.

error optional error message. This is passed up so the parent can print an error message with
more information.

24

The input data G is a data frame with one variable per level of nesting. The G data passed
in and the F matrix returned may not be the same. In particular, any class levels that are
going to be treated as sparse will have been rearranged to so as to be the first columns of the
penalty matrix (variance of the random effect), and so will have level indices of 1,2, In all
the current routines the X matrix returned is identical to the X matrix input. In the future we
may add scaling, however.

The generate function is called at each iteration with the current vector of estimates θ̂ and
the appropriate parameter list. It will generate the variance matrix of the random effect, which
may be either an ordinary matrix or a bdsmatrix. If there are multiple random effect terms,
each of the generate functions creates its appropriate block.

The wrapup function is called when iteration is complete. Its job is to return the extended
and re-transformed θ vector (fixed coefficients are re-inserted), and to format and label the vector
of random coefficients.

For both initial values and fixed values we try to be as forgiving as possible, by first matching
on names and then matching any unnamed arguments. Say for instance that the the term is
(1| race/sex), then all of

• vinit = list(1,2)

• vinit = list(sex=2)

• vinit = list(sex=2, 1)

• vinit = c(sex=2, 1)

are legal. We do this by augmenting pmatch to add in unnamed arguments. The initmatch

function below will return a vector of integers of the same length as its input, showing which term
they match to. So for the random term (1| race/sex) a user specification of vinit=1:3 would
return (1, 2, 0) and vinit=c(sex=2, school=3) would give (2, 0). The user cannot currently
input a list of starting values: both vfixed and vinit allow only a single value per theta.

〈initmatch 〉=
initmatch <- function(namelist, init) {

if (is.null(names(init))) iname <- rep(’’, length(init))

else iname <- names(init)

indx1 <- pmatch(iname, namelist, nomatch=0, duplicates.ok=TRUE)

if (any(iname==’’)) {
temp <- 1:length(namelist)

if (any(indx1>0)) temp <- temp[-indx1] #already used

indx2 <- which(iname==’’)

n <- min(length(indx2), length(temp))

if (n>0) indx1[indx2[1:n]] <- temp[1:n]

}
indx1

}

25

4.2 Sparseness

This is a good point to remind myself of an important distinction. When fitting the Cox likelihood
we have to be aware of which terms of the partial likelihood’s hessian matrix (second derivative)
can be considered “sparse” or not. Because the C code expects the Hessian and the penalty to
have exactly the same bdsmatrix form, the kfun function in coxme.fit has to orchestrate which
parts of the penalty can be represented using the sparse part of a bdsmatrix (the blocks and
blocksize components) and which has to use the dense part (the rmat component). Essentially,
it treats terms 2, 3, . . . as dense, and for the first term it believes what the variance function
sends it. Thus, this is the point at which “sparseness” is determined.

A block d iagonal symmetric bdsmatrix object consists of two portions: a block diagonal
section in the upper left and a dense border. Since it is symmetric only the right hand border is
retained. If the block diagonal section has only a single block, then the matrix is dense; if there
are many blocks it will be sparse.

Although the penalty matrices created by the variance function are themselves are often very
sparse, the Cox model’s Hessian matrix is never sparse. What we have found is that for some
cases, one can pretend the Hessian is sparse, i.e., all of the terms in the block diagonal portion
that are outside the blocks are considered zero.

4.3 coxmeFull

This is the default routine, which assumes a simple nested structure for the variance. Sparsity
is assumed only for random intercepts, for those groups which have a small percent of the total.

The overall layout of the routine is below. It currently has only one optional parameter,
which contols the form of nested effects

〈coxmeFull 〉=
coxmeFull <- function(collapse=FALSE) {

collapse <- collapse

Because of R’s lexical scoping, the values of the options

above, at the time the line below is run, are known to the

initialize function

〈coxmeFull-init 〉
〈coxmeFull-generate 〉
〈coxmeFull-wrapup 〉
out <- list(initialize=initialize, generate=generate, wrapup=wrapup)

oldClass(out) <- ’coxmevar’

out

}

To describe the layout, we consider four cases of increasing complexity.

1. Shrinkage models, which have slopes but no groups (x1+x2 | 1)

2. A simple random intercept (1|g1),

3. Nested random intercepts (1 | g1/g2)

4. Intercept and slopes, with or without nesting (1 + x1 | g1/g2)

26

There is also the invalid random effect (1|1). Terms without either a covariate or an intercept
to the left of the vertical bar have already failed with an error when the formula was parsed.

The initialize and generate routines each start by defining a few variables, and then
treating the five cases one by one. The varinit and corinit values are the default lists of starting
values to try for variance and correlation terms, respectively, and are defined in the coxme.control
function. The current ones are rather ad hoc. We have found that the estimated standard devia-
tion of a random effect is often between .1 and .3, corresponding to exp(.1)= 1.1 to exp(.3)= 1.35
fold “average” relative risks associated with group membership. This is biologically reasonable
for a latent trait. A second common solution is a small random effect with 1–5% change in the
hazard. (These will not be detectable, i.e., ’significant’ unless the data set size is large of course.)
Because we use the log(variance) as our iteration scale the 0–.001 portion of the variance scale
is stretched out giving a log-likelihood surface that is almost flat; a Newton-Raphson iteration
starting at log(.2) may have log(.0001) as its next guess and get stuck there, never finding a true
maximum that lies in the range of .01 to .05. Finally, few data sets have solutions with variance
> 1 for which a larger starting value suffices.

For the correlation we use 0 and .3. Negative values are not on the list since they can lead
to an impossible (non positive definite) variance matrix. One cannot have 5 variables all with
correlation -.3 for instance. There also appears to be less of a need for multiple starting estimates.
Solutions rarely converge to the endpoints of the transformed range (> .95).

〈coxmeFull-init 〉=
initialize <- function(vinit, fixed, intercept, G, X, control) {

ngroup <- min(length(G), ncol(G))

nvar <- min(length(X), ncol(X)) # a NULL or a nx0 matrix yields 0

sparse <- control$sparse

〈initmatch 〉

if (ngroup==0) {
if (intercept)

return(list(error=("Invalid null random term (1|1)")))

else {
〈coxmeFull-init-1 〉
}

}
else {

if (nvar==0) {
〈initialize-inits 〉
}

Deal with random slope terms

if (ngroup ==1) {
〈coxmeFull-init-2 〉

}
else {

if (collapse) {
〈coxmeFull-init-3b 〉

27

}
else {

〈coxmeFull-init-3a 〉
}

}

#Deal with slopes

if (nvar > 0) {
〈coxmeFull-init-4 〉
}

}
}

Case 1 of our initialize function will process a pure shrinkage term such as (x1 + x2 | 1).
In this case the two coefficients for x1 and x2 are considered to come from a Gaussian with a
common variance σ2. If the variance is fixed, this is equivalent to ordinary ridge regression.

First deal with initial values. There should be either 0 or 1 of them, named (if at all) with the
first covariate. For the default starting values see the earlier discussion. These are then scaled
by .5/std(X), the idea is that the defaults have proven to work well for the binomial indicator
variables of a class variable, which usually have a std between 1/2 and 1/4. The variance matrix
will be a diagonal, non-sparse, so after checking initial values there is almost nothing left to do.

〈coxmeFull-init-1 〉=
xname <- dimnames(X)[[2]]

if (length(vinit) >0) {
temp <- initmatch(xname[1], vinit)

if (any(temp==0))

return(list(error=paste(’Element’, which(temp==0),

’of initial values not matched’)))

else {
if (vinit <=0) return(list(error="Invalid variance value, must be >0"))

theta <- vinit

}
}

else theta <- control$varinit *.5 / mean(sqrt(apply(X,2,var)))

if (length(fixed) >0) {
temp <- initmatch(xname[1], fixed)

if (any(temp==0))

return(list(error=paste(’Element’, which(temp==0),

’of fixed variance values not matched’)))

else theta <- fixed

which.fixed <- TRUE

if (theta <=0) return(list(error="Invalid variance value, must be >0"))

}
else which.fixed <- FALSE

28

xmap <- matrix(0L, nrow=nrow(X), ncol=ncol(X))

for (i in 1:ncol(X)) xmap[,i] <- i

list(theta=list(log(theta))[!which.fixed], imap=NULL, X=X, xmap=xmap,

parms=list(fixed=which.fixed, theta=theta[1],

xname=xname, case=1))

The generate function has a separate block for each of the 4 cases. To start, however, make
sure that the exponential function never leads to a variance that is exactly zero or to a correlation
of 1. The value 36 is close to -log(.Machine$double.eps), used in the Splus care.exp function.
For a coxph model, a variance ¿10 is usually pretty wild, and one less than .0001 is near 0 in
behavior (for properly scaled variables), so this trucation does not affect any statistical properties
of the estimates.

〈coxmeFull-generate 〉=
generate= function(newtheta, parms) {

theta <- parms$theta

if (length(newtheta)>0) theta[!parms$fixed] <-

exp(pmax(-36, pmin(36, newtheta)))

if (parms$case==1) return(diag(length(parms$xname)) * theta)

〈coxmeFull-generate-2 〉
〈coxmeFull-generate-3 〉
〈coxmeFull-generate-4 〉
}

Case 2 is the simple one of a single grouping variable and no covariates. If sparseness applies,
then the levels of the variable are reordered to put the infrequent levels first, and the variance
matrix starts with nsparse 1 × 1 blocks. The input will have G as a single column data frame
containing a single grouping variable, often represented as a factor and X will be null. If G
has g levels, then the vector of random intercepts will be of length g, there is a single random
variance, and

bi ∼ N(0, σ2I)

Several times in the code we make use of the fact that matrices are stored in column major
order. Thus a sequence of indices i, i+ ncol(R)+1, i+ 2*(ncol(R)+1), ... will walk down
a diagonal of the matrix, starting at element i.

〈coxmeFull-init-2 〉=
gtemp <- as.factor(G[[1]])[,drop=TRUE] #drop unused levels

nlevel <- length(levels(gtemp))

gfrac <- table(gtemp)/ length(gtemp)

if (nlevel >= sparse[1] && any(gfrac <= sparse[2])) {
indx <- order((gfrac> sparse[2]), 1:nlevel) #False then True for order

nsparse <- sum(gfrac <= sparse[2])

if (nsparse== nlevel) vmat<- bdsI(nsparse)

else {
k <- nlevel - nsparse #number of non-sparse levels

29

rmat <- matrix(0., nrow=nlevel, ncol=k)

rmat[seq(nsparse+1, by= nlevel+1, length=k)] <- 1.0

vmat <- bdsmatrix(blocksize=rep(1,nsparse),

blocks= rep(1,nsparse), rmat=rmat)

}
}

else {
vmat <- diag(nlevel)

indx <- 1:nlevel

nsparse <- 0

}
imap <- matrix(match(as.numeric(gtemp), indx))

levellist <- list((levels(gtemp))[indx])

Since the variance must be positive, iteration is done on the log value. The levellist and
gname parts of the paramter list will be used by the wrapup function to create labels.

〈coxmeFull-init-2 〉=
varlist <- list(vmat)

if (nvar==0)

return(list(imap=imap, X=NULL,

theta=(lapply(itheta, log))[!which.fixed],

parms=list(varlist=varlist, theta=theta, levellist=levellist,

fixed=which.fixed, case=2, gname=gname)))

The generate function for this case is quite simple.

〈coxmeFull-generate-2 〉=

if (parms$case==2) return(theta*parms$varlist[[1]])

Matching any user input for either the vfixed or vinit arguments (which show up here as
fixed] and [[vinit) for cases 2 and 3 can be done by a common bit of code since the names
have to match up precisely with the grouping variables. For reasons discussed below we order
the parameters from the last grouping variable to the first.

〈initialize-inits 〉=
gname <- names(G)

ntheta <- length(gname)

itheta <- vector(’list’, length=ntheta)

for (i in 1:ntheta) itheta[[i]] <- control$varinit

if (ntheta >1) {
for (i in 2:ntheta) gname[i] <- paste(gname[i-1], gname[i], sep=’/’)

gname <- rev(gname)

}
names(itheta) <- gname

if (length(vinit) >0) {

30

temp <- initmatch(gname, vinit)

if (any(temp==0))

return(list(error=paste(’Element’, which(temp==0),

’of initial values not matched’)))

else itheta[temp] <- vinit

if (any(unlist(vinit) <=0))

return(list(error=’Invalid initial value’))

}

theta <- rep(0, ntheta) # the filler value does not matter

which.fixed <- rep(FALSE, ntheta)

if (length(fixed)>0) {
temp <- initmatch(gname, fixed)

if (any(temp==0))

return(list(error=paste(’Element’, which(temp==0),

’of variance values not matched’)))

else theta[temp] <- unlist(fixed)

which.fixed[temp] <- TRUE

}

The third case is an intercept with nested grouping variables. We first expand out the second
variable using the expand.nested routine; for a term such as (1 | school/teacher) we need
to relabel the teacher variable so that teacher 1 in school A is different than teacher 1 in school
B. This will lead to a stucture with g1 levels for the first variable g1 ∗g2 levels for the second, and
so on. This leads to two columns in imap, one for each variable, corresponding to the following
structure.

bi ∼ N(0, σ2
1I)

cij ∼ N(0, σ2
2I)

Sparseness is applied to the last variable in the nesting, since it has the largest number of levels.
This is done by reversing the parameters. Note that the expand.nested routine has already
remomved any unused levels.

〈coxmeFull-init-3a 〉=
G <- rev(expand.nested(G)) #the last shall be first

imap <- matrix(0L, nrow=nrow(G), ncol=ngroup)

imap[,1] <- as.numeric(G[,1])

for (i in 2:ngroup)

imap[,i] <- as.numeric(G[,i]) + max(imap[,i-1])

levellist <- lapply(G, levels)

nlevel <- sapply(levellist, length)

Sparsity?

gtemp <- G[,1]

gfrac <- table(gtemp)/ length(gtemp)

31

if (nlevel[1] > sparse[1] && any(gfrac <= sparse[2])) {
indx <- order((gfrac> sparse[2]), 1:nlevel[1])

nsparse <- sum(gfrac <= sparse[2])

imap[,1] <- match(as.integer(gtemp), indx)

levellist[[1]] <- (levellist[[1]])[indx]

}
else nsparse <- 0 #a single sparse element is the same as dense

The final variance matrix is diagonal with with rep(theta, nlevel) down the diagonal. Create
a set of ngroup matrices all the same shape, each with 1’s the right place on the diagonal, so
that their sum is what we need.

〈coxmeFull-init-3a 〉=
if (nsparse==0) tmat <- diag(sum(nlevel))

else tmat <- bdsmatrix(blocksize=rep(1L, nsparse), blocks=rep(1., nsparse),

rmat=matrix(0., nrow=sum(nlevel), ncol=sum(nlevel)-nsparse))

varlist <- vector(’list’, ngroup)

for (i in 1:ngroup) {
temp <- rep(0., nrow(tmat))

temp[unique(imap[,i])] <- 1.0

temp2 <- tmat

diag(temp2) <- temp

varlist[[i]] <- temp2

}

if (nvar==0)

return(list(imap=imap, X=NULL,

theta=(lapply(itheta, log))[!which.fixed],

parms=list(nlevel=nlevel, varlist=varlist, gname=names(G),

fixed=which.fixed, levellist=levellist,

theta=theta, case=3, collapse=FALSE)))

Now all that the generate function needs to do is to add the weighted matrices. We want the
generate functions to be simple, since they are executed hundreds of times.

〈coxmeFull-generate-3 〉=
if (parms$case==3) {

temp <- theta[1]* parms$varlist[[1]]

for (i in 2:length(parms$varlist))

temp <- temp + theta[i]*parms$varlist[[i]]

return(temp)

}

Although the above is a simple approach, we have found the program is often more stable
using an alternate representation. I hypothesise that this is due to a smaller number of nuisance
variables.

32

Update: I’m leaving the code in (it does work), but have since realized that it was all based
on a misunderstanding. When computed correctly the collapse=TRUE and collapse=FALSE
lead to identical iteration paths. The observation that led to doing a collapse option was in
the prior code, with a large number of groups, and I was unwittingly using different patterns of
sparsity.

Consider again a 2 level nesting b/c and let

dij = bi + cij

d ∼ N(0, A)

Then A is a block diagonal array with one block for each level of the primary grouping variableb,
and

Aii = σ2
1 + σ2

2

Aij = σ2
1

for i and j in the same block, and 0 otherwise. The size of the first block is the number of unique
levels of c that occur for the first level of b. We can treat the fit as a single random effect d, but
with a more complex variance/covariance matrix between the terms.

Sparsity is more complex– we can only ignore elements that are both not part of the penalty
and are ok combinations for the Cox model hessian. The first of these is based on the block
structure just above and depends on the first grouping variable. The Cox sparsity is based on d,
covariances can be ignored for any pair of levels in which both are sparse. The upshot is that we
need to order the coefficients by block, with any sparse blocks (ones in which every d is sparse)
first.

The bdsBlock function makes it fairly simple to create the blocks. At the end we assess
sparseness, if ≤ 1 block counts as sparse we keep only one of them in the block portion, e.g., a
dense matrix. For creating the matrices we need the number of unique coefficients = number
of levels of the last element of the expanded G. So all this computation works on that unique
subset.

〈coxmeFull-init-3b 〉=
gtemp <- expand.nested(G)

n <- nrow(G)

#Sparse?

gfrac <- table(gtemp[,ngroup])/ n

nlevel <- length(levels(gtemp))

if (nlevel > sparse[1] && any(gfrac <= sparse[2])) {
is.sparse <- (gfrac <= sparse[2])[as.numeric(gtemp[,ngroup])]

block.sparse <- tapply(is.sparse, G[,1], all)

nsparse

}
else block.sparse <- 0

33

if (sum(block.sparse > 1)) { #sparse blocks exist, make them list first

border <- order(!block.sparse, 1:nlevel)

G[,1] <- factor(gtemp[,1], levels=levels(G[,1])[border])

G <- expand.nested(G)

}

G <- rev(expand.nested(G))

levellist <- lapply(G, levels)

nlevel <- sapply(levellist, length)

imap <- matrix(as.numeric(G[,1]))

varlist <- vector(’list’, ngroup)

indx <- match(levellist[[1]], G[[1]]) #an ordered set of unique rows

for (i in 1:ngroup)

varlist[[i]] <- bdsBlock(1:nlevel[1], G[indx,i])

if (sum(block.sparse) <=1) {#make them all ordinary matrices

for (i in 1:ngroup) varlist[[i]] <- as.matrix(varlist[[i]])

}
else {

if (!all(block.sparse)) { # Only a part is sparse

tsize <- sum(temp@blocksize[1:sum(block.sparse)]) # sparse coefs

sparse <- 1:tsize #sparse portion, remainder is dense

smat <- (varlist[[ngroup]])[1:sparse, 1:sparse]

varlist[[ngroup]]

rmat <- matrix(0, sum(tsize), nlevel[1])

rmat[seq(by=nrow(rmat)+1, to=length(rmat), length=ncol(rmat))] <- 1.0

varlist[[ngroup]] <- bdsmatrix(blocksize=smat@blocksize,

blocks=smat@block, rmat=rmat)

}
varlist <- bdsmatrix.reconcile(varlist)

}

if (nvar==0) {
return(list(imap=matrix(as.numeric(G[,1])), X=NULL,

theta=lapply(itheta, log)[!which.fixed],

parms=list(varlist=varlist, theta=theta,

fixed=which.fixed, gname=names(G),

levellist=levellist, case=3, collapse=TRUE)))

}

The last case is the hardest; we have both grouping factors and covariates. To keep track of
the coefficients I create two working variables, imap and xmap, the first corresponds to intercepts
and the second to covariates. The imap matrix has n rows and one column for each level of
grouping; for each subject it shows which intercept coefficients that subject participates in. The
xmap matrix is similar; it shows the coefficient number(s) for each X variable. For a random

34

term (1 + x1 + x2 + x3| g1/g2) the retuned X matrix will have 6 columns since there are
2 sets of coefficients for every covariate, xmap contains the mapping to the set of coefficients
corresponding to each column. At this time the underlying C code for coxme demads that imap
point to the first block of coefficients and xmap to the next, i.e. that all intercept coefficients
come first (this may eventually change). Thus xmap picks up where imap left off. Assume that
I had 1 grouping variable with 9 levels and 2 covariates x1, x2. If we set the first column of
xmap to imap +9 and the second one to imap +18, then then coefficient pairs 1 and 10, 1 and
19, and 10 and 19 are correlated, but distinct ones within a column of imat or of xmat are not.
This leads to the overall correlation matrix for the coefficients given below, where A is the 9 by
9 identiy matrix.  σ2

1A σ12A σ13A
σ12A σ2

2A σ23A
σ13A σ23A σ2

3A

 (1)

If there are multiple grouping variables they will come first: replace the upper left corner of
1 with the combined matrix A(θ) for the set, the other blocks are also A(θ) but using a different
portion of the θ vector. For a grouping variable g1/g2 with 2 levels for g1 and 4 for the g1/g2
pairing we have

A(σ1, σ2) =


σ2
1 0 0 0 0 0

0 σ2
1 0 0 0 0

0 0 σ2
2 0 0 0

0 0 0σ2
2 0 0

0 0 0 0σ2
2 0

0 0 0 0 0 σ2
2


which is exactly the variance matrix we would have had for a (1 | g1/g2) term. The second
block will be a function of the covariances between the two intercept terms and x1, A(σ13, σ23),
and the upper right block the covariances between x2 and the intercepts.

The set of paramters θ is most easily arranged in the following way: for each grouping variable
we have an (nvar +1) by (nvar +1) set of variances/covariances, with the intercept as the first
column. The θ vector has the lower triangle of this (in standard R matrix order) for the first
grouping variable, then for the second, etc. The tname vector gives names to the elements,
in order to allow a user to set selected values. For the random term 1 + x1 + x2 | g1/g2

the names would be g1, x1:g1, x2:g1, x1/g1, x1:x2/g1, x2/g1. (I don’t particularly like
these; if you can think of a better naming scheme let me know.) The default values for θ are
0 and .3 for the correlations and (.02, .1, .3, .9)2 for the variances. For computation they are
transformed with variances=eθ and correlations=(eθ − 1)/(eθ + 1).

Having worked all this out now throw one more complication into the mix. Again look at the
term (1 + x1 + x2 | g1), with the 6 parameters (σ2

1 , σ
2
2 , σ

2
3 , σ12, σ13, σ23) which are variances

of the intercept, x1, and x2 coefficients along with their covariances. If x1 and x2 are from the
same term, e.g., they are the 0/1 dummy variables for two levels of a factor, then we assume that
σ2
2 = σ2

3 , σ12 = σ13 and σ23 = 0; from a parameter count view they act like a single variable.
This makes no change at all in the number of coefficients b or in the structure of their covariance
matrix in equation 1. But we now need to have a “real” θ vector containing just 3 parameters,
an expanded one etheta containing all 6 terms, and a mapping between them.

The last point to mention before actual code is whether the Xcovariates should be centered or
scaled. There is a very good reason for doing this in the coxph code, since βx and β(x+10000000)

35

have the same log-likelihood for any value of β but the latter one can cause the exp function to
overflow while doing the calculations. It this can happen, for instance when x is a Date object.
I’m so used to this that I originally built the idea into this code before realizing it causes a
problem: in a (1+ x1 | g1) model for instance subtracting a constant from x1 changes the
variance estimate for the intercept term of g1. (The same is true for linear mixed models). It
does lead to the same log-likelihood and thus correct tests, but the change in printed output
should be avoided. Scaling the colums of X causes problems for the refine.n code in the main
program; it saw the rescaled X matrix but not the rescaled coefficients. Currently we do rescale
the default starting estimates, thus if a user replaces X with 2X the code will follow the same
iteration path.

〈coxmeFull-init-4 〉=
xvar <- apply(X,2,var)

cordefault <- control$corinit

itheta <- list()

is.variance <- NULL

if (intercept) {
itheta <- c(itheta, list(control$varinit))

for (i in 1:ncol(X)) itheta <- c(itheta, list(control$corinit)) #correlations

is.variance <- c(TRUE, rep(FALSE, ncol(X)))

}
for (i in 1:ncol(X)) {

itheta <- c(itheta, list(control$varinit/xvar)) #variance

if (i < ncol(X)) {
for (j in (i+1):ncol(X)) itheta <- c(itheta, list(cordefault))

is.variance <- c(is.variance, TRUE, rep(FALSE, ncol(X)-i))

}
else is.variance <- c(is.variance, TRUE)

}
itheta <- rep(itheta, ngroup)

is.variance <- rep(is.variance, ngroup)

xname <- dimnames(X)[[2]]

name.temp <- outer(xname, xname, paste, sep=":")

diag(name.temp) <- xname

name.temp <- name.temp[row(name.temp) >= col(name.temp)]

tname <- ""

gname <- names(G)

for (i in 1:ngroup) {
if (intercept)

tname <- c(tname, gname[i], paste(xname, gname[i], sep=’:’),

paste(name.temp, gname[i], sep=’/’))

else tname <- paste(name.temp, gname[i], sep=’/’)

}

Now replace selected values with the user’s input

36

if (length(vinit) > 0) {
temp <- initmatch(tname, vinit)

if (any(temp==0))

return(list(error=paste(’Element(s)’, which(temp==0),

’of initial values not matched’)))

else itheta[temp] <- unlist(vinit)

}

which.fixed <- rep(FALSE, length(itheta))

if (length(fixed) > 0) {
temp <- initmatch(tname, fixed)

if (any(temp==0))

return(list(error=paste(’Element(s)’, which(temp==0),

’of fixed variance values not matched’)))

else itheta[temp] <- unlist(fixed)

which.fixed[temp] <- TRUE

}

Check for legality of the values

tmat <- diag(nvar+ intercept) #dummy variance/cov matrix

tmat <- tmat[row(tmat) >= col(tmat)]

vindx <- which(tmat==1) #indices of the variance terms within each group

cindx <- which(tmat==0) #indices of the correlations

if (any(unlist(itheta[is.variance]) <=0))

return(list(error="Variances must be >0"))

if (any(unlist(itheta[!is.variance]) <=-1) || any(unlist(itheta[!is.variance]) >=1))

return(list(error="Correlations must be between 0 and 1"))

If there is no intercept in the random effects formula then xmap should start at 1, otherwise
the X coefficients come after the intercepts.

〈coxmeFull-init-4 〉=
xnew <- matrix(0., nrow=nrow(X), ncol=nvar*ncol(imap))

xmap <- matrix(0L, nrow=nrow(X), ncol=ncol(X)*ncol(imap))

xoffset <- (intercept)* max(imap)

k <- 1

for (j in 1:nvar) {
for (i in 1:ncol(imap)) {

xnew[,k] <- X[,j]

xmap[,k] <- imap[,i] + xoffset

k <- k+1

xoffset <- xoffset + max(imap)

}
}

Transform correlations to (1+rho)/(1-rho) scale, which is used for the saved

37

parameters, and make a copy. The initial parameters are then log transformed

itheta[!is.variance] <- lapply(itheta[!is.variance], function(rho) (1+rho)/(1-rho))

theta <- sapply(itheta, function(x) x[1])

itheta <- lapply(itheta, log)

if (intercept)

list(theta=itheta[!which.fixed], imap=imap, X=xnew, xmap=xmap,

parms=list(theta=theta, fixed=which.fixed,

nlevel=nlevel, levellist=levellist,

nvar=nvar, gname=names(G), varlist=varlist,

xname=dimnames(X)[[2]], intercept=intercept,

xname=dimnames(X)[[2]], case=4, collapse=collapse))

else list(theta=itheta[!which.fixed], imap=NULL, X=xnew, xmap=xmap,

parms=list(theta=theta, fixed=which.fixed,

nlevel=nlevel, levellist=levellist,

nvar=nvar, gname=names(G), varlist=varlist,

xname=dimnames(X)[[2]], intercept=intercept,

xname=dimnames(X)[[2]], case=4, collapse=collapse))

The generation routine needs to create the full variance-covariance matrix of the parameters,
which is fortunately of a structured form. Looking at the matrix 1, the diagonal blocks are
first the variance-covariance of the intercepts, then that of the regression coefficients for the
first covariate, the second, etc. The top row contains covariances between the intercept and the
covariates.

All of these matrices have exactly the same form! This means that we keep adding up the
same prototype matrices from the varlist, but using different coefficients. If there are multiple
grouping variables the θ vector consists of blocks, one per grouping variable; all are processed at
once. First all the intercepts at once, then the interceps* first covariate slope term, intercepts *
second covariate, etc.

〈coxmeFull-generate-4 〉=
if (parms$case==4) {

ngroup <- length(parms$nlevel)

n1 <- sum(parms$nlevel) #number of intercept coefs

nvar <- parms$nvar #number of covariates

n2 <- n1*nvar #number of slope coefs

theta.per.group <- length(theta)/ngroup

tindx <- seq(1, by=theta.per.group, length=ngroup)

addup <- function(theta, p=parms) {
tmat <- theta[1] * p$varlist[[1]]

if (length(theta) >1) {
for (i in 2:length(theta)) tmat <- tmat + theta[i]*p$varlist[[i]]

}
tmat

}

38

if (parms$intercept) {
upper left corner (has no covarinaces)

ivar <- theta[tindx] #variances of the intercepts

corner <- addup(ivar)

if (inherits(corner, ’bdsmatrix’)) {
nsparse <- sum(corner@blocksize)

rmat <- matrix(0., nrow=n1+n2, ncol=n1+n2 - nsparse)

if (nsparse < n1) rmat[1:n1, 1:(n1-nsparse)] <- corner@rmat

}
else {

nsparse <- 0

rmat <- matrix(0., n1+n2, n1+n2)

rmat[1:n1, 1:n1] <- corner

}

Covariances with the intercept

for (i in 1:nvar) {
xvar <- theta[i+nvar+tindx] #variance of the slope

xcor <- (theta[i+tindx]-1)/(theta[i+tindx]+1) # correlation

icov <- xcor * sqrt(xvar * ivar) # covariance

rmat[1:n1, 1:n1 +i*n1 -nsparse] <- as.matrix(addup(icov))

}
irow <- n1

icol <- n1 - nsparse

theta <- theta[-(1:(1+nvar))] #these thetas are ’used up’

}
else {

irow <- icol <- 0

rmat <- matrix(0., n2,n2)

}

covariates

offset1 <- 0

for (i in 1:nvar) {
xvar <- theta[offset1 + tindx] #variance of the slope

rmat[1:n1 + irow, 1:n1 + icol] <- as.matrix(addup(xvar))

covariate-covariate

if (i<nvar) {
offset2 <- offset1 + 1 + nvar-1

for (j in (i+1):nvar) {
icol <- irow + n1

zvar <- theta[offset2 + tindx]-1

zcor <- (theta[j+offset2+tindx] -1)/(theta[j+offset2 +tindx]+1)

zcov <- sqrt(xvar*zvar) * zcor

rmat[1:n1+ irow, 1:n1 + icol] <- as.matrix(addup(zcov))

39

offset2 <- offset2 + 1 + nvar -j

}
offset1 <- offset1 + 1 + nvar- i

icol <- irow <- irow+n1

}
}

if (parms$intercept && inherits(corner, ’bdsmatrix’))

bdsmatrix(blocksize=corner@blocksize, blocks=corner@blocks, rmat=rmat)

else bdsmatrix(blocksize=integer(0), blocks=numeric(0), rmat=rmat)

}

The wrapup function transforms theta back, adds names, and formats the vector of random
coefficients b. For cases 1 and 2 adding names is almost all we need to do.

〈coxmeFull-wrapup 〉=
wrapup <- function(theta, b, parms) {

newtheta <- parms$theta

if (length(theta)) newtheta[!parms$fixed] <- exp(theta)

if (parms$case==1) {
theta <- list(c(’(Shrinkage)’ = newtheta[1]))

names(theta) <- ’1’

names(b) <- parms$xname

return(list(theta =theta, b=list(’1’=b)))

}

if (parms$case==2) {
names(newtheta) <- ’Intercept’

names(b) <- parms$levellist[[1]]

theta <- list(newtheta)

names(theta) <- parms$gname

b <- list(b)

names(b) <- parms$gname

return(list(theta=theta, b=b))

}

For case 3, we need to distinguish between collapse equal true or false. For the former,
there will be ngroup random parameters but only a single vector of coefficients b. For the latter
there will be one set of b coefficients for each level of the random effect.

〈coxmeFull-wrapup 〉=
if (parms$case==3) {

ngroup <- length(parms$levellist)

theta <- vector(’list’, ngroup)

names(theta) <- parms$gname

for (i in 1:ngroup)

40

theta[[parms$gname[i]]] <- c(’(Intercept)’=newtheta[i])

if (parms$collapse) {
names(b) <- parms$levellist[[1]]

random <- list(b)

names(random) <- parms$gname[[1]]

}
else {

names(b) <- unlist(parms$levellist)

random <- split(b, rep(1:ngroup, parms$nlevel))

names(random) <- parms$gname

}
return(list(theta=theta, b=random))

}

The last case is of course the most complicated, it has both covariates and groupings. For
a complicated random effect (1+ age |institution/sex) it should return a two element list
for theta with names ‘institution’ and ‘institution/sex’, each of which contains a 2 × 2 ma-
trix with variances on the diagonal and correlations off the diagonal. (We are echoing the
desired form for the printout). In the case that intercept is false and nvar=1, e.g. the formula
(age | institution/sex), each element of the list is a one-element vector rather than a matrix.

The random effect will also be a list of two elments, each a matrix with 2 columns containing
the coefficients for the intercept and age. It may be a matrix of one column.

〈coxmeFull-wrapup 〉=
if (parms$case==4) {

intercept <- parms$intercept

ngroup <- length(parms$nlevel)

nvar <- parms$nvar

Deal with b

random <- split(b, rep(rep(1:ngroup, parms$nlevel), intercept +nvar))

names(random) <- parms$gname

if (intercept) {
colname <- c("Intercept", parms$xname)

}
else {

colname <- parms$xname

}

for (i in 1:ngroup) {
temp<- matrix(random[[i]], ncol=length(colname))

random[[i]] <- temp

dimnames(random[[i]]) <- list(parms$levellist[[i]], colname)

}

Deal with theta

41

tfun <- function(x, n= 1 + nvar) {
tmat <- matrix(0., n, n)

tmat[row(tmat) >= col(tmat)] <- x

offdiag <- row(tmat) > col(tmat)

tmat[offdiag] <- (tmat[offdiag]-1)/(tmat[offdiag]+1)

dimnames(tmat) <- list(colname, colname)

tmat + t(tmat) - diag(diag(tmat))

}
parms.per.group <- length(newtheta)/ngroup

if (parms.per.group==1) { #nvar=1, intercept=F case

theta <- as.list(newtheta)

theta <- lapply(theta, function(x) {names(x)<- parms$xname; x})
names(theta) <- parms$gname

}
else {

theta <- vector(’list’, ngroup)

names(theta) <- parms$gname

for (i in 1:ngroup)

theta[[i]] <- tfun(newtheta[1:parms.per.group +

parms.per.group*(i-1)])

}
return(list(theta=theta, b=random))

}
}

4.4 coxmeMlist

In a mixed-effects model the random effects b are assumed to follow a Gaussian distribution

b ∼ N(0,Σ)

In all the random effects modeling programs that I am aware of, the user specifies the structure
of Σ and the program constructs the actual matrix. For instance, ‘independent’, ‘compound
symmetry’, or ‘autoregressive’. This basic approach does not work for genetic studies, since
the correlation is based on family structure and cannot be inferred from a simple keyword. The
coxmeMlist variance specification accepts a list of fixed matrices A1, A2, ... and fits the variance
structure Σ = σ2

1A1 + σ2
2A2 + The individual matrices are often in a block-diagonal sparse

representation due to size. (The motivating study for this structure had 26050 subjects with a
random intercept per subject, so that A was 26050 by 26050.)

The matrices must have dimnames that match the levels of the grouping variable. Much of
the initialization work is to verify this, remove unneeded columns of the matrices (if for instance
a subject has been dropped due to missing values), and reorder the grouping variable to match
the resulting matrix. We can’t reorder sparse matrices willy-nilly without (potentially) creating
disastrous consequences wrt losing sparsity in the matrix decompostion. So unlike most fitting
routines that will create dummy coeffcients that are in the order of the levels of the grouping
variable, we keep random effects in the order that they appear in the matrix A. The imat vector

42

contains the “new” covariate for each subject, e.g., the first person is in group 10, the next in
group 2, etc. If there are multiple matrices, then the bsdmatrix.reconcile routine spends most
of it’s energy deciding if they can be put into a common row/column ordering. (If designing
this over, I’d likely have the routine just check “are they the same” and give an error message
otherwise.)

Because of this complexity, I only allow terms of the form (1|g) or (x|1) (x could be a
matrix or list of variables, g could be nested) when a user-specified matrix is involved.

Three checks on the matrices are commonly added.

1. A solution with A∗ = A/2 and σ∗ = σ
√

2 is of course equivalent to one with A and σ. For
uniqueness, the matrices A1, A2 etc are rescaled to have a diagonal of 1. Kinship matrices
in particular often have a diagonal of 1/2.

2. The individual A matrices are checked to verify that each is positive definite. If they are
not this is most often reflects an error in forming them. With the extension of the package
to more general Matrix objects this parameter’s default has been reset to FALSE, as it
can cause a large amount of confusion when it is applied to other cases, e.g., a smoothness
penalty.

3. The parameters σ are constrained to be > 0.

I have had analyses where each of these had to be relaxed.

〈coxmeMlist 〉=
coxmeMlist <- function(varlist, rescale=FALSE, pdcheck=TRUE, positive=TRUE) {

Because of environments, the init function will inherit the

four variables below

varlist <- varlist

rescale <- rescale

pdcheck <- pdcheck

if (!is.logical(positive)) stop("Invalid value for postive argument")

positive <- positive

〈coxmeMlist-init 〉
〈coxmeMlist-generate 〉
〈coxmeMlist-wrapup 〉
out <- list(initialize=initialize, generate=generate, wrapup=wrapup)

class(out) <- ’coxmevar’

out

}

The initialize routine needs to match each row/column of the variance matrix or ma-
trices that have been given to the appropriate element of the random coefficient b; this is
done using the dimnames. (The matrices must be square). Most of the real work is done
by bdsmatrix.reconcile. Given a list of variance matrices and a list of target dimnames, it
returns a list where all the matrices have the same row/col order, the dimnames of which will
be the order of the coefficients b. It also drops any unused rows or cols from the matrices.

The bdsmatrix.reconcile routine expects dimnames on all the matrices. If none of the
matrices are given a dimname, we add them before calling the routine — but only if they are

43

exactly the right dimension. This allows a user to give an unnamed matrix that is just exactly
the right length.

〈coxmeMlist-init 〉=
initialize <- function(vinit, fixed, intercept, G, X, control) {

ngroup <- min(length(G), ncol(G))

nvar <- min(length(X), ncol(X)) # a NULL or a nx0 matrix yields 0

if (ngroup >0 & nvar >0)

return(list(error="Mlist cannot have both covariates and grouping"))

if (!is.list(varlist)) varlist <- list(varlist) # a naked matrix

noname <- all(sapply(varlist, function(x) is.null(dimnames(x)) ||

(is.null(dimnames(x)[[1]]) & is.null(dimnames(x)[[2]]))))

namefun <- function(x, names) {
if (all(dim(x)== rep(length(names),2)))

dimnames(x) <- list(names, names)

x

}
if (ngroup >0) {

n <- nrow(G)

G <- expand.nested(G)

groups <- G[[ngroup]] #drop all but the last

if (noname) varlist <- lapply(varlist, namefun, levels(groups))

if (any(sapply(varlist, function(x) inherits(x, "Matrix"))))

varlist <- lapply(varlist, function(x) as(x, "bdsmatrix"))

tlist <- bdsmatrix.reconcile(varlist, levels(groups))

bname <- dimnames(tlist[[1]])[[1]]

imap <- matrix(match(groups, bname))

xmap <- NULL

rname <- names(G)[[ngroup]]

}
else {

n <- nrow(X)

bname <- dimnames(X)[[2]]

if (noname) varlist <- lapply(varlist, namefun, bname)

tlist <- bdsmatrix.reconcile(varlist, bname)

sparse matrices (bdsmatrix or Matrix) are illegal, for now,

for covariates

tlist <- lapply(tlist, as.matrix)

xmap <- match(dimnames(X)[[2]], bname)

xmap <- matrix(rep(xmap, n), nrow=n, byrow=T)

imap <- NULL

rname <- "(Shrink)"

}

〈Mlist-initial-value 〉
〈Mlist-matrix-checks 〉

44

itheta is a list with vectors of initial values

theta is a vector, and only the fixed values need to be correct (the others

are replaced by the parent routine). All fixed "inits" are of length 1.

theta <- sapply(itheta, function(x) x[1])

list(theta=itheta[!which.fixed], imap=imap, X=X, xmap=xmap,

parms=list(varlist=tlist, theta=theta, fixed=which.fixed,

bname=bname, rname=rname, positive=positive,

vname=names(varlist)))

}
Processing initial values is very simple: the number of coefficients is equal to the number

of matrices in the varlist. Names are ignored, zeros are treated as “missing”. In some genetics
problems having all the variances equal leads to singularity, so we fudge the default initial values.

〈Mlist-initial-value 〉=
ntheta <- length(varlist)

fudge <- seq(1, 1.5, length=ntheta)

itheta <- vector(’list’, ntheta)

for (i in 1:ntheta) itheta[[i]] <- control$varinit * fudge[i]

if (length(vinit) >0) {
if (length(vinit) != ntheta)

return(list(error="Wrong length for initial values"))

indx <- !is.na(vinit) & vinit !=0 #which to use

if (any(indx)) itheta[indx] <- vinit[indx]

}

which.fixed <- rep(FALSE, ntheta)

if (length(fixed) >0) {
if (length(fixed) != ntheta)

return(list(error="Wrong length for fixed values"))

indx <- !is.na(fixed) & fixed !=0 #which to use

if (any(indx)) {
itheta[indx] <- fixed[indx]

which.fixed[indx] <- TRUE

}
}

if (length(positive)==1) positive <- rep(positive, ntheta)

if (length(positive) != ntheta)

return(list(error="Wrong length for positive parameter"))

if (any(unlist(itheta[positive]) <=0))

return(list(error="Invalid initial value, must be positive"))

itheta[positive] <- lapply(itheta[positive], log)

Check the matrices for validity. We use non-negative definite (NND) rather than positive
definite because identical twins generate a NND kinship matrix.

45

〈Mlist-matrix-checks 〉=
for (j in 1:ntheta) {

kmat <- tlist[[j]]

if (rescale) {
temp <- diag(kmat)

if (any(temp==0))

return(list(error="Diagonal of a variance matrix is zero"))

if (any(temp != temp[1]))

warning("Diagonal of variance matrix is not constant")

if (max(temp) !=1) {
kmat <- kmat/max(temp)

tlist[[j]] <- kmat

}
}

if (pdcheck) {
temp <- gchol(kmat)

if (any(diag(temp) < 0))

return(list(error="A variance matrix is not non-negative definite"))

}
}

The generate function is a simple sum.

〈coxmeMlist-generate 〉=
generate <- function(newtheta, parms) {

theta <- parms$theta

theta[!parms$fixed] <- newtheta

if (any(parms$positive)) theta[parms$positive] <-

exp(pmax(-36, pmin(36, theta[parms$positive])))

varmat <- parms$varlist[[1]] * theta[1]

if (length(theta) >1) {
for (i in 2:length(theta)) {

varmat <- varmat + theta[i]*parms$varlist[[i]]

}
}

varmat

}

Wrapup is also simple. The thetas are named Vmat.1, Vmat.2, etc; or using the names found
on the orginal varlist (if any).

〈coxmeMlist-wrapup 〉=
wrapup <- function(newtheta, b, parms) {

theta <- parms$theta

theta[!parms$fixed] <- newtheta

theta[parms$positive] <- exp(theta[parms$positive])

46

defaultname <- paste("Vmat", 1:length(theta), sep=".")

vname <- parms$vname

if (length(vname)==0) vname <- defaultname

else if (any(vname==’’)){
indx <- which(vname==’’)

vname[indx] <- defaultname[indx]

}
names(theta) <- vname

theta <- list(theta)

names(theta) <- parms$rname

names(b) <- parms$bname

b <- list(b)

names(b) <- parms$rname

list(theta=theta, b=b)

}

5 Fitting

Consider the basic model

λ(t) = λ0(t)eXβ+Zb

b ∼ N(0,Σ(θ))

There are two sets of parameters. The first is the set of regression coefficient β and b, the
second is the vector θ that determines the variance structure. The basic structure of the iteration
is

• an outer iteration process for θ which uses the standard S routine optim

• for any given realization of θ a computation of the optimal values for β and b

– S code is used to create the penalty matrix Σ(θ)

– C code solves for the regression coefficients, given Σ.

The overall outline of the routine is

〈coxme.fit 〉=
〈coxme-setup 〉

〈null-fit 〉
〈define-penalty 〉
〈coxfit6a-call 〉
〈coxme-fit 〉
〈coxme-finish 〉

}

47

5.1 Penalty matrix

For the C code, the variance matrices of the individual random effects are glued together into
one large bdsmatrix object Σ, kmat in the code. When inverse=TRUE (the default) the inverse
matrix P = Σ−1 or ikmat is the penalty matrix of the computation, and is what is actually
passed to C. When it is false the user is working directly with penalty matrices. (The first large
use of this code was for family correlation, where Σ is based on the kinship matrix. The variable
names kmat = Σ, ikmat for the inverse and kfun for the calculation arise from this legacy.) In
order to make use of sparseness, the columns of kmat are expected to be in the following order

1. Random intercepts that are subject to sparse computation. Only one random term is
allowed to use sparse representation, i.e., the first term in the model formula that has an
intercept. We have reordered the random terms, if necessary, to make it first in the list.

2. The remaining random intercepts

3. Other random coefficients (slopes)

The overall coefficient vector has the random effects b followed by the fixed effects β, with b in
the same order as the penalty matrix.

The key code chunk below creates kmat given the parameter vector θ (theta for the non-
mathematics types) and the variance list information. Each of the generate functions creates
either an ordinary matrix or one represented in block d iagonal symmetric form, which consists of
a block diagonal portion in the upper left bounded by a dense portion on the right. (A bdsmatrix
with only one diagonal block is dense, one with many blocks will be sparse.) The C code expects
a single bdsmatrix, so any term after the first is is added to the dense portion of the first matrix.
It also expects the bdsmatrix to have at least one “block”, and that block must involve no more
than the first column of F . If the first term is a simple matrix, we just split off its first element.

〈define-penalty 〉=
kfun <- function(theta, varlist, vparm, ntheta, ncoef) {

nrandom <- length(varlist)

sindex <- rep(1:nrandom, ntheta) #which thetas to which terms

tmat <- varlist[[1]]$generate(theta[sindex==1], vparm[[1]])

dd <- dim(tmat)

if (length(dd) !=2 || any(dd != rep(ncoef[1,1]+ncoef[1,2], 2)))

stop("Incorrect dimensions for generated penalty matrix, term 1")

if (!inherits(tmat, ’bdsmatrix’))

tmat <- bdsmatrix(blocksize=integer(0), blocks=numeric(0), rmat=tmat)

If there is only a single random term, then our work is done. Otherwise we have some nit-picky
bookkeeping. Not particularly hard but a nuisance. Say for example that there are 3 terms with
the following structure

sparse non-sparse
intercept intercept covariate

term 1 60 2 64
term 2 0 5 0
term 3 0 8 16

48

Here “sparse” means precisely the block-diagonal portion of the returned variance matrix. This
corresponds to ~ (1+x | g1) + (1|g2) + (1+ z1 + z2 | g3) where g1 has two common and
60 uncommon levels, g2 has 5 levels and g3 has 8. (A complicated random effects model I admit.)
The first variance matrix is required to be of a bsdmatrix form with an rmat slot of dimension
126 × 66, call this T . The variance structure for the other two terms, call them U and V , can
be of any matrix type. The final bdsmatrix will have the block-diagonal portions for the first 60
elements and an overall right-hand side matrix of the form

R =


T [1− 62, 1− 2] 0 0 T [1− 62, 3− 66] 0

0 U 0 0 0
0 0 V [1− 8, 1− 8] 0 V [1− 8, 9− 24]
0 0 0 T [63− 128, 3− 66] 0
0 0 0 0 V [9− 24, 9− 24]


First we set up the total number of rows and columns of R, then march through the matrix.

We need to first process the non-sparse rows of the first variance matrix tmat; if that contains
a substantial number of sparse columns then it is important to subset before creating a regular
matrix from the remainder; the construction (as.matrix(tmat))[k,k] would create a tempo-
rary matrix of possibly vast proportions. At this point in time all of the intercepts map before
any covariates so we can keep separate indices for the intercept-rows-so-far indx1 and covariate-
rows-so-far indx2, with the second one starting after the end of all the intercepts. What we are
doing is in essence a diagonal bind of matrices, pasting blocks down the diagonal, but S has no
dbind function.

〈define-penalty 〉=
if (nrandom ==1) return(tmat)

Need to build up the matrix by pasting up a composite R

nsparse <- sum(tmat@blocksize)

nrow.R <- sum(ncoef)

ncol.R <- nrow.R - nsparse

R <- matrix(0., nrow.R, ncol.R)

indx1 <- 0 #current column offset wrt intercepts

indx2 <- sum(ncoef[,1]) -nsparse #current col offset wrt filling in slopes

if (ncol(tmat) > nsparse) { #first matrix has an rmat component

if (ncoef[1,1] > nsparse) { #intercept contribution to rmat

irow <- 1:ncoef[1,1] #rows for intercepts

j <- ncoef[1,1] - nsparse #number of dense intercept columns

R[irow, 1:j] <- tmat@rmat[irow,1:j]

indx1 <- j #number of intercept processed so far

if (ncoef[1,2] >0) {
T[1-62, 3-66] of the example above

k <- 1:ncoef[1,2]

R[irow, k+indx2-nsparse] <- tmat@rmat[irow, k+j]

}

49

}
else j <- 0

if (ncoef[1,2] >0) { #has a slope contribution to rmat

T[63-128, 3-66] of the example above

k <- 1:ncoef[1,2]

R[k+indx2 +nsparse, k+ indx2] <- tmat@rmat[k+indx1, j+k]

indx2 <- indx2 + ncoef[1,2] #non intercetps so far

}
}

for (i in 2:nrandom) {
temp <- as.matrix(varlist[[i]]$generate(theta[sindex==i], vparm[[i]]))

if (any(dim(temp) != rep(ncoef[i,1]+ncoef[i,2], 2)))

stop(paste("Invalid dimension for generated penalty matrix, term",

i))

if (ncoef[i,1] >0) { # intercept contribution

#U or V [1-8, 1-8] in the example above

j <- ncoef[i,1]

R[indx1 +1:j + nsparse, indx1 +1:j] <- temp[1:j,1:j]

if (ncoef[i,2] >0) {
V[1-8, 9-24] in the example

k <- 1:ncoef[i,2]

R[indx1+ 1:j + nsparse, indx2 +k] <- temp[1:j, k+ j]

V[9-24, 9-24]

R[indx2+k +nsparse, indx2 +k] <- temp[k+j, k+j]

}
}

else if (ncoef[i,2]>0) {
k <- 1:ncoef[i,2]

R[indx2+k +nsparse, indx2+k] <- temp

}
indx1 <- indx1 + ncoef[i,1]

indx2 <- indx2 + ncoef[i,2]

}
bdsmatrix(blocksize=tmat@blocksize, blocks=tmat@blocks, rmat=R)

}

5.2 C routines

The C-code underlying the computation is broken into 3 parts. This was done for memory
efficiency; due to changes in R and S-Plus over time it may not as wise an idea as I once
thought, this is an obvious area for future simplification.

The initial call passes in the data, which is then copied to local memory (using calloc, not

50

under control of S memory management) and saved. The parameters of the call are

n number of observations

nvar number of fixed covariates in X

y the matrix of survival times. It will have 2 columns for normal survival data and 3 columns
for (start, stop) data

x the concatenated Z and X matrices

offset vector of offsets, usually 0

weights vector of case weights, usually 1

newstrat a vector that marks the end of each stratum. If for instance there were 4 strata with
100 observations in each, this vector would be c(100,200,300,400); the index of the last
observation in each.

sorted A matrix giving the order vector for the data. The first column orders by strata, time
within strata (longest first), and status within time (censored first). For start, stop data a
second column orders by strata, and entry time within strata. The -1 is because subscripts
start at 1 in S and 0 in C.

imap matrix containing the indices for random intercepts.

findex a 0/1 matrix with one column for each of fcol and nfrail rows, which marks which
coefficients of b are a part of that set. (A bookkeeping array for the C code that is easier
to create here.)

P some parameters of the bdsmatrix representing the penalty

The other control parameters are fairly obvious. From this data the C routine can compute
the total number of penalized terms and the number that are sparse from the structure of the
bdsmatrix, and the total number of intercept terms as max(imap). Other dimensions follow from
those.

A dummy call to kfun gives the necessary sizes for the penalty matrix. All columns of the
stored X matrix are centered and scaled, and these factors are returned. For theta we use the
first element of each set of initial values found in itheta.

〈coxfit6a-call 〉=
if (length(itheta) >0) theta <- sapply(itheta, function(x) x[1])

else theta <- numeric(0)

dummy <- kfun(theta, varlist, vparm, ntheta, ncoef)

if (is.null(dummy@rmat)) rcol <- 0

else rcol <- ncol(dummy@rmat)

npenal <- ncol(dummy) #total number of penalized terms

if (ncol(imap)>0) {
findex <- matrix(0, nrow=sum(ncoef), ncol=ncol(imap))

51

for (i in 1:ncol(imap)) findex[cbind(imap[,i], i)] <- 1

}
else findex <- 0 # dummy value

if (is.null(control$sparse.calc)) {
nevent <- sum(y[,ncol(y)])

if (length(dummy@blocksize)<=1) nsparse<- 0

else nsparse <- sum(dummy@blocksize)

itemp <- max(c(0,imap)) - nsparse #number of non-sparse intercepts

if ((2*n) > (nevent*(nsparse-itemp))) control$sparse.calc <- 0

else control$sparse.calc <- 1

}

ifit <- .C(’coxfit6a’,

as.integer(n),

as.integer(nvar),

as.integer(ncol(y)),

as.double(c(y)),

as.double(cbind(zmat,x)),

as.double(offset),

as.double(weights),

as.integer(length(newstrat)),

as.integer(newstrat),

as.integer(sorted-1),

as.integer(ncol(imap)),

as.integer(imap-1),

as.integer(findex),

as.integer(length(dummy@blocksize)),

as.integer(dummy@blocksize),

as.integer(rcol),

means = double(nvar),

scale = double(nvar),

as.integer(ties==’efron’),

as.double(control$toler.chol),

as.double(control$eps),

as.integer(control$sparse.calc))

means <- ifit$means

scale <- ifit$scale

The second routine does the real work and is called within the logfun function, which is the
minimization target of optim. The function is called with a trial value of the variance parameters
θ, and computes the maximum likelihood estimates of β and b for that (fixed) value of θ, along
with the penalized partial likelihood. The normalization constants include the determinant of
kmat, but since we are using Cholesky decompositions this can be read off of the diagonal.
Hopefully the coxvar routines have chosen a parameterization that will mostly avoid invalid

52

solutions, i.e., those where kmat is not symmetric positive definite.
We found that it is best to always do the same number of iterations at each call. Changes

in the iteration count (i.e. if one value of θ requires 5 iterations to converge and another only 4
for instance) introduce little ’bumps’ into the apparent loglik, which drives optim nuts. Hence
the min and max iteration count is identical. A similar issue applies to the vector of starting
estimates (b, β). It is tempting to use the final results from the prior theta evaluation, but again
this introduces an artifact. Thus all the calls to logfun use the same initial value. Two obvious
choices for init are a vector of zeros and the fit to a fixed effects model. The latter is likely to
be better, but I worry about cases where the fit is nearly singular; user’s sometimes fit models
with more variables than they should. The current compromise is .7*the final fit + .3*zeros; this
number is no more than a wild guess. The addition of (1 -fit0) to the final logliklihood makes
the the solution be in the neighborhood of 1 (for the case that the random terms add nothing
to the fit) which works well with the convergence criteria of the optim routine.

There are actually two C routines coxfit6b and agfit6b, for ordinary and (start,stop)
survival data, respectively. The ofile argument is a character string giving the choice.

〈define-logfun 〉=
logfun <- function(theta, varlist, vparm, kfun, ntheta, ncoef,

init, fit0, iter, ofile) {
gkmat <- gchol(kfun(theta, varlist, vparm, ntheta, ncoef))

if (is.variance) {
ikmat <- solve(gkmat) #inverse of kmat, which is the penalty

if (any(diag(ikmat) <=0)) { #Not an spd matrix

return(0) # return a "worse than null" fit

}
fit <- .C(ofile,

iter= as.integer(c(iter,iter)),

beta = as.double(init),

loglik = double(2),

as.double(ikmat@blocks),

as.double(ikmat@rmat),

hdet = double(1))

ilik <- fit$loglik[2] -

.5*(sum(log(diag(gkmat))) + fit$hdet)

}
else {

The variance functions have returned the inverse matrix

fit <- .C(ofile,

iter= as.integer(c(iter,iter)),

beta = as.double(init),

loglik = double(2),

as.double(gkmat@blocks),

as.double(gkmat@rmat),

hdet = double(1))

ilik <- fit$loglik[2] +

.5*(sum(log(diag(gkmat))) - fit$hdet)

53

}
-(1+ ilik - fit0)

}

The third routine is used for iterative refinement of the Laplace estimate. The arguments in
this case are

rfile either ’coxfit6d’ or ’agfit6d’

beta the final solution vector (b, β), though only β is used.

bmat matrix of trial values for the random coefficients. Should have nfrail rows and refine.n
columns.

loglik log-likelihoods at the random points

The routine calculates the log-lik for a succession of Cox models, each one using one of the
random draws as it’s random effect. The set of trial values is drawn from a t-distribution with
refine.df degrees of freedom, centered at the observed random coefficients and with variance
hmat-inverse. Now if a random colum vector X has the identity variance matrix, then CX
have variance CC ′. To get the variance we want we need a matrix C such that CC ′ = (Hbb)

−1

where Hbb is the portion of.of the Hessian matrix H corresponding to the random effects. The
bmat matrix below has such a random sample in each column. We already have the cholesky
decompostion LDL′ of H in hand; the decomposition of the upper left corner is the upper
left corner of the decompostion. The inverse matrix is (L-inverse)’ D-inverse (L-inverse), which
means we want to backsolve with respect to the upper triangular portion.

The natural way to generate t-variates is to use the mvtnorm library; however, it expects
H−1 which may be a dense matrix, we already have the sparse cholesky of H hmat, and so we
essentially duplicate the lines of rmvt and dmvt that occur after matrix decomposition. For
further details see the vignette on laplace approximations.

〈refine 〉=
if (refine.n > 0) {

rdf <- control$refine.df

nfrail <- ncol(gkmat)

hmatb <- hmat[1:nfrail, 1:nfrail]

if (control$refine.method == "control") {
#create the random t-variate with variance H-inverse

bmat <- matrix(rnorm(nfrail*refine.n), ncol=refine.n)

bmat <- backsolve(hmatb, bmat, upper=TRUE) /

rep(sqrt(rchisq(refine.n, df=rdf)/rdf), each=nfrail)

bmat2 <- bmat + fit$beta[1:nfrail] #recenter

}
else if (control$refine.method == "direct") {

bmat <- matrix(rnorm(nfrail*refine.n), ncol=refine.n)

bmat2 <- gkmat %*% bmat

}
else stop("Unrecognized value for refine.method")

54

rfit <- .C(rfile,

as.integer(refine.n),

as.double(fit$beta),

as.double(bmat2),

loglik = double(refine.n), dup=FALSE)

if (control$refine.method == "direct") {
temp <- max(rfit$loglik) #keep exp() in range

errhat <- exp(rfit$loglik - temp)

mtemp <- mean(errhat) #estimated integral

stemp <- sqrt(var(errhat)/refine.n) #std of the estimate

r.correct <- c(correction = log(mtemp) + temp -ilik, std= stemp/mtemp)

}
else {

Penalty terms

penalty1 <- colSums(bmat2*(ikmat %*% bmat2))/2

penalty2 <- rowSums((t(bmat) %*% hmatb)^2)/2

Constant for the Gaussian density, and density of the t-dist (logs)

gdens <- -0.5* (sum(log(diag(gkmat))) + nfrail*log(2* pi))

logdet <- -sum(log(diag(hmatb)))

tdens <- lgamma((nfrail + rdf)/2) -

(lgamma(rdf/2) + 0.5*(logdet + nfrail* log(pi*rdf) +

(nfrail+ rdf)* log(1 + 2*penalty2/rdf)))

Add it up, we have to be very careful about round-off

n1 <- rfit$loglik + gdens - (penalty1 + ilik + tdens)

n2 <- fit$loglik[2] + gdens - (penalty2 + ilik + tdens)

temp <- max(n1, n2) #scale so the largest value is about 1

errhat <- (exp(n1-temp) - exp(n2-temp)) * exp(temp)

#errhat <- (exp(rfit$loglik -(penalty1 + ilik)) -

exp(fit$loglik[2]- (penalty2 + ilik))) * exp(gdens-tdens)

mtemp <- mean(errhat) #estimated integral

stemp <- sqrt(var(errhat)/refine.n) #std of the estimate

r.correct <- c(correction= log(1+ mtemp), std=stemp/(1 +mtemp))

}
}

The final routine coxfit6c is used for cleanup, and is described in section 5.5.

5.3 Setup

Preliminaries aside, let’s now build the routine. The input arguments are as were set up by
coxme, this routine would never be called directly by a user.

55

x the matrix of fixed effects

y the survival times, an object of class ’Surv’

strata strata vector

offset vector of offsets, usually all zero

control the result of a call to coxme.control

weights vector of case weights. usually 1

ties the method for handling ties, ’breslow’ or ’efron’

rownames needed for labeling the output, in the rare case that the X matrix is null.

imap matrix of random factor (intercepts) indices. If imap[4,1]=6, imap[4,2]=10 this means
that observation 4 contributes to both coefficient 6 and coefficient 10, both of which are
random intercepts.

zmat the Z matrix, the design matrix for random slopes

varlist the list describing the structure of the random effects

vparm the list of parameters for the variance functions

itheta initial values for the random effects, e.g., the ones we need to solve for (may be null if
the variances are all fixed)

ntheta vector giving the number of thetas for each random term

refine.n number of iterations for iterative refinement

〈coxme-setup 〉=
coxme.fit <- function(x, y, strata, offset, ifixed, control,

weights, ties, rownames,

imap, zmat, varlist, vparm, itheta,

ntheta, ncoef, refine.n, is.variance) {
time0 <- proc.time() #debugging line

n <- nrow(y)

if (length(x) ==0) nvar <-0

else nvar <- ncol(as.matrix(x))

if (missing(offset) || is.null(offset)) offset <- rep(0.0, n)

if (missing(weights)|| is.null(weights))weights<- rep(1.0, n)

else {
if (any(weights<=0)) stop("Invalid weights, must be >0")

}

56

The next step is to get a set of sort indices, but not to actually sort the data. This was a key
insight which allows the (start,stop) version to do necessary bookkeeping in time of (2n) instead
of O(n2). We sort by strata, time within strata (longest first), and status within time (censor
before deaths). For (start, stop) data a second index orders the entry times.

〈coxme-setup 〉=
if (ncol(y) ==3) {

if (length(strata) ==0) {
sorted <- cbind(order(-y[,2], y[,3]),

order(-y[,1]))

newstrat <- n

}
else {

sorted <- cbind(order(strata, -y[,2], y[,3]),

order(strata, -y[,1]))

newstrat <- cumsum(table(strata))

}
status <- y[,3]

ofile <- ’agfit6b’

rfile <- ’agfit6d’

coxfitfun<- agreg.fit

}
else {

if (length(strata) ==0) {
sorted <- order(-y[,1], y[,2])

newstrat <- n

}
else {

sorted <- order(strata, -y[,1], y[,2])

newstrat <- cumsum(table(strata))

}
status <- y[,2]

ofile <- ’coxfit6b’ # fitting routine

rfile <- ’coxfit6d’ # refine.n routine

coxfitfun <- coxph.fit

}

The last step of the setup is to do an initial fit. We want two numbers: the loglik for a
no-random-effects and initial-values-for-fixed (usually 0) fit, and that for the best fixed effects
fit. The first is the NULL model loglik for the fit as a whole, the second is used to scale the
logliklihood during iteration, the fit0 parameter in the logfun function. The easiest way to get
these is from an ordinary coxph call. Most coxph calls converge in 3-4 iterations. The default
value for control$inner.iter is Quote(fit0$iter +1) to avoid disaster in the case of a ‘hard’
baseline model. We need to evaluate the expression after fit0 is known. If all values of θ are
fixed, then the only thing we will use from fit0 is the loglik. Note that if there are no covariates
or only an offset term, then the returned log-likelihood is of length 1, not 2. a null model.

57

〈null-fit 〉=
if (is.null(ifixed)) {

ifixed <- rep(0., ncol(x))

if (length(ifixed) ==0) ifixed <- NULL #agreg.fit didn’t like numeric(0)

}
else if (length(ifixed) != ncol(x))

stop("Wrong length for initial parameters of the fixed effects")

if (length(itheta)==0) itemp <- 0 else itemp <- control$iter.max

fit0 <- coxfitfun(x,y, strata=strata,

offset=offset, init=ifixed, weights=weights,

method=ties, rownames=1:nrow(y),

control=coxph.control(iter.max=itemp))

loglik0 <- fit0$loglik[length(fit0$loglik)] # in case of no covariates

control$inner.iter <- eval(control$inner.iter)

5.4 Doing the fit

If there are any parameters to optimize over, we now do so. Our last step before optimization
is to set the starting value. We will have inherited a list of possible starting values for each
parameter in istart; try all combinations and keep the best one.

〈coxme-fit 〉=
〈define-logfun 〉

ishrink <- 0.7 # arbitrary guess

init.coef <- c(rep(0., npenal), scale*fit0$coef* ishrink)

if (length(itheta)==0) iter <- c(0,0)

else {
〈coxme-gridsearch 〉

This is set out as a block since it is also used in lmekin. (Later, copied but not used due to
different logfun).

〈coxme-gridsearch 〉=
nstart <- sapply(itheta, length)

if (all(nstart==1)) theta <- unlist(itheta) #one starting guess

else {
#make a matrix of all possible starting estimtes

testvals <- do.call(expand.grid, itheta)

bestlog <- NULL

for (i in 1:nrow(testvals)) {
ll <- logfun(as.numeric(testvals[i,]),

varlist, vparm, kfun, ntheta, ncoef,

init=init.coef, loglik0,

control$inner.iter, ofile)

58

if (is.finite(ll)) {
#ll calc can fail if someone picks a very bad starting guess

if (is.null(bestlog) || ll < bestlog) {
(optim is set up to minimize)

bestlog <- ll

theta <- as.numeric(testvals[i,])

}
}

}
if (is.null(bestlog))

stop("No starting estimate was successful")

}

In the code below optpar is a list of control parameters for the optim function, which are defined
in coxme.control and accessible for the user to change, and logpar is a list of parameters that
will be needed by logfun. In R the ones that are simple copies such as ofile would not need to
be included in the list since they are inherited with the environment, however, I prefer to make
such hidden arguments explicit.

〈coxme-fit 〉=
Finally do the fit

logpar <- list(varlist=varlist, vparm=vparm,

ntheta=ntheta, ncoef=ncoef, kfun=kfun,

init=init.coef, fit0= loglik0,

iter=control$inner.iter,

ofile=ofile)

mfit <- do.call(’optim’, c(list(par= theta, fn=logfun, gr=NULL),

control$optpar, logpar))

theta <- mfit$par

iter <- mfit$counts[1] * c(1, control$inner.iter)

}

The optimization finds the best value of theta, but does not return all the parameters we
need from the fit. So we make one more call. This is essentially the “inside” of logfun. The
phrase c(ikmat@rmat,0) makes sure something is passed when rmat is of length 0.

〈coxme-fit 〉=
gkmat <- gchol(kfun(theta, varlist, vparm, ntheta, ncoef))

if (is.variance) {
ikmat <- solve(gkmat) #inverse of kmat, which is the penalty

fit <- .C(ofile,

iter= as.integer(c(0, control$iter.max)),

beta = as.double(c(rep(0., npenal), fit0$coef*scale)),

loglik = double(2),

as.double(ikmat@blocks),

as.double(c(ikmat@rmat,0)),

hdet = double(1))

59

ilik <- fit$loglik[2] -

.5*(sum(log(diag(gkmat))) + fit$hdet)

} else {
fit <- .C(ofile,

iter= as.integer(c(0, control$iter.max)),

beta = as.double(c(rep(0., npenal), fit0$coef*scale)),

loglik = double(2),

as.double(gkmat@blocks),

as.double(c(gkmat@rmat,0)),

hdet = double(1))

ilik <- fit$loglik[2] +

.5*(sum(log(diag(gkmat))) - fit$hdet)

}
iter[2] <- iter[2] + fit$iter[2]

5.5 Finishing up

There are 6 tasks left to do

〈coxme-finish 〉=
〈coxme-lastvar 〉
〈coxme-rescale 〉
〈coxme-df 〉
〈refine 〉
.C("coxfit6e", as.integer(ncol(y))) #release memory

〈create-output-list 〉

The nexts section finishes up with the C code. The first few lines reprise some variables
found in the C code but not before needed here. It returns the score vector u, the sparse and
dense portions of the Cholesky decomposition of the Hessian matrix (h.b and h.r), the inverse
Hessian matrix (hi.b, hi.r), and the rank of the final solution. These are needed to compute the
variance matrix of the estimates.

〈coxme-lastvar 〉=
nfrail <- nrow(ikmat) #total number of penalized terms

nsparse <- sum(ikmat@blocksize)

nvar2 <- nvar + (nfrail - nsparse) # total number of non-sparse coefs

nvar3 <- as.integer(nvar + nfrail) # total number of coefficients

btot <- length(ikmat@blocks)

fit3 <- .C(’coxfit6c’,

u = double(nvar3),

h.b = double(btot),

h.r = double(nvar2*nvar3),

hi.b = double(btot),

hi.r = double(nvar2*nvar3),

hrank= integer(1),

60

as.integer(ncol(y))

)

Now create the Hessian and inverse Hessian matrices; the latter of these is the variance
matrix. The C code had centered and rescaled all X matrix coefficients so we need to undo that
scaling. First we deal with a special case, if there are only sparse terms then hmat and hinv have
only a block-diagonal component. (This happens more often than you might think, a random
per-subject intercept for instance.)

〈coxme-rescale 〉=
if (nvar2 ==0) {

hmat <- new(’gchol.bdsmatrix’, Dim=c(nvar3, nvar3),

blocksize=ikmat@blocksize, blocks=fit3$h.b,

rmat=matrix(0,0,0), rank=fit3$hrank,

Dimnames=list(NULL, NULL))

hinv <- bdsmatrix(blocksize=ikmat@blocksize, blocks=fit3$hi.b)

}

And now three cases: no X variables, a single X, or multiple X variables. Assume there are
p=nvar variables and let V be the lower p × p portion of the nvar3 by nvar2 R matrix, and S
= diag(scale be the rescaling vector. X was replaced by XS−1 before computation. For the
Hessian, we want to replace V with SV S and for the inverse hessian with S−1V S−1. The matrix
hmat is however a Cholesky decomposition of the hessian H = LDL′ where L is lower triangular
with ones on the diagonal and D is diagonal; D is kept on the diagonal of V and L below the
diagonal. A little algebra shows that we want to replace D (the diagonal of L) with S2D and L
with SLS−1.

〈coxme-rescale 〉=
else {

rmat1 <- matrix(fit3$h.r, nrow=nvar3)

rmat2 <- matrix(fit3$hi.r, nrow=nvar3)

if (nvar ==1) {
rmat1[nvar3,] <- rmat1[nvar3,]/scale

rmat2[nvar3,] <- rmat2[nvar3,]/scale

rmat1[,nvar2] <- rmat1[,nvar2]*scale

rmat2[,nvar2] <- rmat2[,nvar2]/scale

rmat1[nvar3,nvar2] <- rmat1[nvar3,nvar2]*scale^2

u <- fit3$u # the efficient score vector U

u[nvar3] <- u[nvar3]*scale

}
else if (nvar >1) {

temp <- seq(to=nvar3, length=length(scale))

u <- fit3$u

u[temp] <- u[temp]*scale

rmat1[temp,] <- (1/scale)*rmat1[temp,] #multiply rows* scale

rmat2[temp,] <- (1/scale)*rmat2[temp,]

61

temp <- temp-nsparse #multiply cols

rmat1[,temp] <- rmat1[,temp] %*% diag(scale)

rmat2[,temp] <- rmat2[,temp] %*% diag(1/scale)

temp <- seq(length=length(scale), to=length(rmat1), by=1+nvar3)

rmat1[temp] <- rmat1[temp]*(scale^2) #fix the diagonal

}
hmat <- new(’gchol.bdsmatrix’, Dim=c(nvar3, nvar3),

blocksize=ikmat@blocksize, blocks=fit3$h.b,

rmat= rmat1, rank=fit3$hrank,

Dimnames=list(NULL, NULL))

hinv <- bdsmatrix(blocksize=ikmat@blocksize, blocks=fit3$hi.b,

rmat=rmat2)

}

Now for the degrees of freedom, using formula 5.16 of Therneau and Grambsch. First we
have a small utility function to compute the trace(AB) where A and B are bdsmatrix objects.
For ordinary matrices this is the sum of the element-wise product of A and B′, but we have to
account for the fact that bdsmatrix objects only keep the lower diagonal of the block portion.
We need the diagonal sum + 2 times the off-diagonal sum.

〈coxme-df 〉=
traceprod <- function(H, P) {

#block-diagonal portions will match in shape

nfrail <- nrow(P) #penalty matrix

nsparse <- sum(P@blocksize)

if (nsparse >0) {
temp1 <- 2*sum(H@blocks * P@blocks) -

sum(diag(H)[1:nsparse] * diag(P)[1:nsparse])

}
else temp1 <- 0

if (length(P@rmat) >0) {
#I only want the penalized part of H

rd <- dim(P@rmat)

temp1 <- temp1 + sum(H@rmat[1:rd[1], 1:rd[2]] * P@rmat)

}
temp1

}

df <- nvar + (nfrail - traceprod(hinv, ikmat))

And last, put together the output structure.

〈create-output-list 〉=
idf <- nvar + sum(ntheta)

fcoef <- fit$beta[1:nfrail]

penalty <- sum(fcoef * (ikmat %*% fcoef))/2

62

if (nvar > 0) {
out <- list(coefficients = fit$beta[-(1:nfrail)]/scale, frail=fcoef,

theta=theta, penalty=penalty,

loglik=c(fit0$log[1], ilik, fit$log[2]), variance=hinv,

df=c(idf, df), hmat=hmat, iter=iter, control=control,

u=u, means=means, scale=scale)

}
else out <- list(coefficients=NULL, frail=fcoef,

theta=theta, penalty=penalty,

loglik=c(fit0$log[1], ilik, fit$log[2]), variance=hinv,

df=c(idf, df), hmat=hmat, iter=iter, control=control,

u=fit3$u, means=means, scale=scale)

if (refine.n>0) {
out$refine <- r.correct

#The next line can be turned on for detailed tests in refine.R

The feature is not documented in the manual pages, only

here.

if (control$refine.detail) {
if (control$refine.method== "control")

out$refine.detail <-list(loglik=rfit$loglik, bmat=bmat2,

tdens=tdens,

penalty1=penalty1, penalty2=penalty2,

gdens=gdens, errhat=errhat, gkmat=gkmat)

else out$refine.detail <- list(loglik=rfit$loglik, bmat=bmat2,

errhat=errhat, gkmat=gkmat)

}
}
out

6 Methods for the random effects

Creating methods for the random effects turned out to be tricky. The problem is that I want to
play along with nlme and lme4.

The nlme package defines ranef, random.effects, fixef, and fixed.effects as standard
S3 generics. If nlme is loaded first, I don’t want to re-define these functions. If I do, then the
ranef.lme method becomes invisible. It appears to be a design decision: R doesn’t know that
my ranef function is identical to the ones in nlme, and so it ‘forgets’ the old methods in order to
avoid inconsistency. The obvious solution to this is to check for existence of the functions before
defining them. However, this doesn’t work with namespaces – you either have the file listed for
export in the NAMESPACE file or you don’t.

If nlme is loaded after coxme, there will be a set of messages about replacement of the 4
functions; there is nothing I can do about that. However, my definitions are now forgotton. A
solution to this is to make ranef.coxme and fixef.coxme exported symbols in the name space. R

63

now finds them by standard mechanisms outside the name space structure.
After some discussion on the R developer list, it was decided that the only workable solution

was to include the line

importFrom(nlme, ranef, fixef, VarCorr)

into both coxme and lme4, importing the generic from the original nlme package. It is the only
way for the R exectutive to know that all the instances of a method are legal.

〈ranef 〉=
The objects that do the actual work (not much work)

fixef.coxme <- function(object, ...)

object$coefficients

fixef.lmekin <- function(object, ...)

object$coefficients$fixed

ranef.coxme <- function(object, ...)

object$frail

ranef.lmekin <- function(object, ...)

object$coefficients$random

VarCorr.coxme <- function(x, ...)

x$vcoef

VarCorr.lmekin <- function(x, ...)

x$vcoef

vcov.coxme <- function(object, ...) {
nf <- length(fixef(object))

indx <- seq(length=nf, to=nrow(object$var))

as.matrix(object$var[indx, indx])

}

vcov.lmekin <- vcov.coxme

For the logLik method we give the number of events as the number of observations.

〈ranef 〉=
logLik.coxme <- function(object, type=c("penalized", "integrated"), ...) {

type <- match.arg(type)

if (type==’penalized’) {
out <- object$loglik[3] + object$penalty

attr(out, "df") <- object$df[2]

}
else {

64

out <- object$loglik[2]

attr(out, "df") <- object$df[1]

}
attr(out, "nobs") <- object$n[1] #number of events

class(out) <- "logLik"

out

}

logLik.lmekin <- function(object, ...) {
out <- object$loglik[2]

attr(out, "df") <- object$df[1]

class(out) <- "logLik"

out

}

7 lmekin

The original kinship library had an implementation of linear mixed effects models using the
matrix code found in coxme. The reason for the program was entirely to check our arithmetic:
it should get the same answers as lme. With more time and a larger test suite the routine is no
longer necessary for this purpose, and I intended to retire it. However, it had became popular
with users since it can fit a few models that lme cannot, so now is a permanent part of the
package.

The orignal code was based on equation 2.14 of Pinheiro and Bates, the one they do not
recommmend for computation. This is a quite sensible formula if there is a single random effect
but it does not generalize well. This release follows the compuational strategy of lme much more
closely. Note that a lot of the code below is a pure copy of the coxme code.

〈lmekin 〉=
lmekin <- function(formula, data,

weights, subset, na.action,

control, varlist, vfixed, vinit,

method=c("ML", "REML"),

x=FALSE, y=FALSE, model=FALSE,

random, fixed, variance, ...) {

Call <- match.call()

sparse <- c(1,0) #needed for compatablily with coxme code

〈lme-process-standard-arguments 〉
〈decompose-lme-formula 〉
〈build-control-structures 〉
〈lmekin-compute 〉
〈lmekin-finish-up 〉
}

〈lmekin-helper 〉

65

The standard argments processing is copy of that for coxme, but with the word “lmekin” in
error messages.

〈lme-process-standard-arguments 〉=
if (!missing(fixed)) {

if (missing(formula)) {
formula <- fixed

warning("The ’fixed’ argument of lmekin is depreciated")

}
else stop("Both a fixed and a formula argument are present")

}
if (!missing(random)) {

warning("The random argument of lmekin is depreciated")

if (class(random) != ’formula’ || length(random) !=2)

stop("Invalid random formula")

j <- length(formula) #will be 2 or 3, depending on if there is a y

Add parens to the random formula and paste it on

formula[[j]] <- call(’+’, formula[[j]], call(’(’, random[[2]]))

}

if (!missing(variance)) {
warning("The variance argument of lmekin is depreciated")

vfixed <- variance

}

method <- match.arg(method)

temp <- call(’model.frame’, formula= subbar(formula))

for (i in c(’data’, ’subset’, ’weights’, ’na.action’))

if (!is.null(Call[[i]])) temp[[i]] <- Call[[i]]

m <- eval.parent(temp)

Y <- model.extract(m, "response")

n <- length(Y)

if (n==0) stop("data has no observations")

weights <- model.weights(m)

if (length(weights) ==0) weights <- rep(1.0, n)

else if (any(weights <=0))

stop("Negative or zero weights are not allowed")

offset <- model.offset(m)

if (length(offset)==0) offset <- rep(0., n)

Check for penalized terms; the most likely is pspline

66

pterms <- sapply(m, inherits, ’coxph.penalty’)

if (any(pterms)) {
stop("You cannot have penalized terms in lmekin")

}

if (missing(control)) control <- lmekin.control(...)

Get the X-matrix part of the formula. This is parallel to the version in coxme, the main
difference is that we keep the intercept term. We check for the cluster and strata terms because
it is a mistake that I anticipate users to make.

〈decompose-lme-formula 〉=
flist <- formula1(formula)

if (hasAbar(flist$fixed))

stop("Invalid formula: a ’|’ outside of a valid random effects term")

special <- c("strata", "cluster")

Terms <- terms(flist$fixed, special)

if (length(attr(Terms, "specials")$strata))

stop ("A strata term is invalid in lmekin")

if (length(attr(Terms, "specials")$cluster))

stop ("A cluster term is invalid in lmekin")

X <- model.matrix(Terms, m)

Now for the actual compuation. We want to solve

y = Xβ + Zb+ ε

b ∼ N(0, σ2K)

ε ∼ N(0, σ2)

where K is the variance matrix returned by kfun. If we know K, one way to solve this is as an
augmented least squares problem with

y∗ =

(
y
0

)
X∗ =

(
X
0

)
Z∗ =

(
Z
∆

)
where ∆′∆ = K−1. The dummy rows of data have y = 0, X = 0 and ∆ as the predictor
variables. With known ∆, this gives the solution to all the other parameters as an ordinary
least squares problem. If K = U ′U for U an upper triangular matrix, then K−1 = L′L where
L = (U ′)−1 = (U−1)′ is lower triangular. Then

∆′∆ = K−1

∆ = L (2)

In our case K will be the iteration target of the optim function, and we need to evaluate
the other parameters in order to determine the log-likelihood. In coxme this is done inside a
C routine, here we can use the more direct method. In the original lmekin function we made

67

the assumption that Z was an identity matrix, which allowed for a simple solution using only
the generalized cholesky decompostion found in the bdsmatrix library. Here we use the more
general QR method as outlined in Pinheiro and Bates. Assume that Z has q columns and X
has p columns, the number of random and fixed coefficients, respectively. Then

(Z∗, X∗) = QR

R =

 R11 R12

0 R22

0 0


Q′y =

 c1
c2
c3


The orthagonal matrix Q is n × n, R11 is q × q and upper triangular, R22 is p × p upper

triangular, and R is n × p. The vectors c1, c2, and c3 are of lengths q, p, and n − (p + q),
respectively. Using slightly different notation, Pinheiro and Bates show that the solution vector
and the profiled log-likelihood are (equations 2.19 and 2.21)

β̂(θ) = R−122 c2 (3)

σ̂2(θ) = ||c3||2/n (4)

log(L(θ)) =
n

2
[log n− log(2π)− 1]− n log |c2|+ log

(
abs
|∆|
|R11

)
(5)

Here |c| is the norm of a vector c and |A| the determinant of a matrix A. The determinant of a

triangular matrix is the product of its diagonal elements. The solution for β̂ is returned by the
qr.coef routine.

The restricted maximum likelihood estimate (REML) follows from the same decompostions,
but with

σ̂2
REML(θ) = ||c3||2/(n− p) (6)

log(L(θ))REML =
n

2
[log n− log(2π)− 1]− (n− p) log |c2|+ log

(
abs
|∆|
|R|

)
(7)

〈lmekin-compute 〉=
〈define-penalty 〉
〈define-xz 〉
〈lmekin-fit 〉

The define-penalty code is shared with coxme, it defines the function kfun which returns
K/σ2 given the parameters θ. The next bit of code defines X∗ and the top portion of Z∗ as
sparse Matrix objects. The definition X∗ is easy as we already have it in hand. For Z∗ most
of the work is creating the design matrix for the intercepts from our very compressed form
fmat. That matrix has one column for each unique factor and n rows, each column contains
the coefficent mapping of subjects to coefficients. So for instance assume 6 subject and a term
of (1|group) with 3 groups. The corresponding column of fmat might be (1,2,2,3,1,3) showing
that subject 1 is in group 1, subject 1 in group 2, etc. In a genetic data set with kinship each

68

subject would be in thier own group and the column would be some permutation of 1:n. The
corresponding design matrix is 

1 0 0
0 1 0
0 1 0
0 0 1
1 0 0
0 0 1


The sparse coding of this for a dgCMatrix object has components

i a vector containing all the row numbers of the non zero elements, with rows numbered from
zero. In this case it would be 0, 4, 1, 2, 3, 5.

p a vector with first element 0 such that diff(p) = the number of non-zeros in each column

x the values of the non-sparse elements

Dim dimensions of the matrix

Dimnames optional dimnames

factors an empty list, used by later Matrix routines for factorization information

The variable zstar1 is the top part of Z∗, i.e., the full Z matrix, in sparse form. At each
iteration ∆ changes, we splice that on at that time. If we use a decompostion of (Z∗, X∗)
as defined above there is a problem: the sparse QR routine will rearrange the columns of the
decomposed matrix so as to be most efficient (some permutataions retain more sparseness than
others). This is ok as long as the rearrangement does not intermix Z and X, and in fact it often
does not since Z will be “sparser” than X in most problems; but we can’t guarrantee it. Thus
we do a two-step decompostion:

(Z,X) = (Q1|Q2)

(
R1 A
0 R2

)
Q′1X =

(
A

Q2R2

)
Thus Q1 and R1 are the result of a QR decomposition of Z, and Q2, R2 from a QR decompostion
of the the lower rows of Q′1X. The final result is the same as a single QR call for the combined
matrix.

At the time of this writing the Matrix library’s qr.qty routine could not deal with a sparse
matrix as the second argument, thus in creating xstar below we force a non-sparse version. This
is not a computational problem since X is always of modest size, it is the random effects matrix
Z which can be huge and for which sparseness can pay off handsomely. The Matrix routine by
default uses a sparse form if the object has over 1/2 zeros, which would be true for some X
matrices.

69

〈define-xz 〉=
#Define Z^* and X^*

itemp <- split(row(fmat), fmat)

zstar1 <- new("dgCMatrix",

i= as.integer(unlist(itemp) -1),

p= as.integer(c(0, cumsum(unlist(lapply(itemp, length))))),

Dim=as.integer(c(n, max(fmat))),

Dimnames= list(NULL, NULL),

x= rep(1.0, length(fmat)),

factors=list())

if (length(zmat) >0) {
there were random slopes as well

zstar1 <- cBind(zstar1, as(Matrix(zmat), "dgCMatrix"))

}

nfrail <- ncol(zstar1)

nvar <- ncol(X)

if (nvar == 0) xstar <- NULL #model with no covariates

else xstar <- rBind(Matrix(X, sparse=FALSE),

matrix(0., nrow=nfrail, ncol=ncol(X)))

ystar <- c(Y, rep(0.0, nfrail))

Now to do the fit. Define logfun, which returns the loglik (without the constant terms) for a
given trial value of theta. Use a gridsearch to find the best starting values, and start the optim()
routine there. The convergence criterion for optim works well if the true minimum is around 1
in absolute value; our last line of logfun makes that true if the starting estimate is exactly the
final solution. Notice that the max for θ only depends on the loglik, equation 5 or 7.

For the ML estimate 5 we need the determinant of R11 The documentation for the qr routine
in the Matrix library has an unclear reference to column permutations (it says they can exist,
but not how to turn this on or off nor the default). Since we need to keep Z before X the code
below has 2 calls, first on the Z portion and then on the transformed X portion.

A second nuisance is that the qr.R function in the Matrix library insists on printing a warning
message about the fact that permutations may exist. For computation of a determinant, which
is the product of the diagonal elements of R, any reordering is irrelevant to us. We use a local
function mydiag to work around this.

To create Delta first do the cholesky decompostion, which returns the upper triangular matrix
U by default. The solve function when applied to the cholesky uses a fast backsolve approach.
(But you can’t use the backsolve function, since the Matrix library didn’t have a method for it
at this time. I originally tried this to make the code clearer wrt to the algorithm.) Per equaton
(2) we need to transpose the result to lower triangular form.

〈lmekin-fit 〉=
mydiag <- function(x) {

if (class(x)=="sparseQR") diag(x@R)

else diag(qr.R(x))

}

70

logfun <- function(theta, best=0) {
vmat <- kfun(theta, varlist, vparm, ntheta, ncoef)

Delta <- t(solve(chol(as(vmat, "dsCMatrix"), pivot=FALSE)))

zstar <- rBind(zstar1, Delta)

qr1 <- qr(zstar)

dd <- mydiag(qr1)

cvec <- as.vector(qr.qty(qr1, ystar))[-(1:nfrail)] #residual part

if (nvar >0) { # have covariates

qr2 <- qr(qr.qty(qr1, xstar)[-(1:nfrail),])

cvec <- qr.qty(qr2, cvec)[-(1:nvar)] #residual part

if (method!= "ML") dd <- c(dd, mydiag(qr2))

}

loglik <- sum(log(abs(diag(Delta)))) - sum(log(abs(dd)))

if (method=="ML") loglik <- loglik - .5*n*log(sum(cvec^2))

else loglik <- loglik - .5*length(cvec)*log(sum(cvec^2))

best - (loglik+1) #optim() wants to minimize rather than maximize

}

nstart <- sapply(itheta, length)

if (length(nstart) ==0) theta <- NULL #no thetas to solve for

else {
#iteration is required

#make a matrix of all possible starting estimtes

testvals <- do.call(expand.grid, itheta)

bestlog <- NULL

for (i in 1:nrow(testvals)) {
ll <- logfun(as.numeric(testvals[i,]))

if (is.finite(ll)) {
#ll calc can fail if someone picks a very bad starting guess

if (is.null(bestlog) || ll < bestlog) {
(optim is set up to minimize)

bestlog <- ll

theta <- as.numeric(testvals[i,])

}
}

}
if (is.null(bestlog))

stop("No starting estimate was successful")

optpar <- control$optpar

optpar$hessian <- TRUE

mfit <- do.call(’optim’, c(list(par= theta, fn=logfun, gr=NULL,

best=bestlog), optpar))

71

theta <- mfit$par

}

At this point the optimal θ has been found. Now do one more pass with the “internals”
of the logfun function, and compute other quantities that we didn’t need for the intermediate
iterations. Remember that lmekin was designed for genetic problems, and for these Z will be
very large and sparse while X will be modest.

〈lmekin-compute 〉=
vmat <- kfun(theta, varlist, vparm, ntheta, ncoef)

Delta <- t(solve(chol(as(vmat, "dsCMatrix"), pivot=FALSE)))

zstar <- rBind(zstar1, Delta)

qr1 <- qr(zstar)

dd <- mydiag(qr1)

ctemp <- as.vector(qr.qty(qr1, ystar))

cvec <- ctemp[-(1:nfrail)] #residual part

if (is.null(xstar)) { #No X covariates

rcoef <- qr.coef(qr1, ystar)

yhat <- qr.fitted(qr1, ystar)

}
else {

qtx <- qr.qty(qr1, xstar)

qr2 <- qr(qtx[-(1:nfrail),,drop=F])

if (method!="ML") dd <- c(dd, mydiag(qr2))

fcoef <-qr.coef(qr2, cvec)

yresid <- ystar - xstar %*% fcoef

rcoef <- qr.coef(qr1, yresid)

cvec <- qr.qty(qr2, cvec)[-(1:nvar)] #residual part

if (class(qr2)=="sparseQR") varmat <- chol2inv(qr2@R)

else varmat <- chol2inv(qr.R(qr2))

yhat <- as.vector(zstar1 %*% rcoef + X %*% fcoef) #kill any names

}

if (method=="ML") {
sigma2 <- sum(cvec^2)/n #MLE estimate

loglik <- sum(log(abs(diag(Delta)))) -

(sum(log(abs(dd))) + .5*n*(log(2*pi) +1 + log(sigma2)))

}
else {

np <- length(cvec) # n-p

sigma2 <- mean(cvec^2) # divide by n-p

loglik <- sum(log(abs(diag(Delta)))) -

(sum(log(abs(dd))) + .5*np*(log(2*pi) + 1+ log(sigma2)))

}

72

Debugging code, set the argument to TRUE only during testing

if (FALSE) {
Compute the alternate way (assumes limited reordering)

zx <- cBind(zstar, as(xstar, class(zstar)))

qr3 <- qr(zx)

cvec3 <- qr.qty(qr3, ystar)[-(1:(nvar+nfrail))]

if (method=="ML") dd3 <- (diag(myqrr(qr3)))[1:nfrail]

else dd3 <- (diag(myqrr(qr3)))[1:(nfrail+nvar)]

#all.equal(dd, dd3)

#all.equal(cvec, cvec3)

acoef <- qr.coef(qr3, ystar)

browser()

}

Bundle the results together into an output object. This object differs from the old lme object,
having both more and less information. First we call the wrapup functions to retransform any
parameters. At this point we also rescale the other variance components: the iteration used σ2Σ
as the variance matrix for the random effects, the user wants to think of Σ as the product of
these.

〈lmekin-finish-up 〉=

newtheta <- random.coef <- list()

nrandom <- length(varlist)

sindex <- rep(1:nrandom, ntheta) #which thetas to which terms

bindex <- rep(1:nrandom, rowSums(ncoef)) # which b’s to which terms

for (i in 1:nrandom) {
temp <- varlist[[i]]$wrapup(theta[sindex==i], rcoef[bindex==i],

vparm[[i]])

newtheta <- c(newtheta, lapply(temp$theta, function(x) x*sigma2))

if (!is.list(temp$b)) {
temp$b <- list(temp$b)

names(temp$b) <- paste("Random", i, sep=’’)

}
random.coef <- c(random.coef, temp$b)

}

We create a variance matrix only for the fixed effects. The primary reason is that even though
Z is sparse the variance matrix associated with Z will usually be dense; for many of our genetics
problems this would easily drive R out of memory. If the columns of (Z,X) remain in order we
only need to invert the lower triangle of R, but if they have been permuted we need to force
separation between Z and X by doing the decompostion in two steps.

〈lmekin-finish-up 〉=

if (length(fcoef) >0) {
There are fixed effects

73

nvar <- length(fcoef)

fit <- list (coefficients=list(fixed=fcoef, random=random.coef),

var = varmat * sigma2,

vcoef =newtheta,

residuals= Y- yhat,

method=method,

loglik=loglik,

sigma=sqrt(sigma2),

n=n,

call=Call)

}
else fit <- list(coefficients=list(fixed=NULL, random=random.coef),

vcoef=newtheta,

residuals=Y - yhat,

method=method,

loglik=loglik,

sigma=sqrt(sigma2),

n=n,

call=Call)

if (!is.null(theta)) {
fit$rvar <- mfit$hessian

fit$iter <- mfit$counts

}
if (x) fit$x <- X

if (y) fit$y <- Y

if (model) fit$model <- m

na.action <- attr(m, "na.action")

if (length(na.action)) fit$na.action <- na.action

class(fit) <- "lmekin"

fit

And last, a couple of helper functions

〈lmekin-helper 〉=
residuals.lmekin <- function(object, ...) {

if (length(object$na.action)) naresid(object$.na.action, object$residuals)

else object$residuals

}

8 Matrix conversions

The package currently uses objects from both the Matrix and the bdsmatrix libraries. The former
are the basic unit for the lmekin function, and are returned as kinship matrices by the kinship2

74

library. Bsdmatrix objects are the main tool for the internal routines of coxme, although there
is a long term goal of changing that in order to gain more flexibility.

In the meantime, we need programs to convert from one to the other. The major nuisance is
that the sparse portion of a bdsmatrix object is stored in row-major order, equivalent to an upper
triangular dsRMatrix object in the Matrix library. However, the routines we need to use for QR
decompostions are supported for column-major sparse objects. Our first routine, therefore, is
one for rearrangement of a sparse block. Consider a 4 by 4 sparse in bdsmatrix order

1
2 5
3 6 8
4 7 9 10


A dsCMatrix object expects the order 1, 2,5, 3,6,8, 4,7,9,10; read across the rows rather than
down. In the other direction we want the inverse of this, namely 1, 2, 4, 7, 3, 5, 8, 6, 9, 10;
which are the positions of 1, 2, 3, . . . in the first list. (Conversely, our first list is the positions of
1, 2, 3, . . . in this list.)

〈bdsmatrix 〉=
#Functions for moving back and forth between Matrix and bdsmatrix objects

rowTocol <- function(bs) { #bs = size of block

n <- (bs*(bs+1))/2

indx <- integer(n)

offset <- c(0L, cumsum(seq.int(bs-1, 1)))

k <- 1L

for (i in seq.int(1,bs)) {
for (j in 1:i) {

indx[k] <- i + offset[j]

k <- k+1

}
}

indx

}

colTorow <- function(bs) { #bs = size of block

n <- (bs*(bs+1))/2

indx <- integer(n)

offset <- c(0L, cumsum(seq.int(1, bs-1)))

k <- 1L

for (i in seq.int(1,bs)) {
for (j in seq.int(i, bs)) {

indx[k] <- i + offset[j]

k <- k+1

}
}

indx

}

75

Now for the actual conversion, which is mostly a bookkeeping/counting operation. The
majority of the work is creating the indices for the second object. In the rare case that the
bdsmatrix object has no sparse portion we can convert the rmat portion directly using the
symmpart function. Otherwise we use a C function, after finding that this conversion process
was the major component of the run time for lmekin: it happens once per iteration whereas
conversions the other way only occur a single time. The key of the algorithm is to note the
pattern of numbers above: the indices for the diagonal are 0, 2, 2+3, 2+3+4, . . . , (remember
that the C indices start at zero), and the difference between rows is 1, 2, 3, A bdsmatrix
allows dimnames to be an integer, but a regular R matrix or Matrix object does not.

〈bdsmatrix 〉=
setAs("bdsmatrix", "dsCMatrix", function(from) {

if (length(from@blocks)==0) symmpart(Matrix(from@rmat))

else {
temp <- .Call("bds_dsc",

from@blocksize,

from@blocks,

from@rmat,

from@Dim)

new("dsCMatrix",

i = temp$i,

p = temp$p,

x= temp$x,

Dim = from@Dim,

Dimnames= lapply(from@Dimnames, as.character),

uplo=’U’,

factors=list())

}
})

〈bds_dsc 〉=
#include "coxmeS.h"

SEXP bds_dsc(SEXP blocksize2, SEXP blocks2, SEXP rmat2,

SEXP dim2) {
int i,j, iblock, bstart;

int n, k, k2, rsize;

int bs, nblock, rcol;

/* pointers to input arguments */

int *blocksize, dim;

double *blocks, *rmat;

/* output arguments */

SEXP retlist, reti2, retp2, retx2;

int *reti, *retp;

double *retx;

static const char *outnames[] = {"i", "p", "x", ""};

76

/* Get sizes */

blocksize = INTEGER(blocksize2);

blocks = REAL(blocks2);

rmat = REAL(rmat2);

dim = (INTEGER(dim2))[0];

rcol = ncols(rmat2);

nblock = LENGTH(blocksize2); /* number of blocks */

n = LENGTH(blocks2); /* total number of non-zero elements */

rsize = rcol*dim - (rcol*(rcol-1))/2; /* the dense part */

/* create output objects */

PROTECT(reti2 = allocVector(INTSXP, n + rsize));

reti = INTEGER(reti2);

PROTECT(retp2 = allocVector(INTSXP, dim+1));

retp = INTEGER(retp2);

PROTECT(retx2 = allocVector(REALSXP, n + rsize));

retx = REAL(retx2);

k=0; /* total elements processed */

bstart =0; /* row number for start of block */

*retp =0;

for (iblock=0; iblock<nblock; iblock++) {
bs = blocksize[iblock];

for (i=0; i<bs; i++) { /* column in the output */

retp[1] = *retp + i + 1; retp++;

k2 = i+k;

for (j=0; j<=i; j++) { /* row in the output*/

*retx++ = blocks[k2];

*reti++ = bstart + j;

k2 += bs - (j+1);

}
}

bstart += bs;

k += bs * (bs+1)/2;

}

/* Now do the rmat portion, if present

But not the lower right corner of rmat

*/

k = 1+ dim - rcol;

for (i=0; i<rcol; i++) {
retp[1] = *retp + k; retp++;

for (j=0; j<k; j++) {
*retx++ = rmat[j];

77

*reti++ = j;

}
rmat += dim;

k++;

}

retlist = PROTECT(mkNamed(VECSXP, outnames));

SET_VECTOR_ELT(retlist, 0, reti2);

SET_VECTOR_ELT(retlist, 1, retp2);

SET_VECTOR_ELT(retlist, 2, retx2);

UNPROTECT(4);

return(retlist);

}

Conversion of the result of a cholesky decompostion leads to the same matrix form. However,
the dtCMatrix object is an L’L decompostion, not an LDL’ one, so we have to multiply things
out. the same.

〈bdsmatrix 〉=
setAs("gchol.bdsmatrix", "dtCMatrix", function(from) {

dd <- sqrt(diag(from)) #the multiplication factor

rownum <- function(z) unlist(lapply(1:z, function(r) 1:r))

nb <- from@blocksize* (from@blocksize+1)/2 #elements per block

if (length(from@blocks)>0){
temp <- vector(’list’, length(nb))

bstart <- c(0, cumsum(from@blocksize)) #offset of each block

for (i in 1:length(nb))

temp[[i]] <- rownum(from@blocksize[i]) + bstart[i]

m.i <- unlist(temp)

m.p <- unlist(lapply(from@blocksize, function(x) seq(1,x)))

xindx <- unlist(sapply(from@blocksize, rowTocol)) +

rep.int(c(0, cumsum(nb))[1:length(nb)], nb)

m.x <- from@blocks[xindx]

if (length(from@rmat >0)) {
nc <- ncol(from@rmat) #number of columns in rmat

nr <- nrow(from) #total number of rows

ii <- seq(to=nr, length=nc)

m.i <- c(m.i, unlist(lapply(ii, function(r) 1:r)))

m.p <- c(m.p, ii)

m.x <- c(m.x, from@rmat[row(from@rmat) <= nr + col(from@rmat) -nc])

}
}
else {

nc <- ncol(from@rmat) #number of columns in rmat

nr <- nrow(from) #total number of rows

78

ii <- seq(to=nr, length=nc)

m.i <- unlist(lapply(ii, function(r) 1:r))

m.p <- ii

m.x <- from@rmat[row(from@rmat) <= nr + col(from@rmat) -nc]

}

#Modify x

m.x <- m.x * dd[m.i] # fixes the off diagonals

m.x[rep(1:length(m.p), m.p) ==m.i] <- dd #diagonals

new("dtCMatrix",

i = as.integer(m.i-1),

p = as.integer(c(0, cumsum(m.p))),

Dim= dim(from),

Dimnames=from@Dimnames,

x= m.x,

uplo=’U’,

diag=’N’)

})

If someone is using the original kinship library then kinship matrices will be a bdsmatrix
object, if they are using kinship2 they will be Matrix objects. For now, we want to turn Matrix
objects into bdsmatrix ones. Doing so in the most general way is not trivial since that would
involve recognizing a best rmat portion. We simply find connected blocks, which will work for
kinship matrices.

Our first job is to recognize a block. A dsCMatrix stores the upper triangle of the matrix, so
for any column it is easy to see the minimal row index with a non-zero value. Imagine starting
at the lower left corner, then move to the left keeping track of the lowest row number seen so far.
Suppose at column k the min so far is also k. Then we know that the lower k by k block must
have only zeros above it, and by symmetry only zeros to the left. Set it aside and start over.
We see that any column for which the minimal index for all columns to the right = the current
column number will be the start of a block. Assuming that the row indices are in increasing
order (I have not yet seen an exception), then x@i[x@p[1:ncol]] will be the index of these
minimal elements, using the 0 based indexing of Matrix objects.

Given a block, note that we can’t use the simple colTorow function above to rearrange its
contents; the Matrix object will have “holes” in it. For example, in a simple family of 2 founders
and their 3 children the bdsmatrix object will be a 5 by 5 block with a zero for the pair of
founders; the Matrix object from kinship2 will supress the zero. The natrual thing is to use x[i,i]
where i is the integer vector delimiting the block. However, at this time Matrix (version 1.0-1)
has a major memory leak when subscripting a sparse matrix. The work around is the getblock

function below. It can very quickly extract the relevant portion of the dsCMatrix object, under
the assumption that the matrix is block diagonal and we are extracting an entire block. Because
of marry-ins to a pedigree the case where start=end is quite common so we treat it as a special
case.

〈bdsmatrix 〉=
Code to find the subset myself

This ONLY works for the special case below

79

getblock <- function(x, start, end) {
nrow <- as.integer(1+end-start)

xp <- x@p[start:(end+1)]

if (nrow==1) return(x@x[xp[1]+1]) #singleton element

keep <- (1+min(xp)):max(xp)

new("dsCMatrix", i=x@i[keep]+ 1L - as.integer(start),

p= xp- min(xp),

Dim=c(nrow, nrow), Dimnames=list(NULL, NULL),

x = x@x[keep], uplo=x@uplo, factors=list())

}

setAs("dsCMatrix", "bdsmatrix", function(from) {
dd <- dim(from)

if (dd[1] != dd[2]) stop("Variance matrices must be square")

nc <- ncol(from)

minrow <- from@i[from@p[1:nc] +1] +1

minrow <- rev(cummin(rev(minrow)))

block.start <- which(1:nc == minrow)

block.end <- c(block.start[-1] -1, ncol(from))

nblock <- length(block.start)

blocks <- vector(’list’, nblock)

for (i in 1:nblock) {
indx <- block.start[i]:block.end[i]

blocks[[i]] <- as.matrix(from[indx, indx])

blocks[[i]] <- as.matrix(getblock(from, block.start[i], block.end[i]))

}
bdsmatrix(blocksize=sapply(blocks, nrow), blocks=unlist(blocks),

dimnames=dimnames(from))

})

80

	Introduction
	Main program
	Basic setup
	Fixed effects
	Random effects
	Creating the C and F matrices

	The model formula
	Introduction
	Parsing the formula
	Random terms
	Miscellaneous

	Variance families
	Structure
	Sparseness
	coxmeFull
	coxmeMlist

	Fitting
	Penalty matrix
	C routines
	Setup
	Doing the fit
	Finishing up

	Methods for the random effects
	lmekin
	Matrix conversions

