
colorSpec – an R package for Color Spectra

Glenn Davis May 14, 2016

colorSpec is an R package providing an S3 class with methods for color spectra. It supports the standard
calculations with spectral properties of light sources, materials, cameras, eyes, scanners, etc.. And it works
well with the more general action spectra. Many ideas are taken from packages hyperSpec [6], hsdar [5],
zoo [7], and pavo [10].

There is no support for 3D colors spaces other than XYZ and RGB; see packages colorspace [8] and
colorscience [9] for these spaces.

Table of Contents
1 Spectrum Types...1
2 Spectrum Quantities..2
3 creation of colorSpec objects..3
4 colorSpec object organization...4
5 colorSpec object attributes..5
6 Spectrum File Import..5
7 Package Options...6
8 Future Work..6
9 References...7
Appendix A - Built-in colorSpec Objects...9
Appendix B - Bonus Spectral Data...11
Appendix C - Spectrum Products...13

1 Spectrum Types
Pick up any book on color and you'll see plots of many spectra. Let's start with a simple division of these
spectra into 4 basic types:

type
physical

description
infinite dimensional

vector space description

vector
space

symbol

finite
dimensional
description

light

a light source
this includes both
physical and ideal

sources
(aka illuminants)

L2 integrable functions on a real interval of
wavelengths, e.g. [380,780] nm, which
form a Hilbert space

L row vectors

responsivity
.light

a light responder
also called a detector

continuous functionals on L, and therefore

in the dual space L*
; All such

functionals are defined by an inner product
with a responsivity spectrum.

L* column vectors

page 1 of 14

material
a diffuse reflector,

 or a non-scattering
transparent material

multiplication operators on L M diagonal matrices

responsivity
.material a material responder

continuous functionals on M and

therefore in the dual space M*
; All are

defined by an inner product with a
responsivity spectrum

M* diagonal matrices

Table 1.1 The 4 types of spectra and their corresponding vector spaces

We take the mathematical point of view that these 4 vector spaces may be isomorphic, but they are not the
same. Every colorSpec object has one of these types, but it is not stored with the object. The object
stores a quantity which then determines the type; see the next section for more. A synonym for type
might be space, but this could be confused with color space.

colorSpec does not actually use the finite-dimensional representations in Table 1.1; the organization is
flexible. And it would not be efficient memory use to store a diagonal matrix as such. For discussion of the
organization, see section 4.

Given 2 finite-dimensional spectra of types 'light' and 'responsivity.light' the response (a real
number) is their dot product multiplied by the step between wavelengths.

All materials in this document are non-fluorescent; i.e. the incoming photons reflected (or transmitted) only
come from incoming photons of the same wavelength. A transparent material transmits an incoming light
spectrum and a new spectrum emerges on the other side. If the material is not fluorescent, the outgoing
spectrum is the same as the incoming, except there is a reduction of power that depends only on the
wavelength (and the material). If the light power were divided into N bins, the transmitted power spectrum
would be a diagonal NxN matrix times the incoming spectrum. Every entry on the diagonal is between 0 and

1. This is why we consider a transmittance spectrum to be a multiplication operator on L, see [1]. In finite
dimensions these operators correspond to diagonal matrices. In infinite dimensions the most convenient
space is the Hilbert space – "They are the arena for much of mathematical physics", see [2].

A reflectance spectrum is mathematically the same as a transmittance spectrum, except we compare the
outgoing light spectrum to that of a perfect reflecting diffuser. Such a material does not exist, like many
concepts in physics, but it is a very useful idealization.

2 Spectrum Quantities
In practice, knowing that the type of a spectrum is 'light' is not really enough to use it. There are two
common physical quantities for light spectra – power of photons and number of photons/sec. The former –
radiometric - is the oldest, being used in the 19th century. The latter – the actinometric - was not used until
the 20th century (after the modern concept of photons was proposed in 1905). So colorimetry uses
radiometric quantities by convention and actinometric ones are converted to radiometric automatically for
calculations. The conversion is easy; see the function radiometric() and [3].

Similarly, 'responsivity.light' can also be radiometric (e.g. the CIE color matching functions) or
actinometric (e.g. the quantum efficiency of a CMOS sensor). The latter spectra are also converted on the
fly.

For responsivity we distinguish between 3 types of response: electrical, neural, and action. In the current
version of the package this fine 3-way distinction is only used in 2 places: in the y label of the spectrum

page 2 of 14

plot(), and to determine default adaption methods in calibrate(). Note that the action response is
kind of a grab-bag for responses that are neither electrical (a modern solid-state photosensor) nor
neural (a biological eye).

Here are the valid types and their quantities:

type quantity metric comments

examples
(objects, files,

functions)

light
power radiometric radiometric quantities are

conventional in colorimetry

D65.1nm
pos1-20x.scope
BlueFlame.txt

photons/sec
or
photons

actinometric
for color calculations, actinometric
units are automatically converted
to radiometric

F96T12
Airam-GR8E.txt

responsivity.
light

power->electrical

radiometric

RGB camera response Flea2.RGB
Red-Epic-Dragon.txt

power->neural eye response xyz1931.1nm
Osmia-rufa.txt

power->action examples are erythemal action,
melatonin suppression, etc.

erythemalSpectrum()

photons->electrical

actinometric

silicon sensors usually use
quantum efficiency

Zyla_sCMOS.txt
FoveonX3.txt

photons->neural response units might be
photocurrent, or spikes/sec, etc.

HigherPasserines

photons->action photosynthesis is an example BeanPhotosynthesis.txt

material
reflectance NA CC_Avg20_spectrum_XYY.

txt

transmittance
absorbance NA

for color calculations, absorbance
is automatically converted to
transmittance

Hoya
Hematoxylin.txt
atmosphere2003

responsivity.
material

material->electrical
material->neural
material->action

NA
a spectrum of this type typically
comes from both a light source
and a camera

scanner.ACES
SMPTE-ST-2065-2.txt
(a standard for scanning film)

Table 2.1 The types of spectra and their quantities

The types and quantities are strings, but quotes are omitted to reduce clutter. Note that 'photons' is an
acceptable synonym for 'photons/sec'. There are no examples of material->action spectra, but one
could make one (for example) out of daylight in D65.1nm and the photosynthesis action spectrum in
BeanPhotosynthesis.txt. The material could be various types of glass in between sun and beans (as in
a greenhouse).

3 creation of colorSpec objects
The user creates colorSpec objects using the function colorSpec():

colorSpec(data, wavelength, quantity='auto', organization='auto')

The arguments are:

data
a vector or matrix of the spectrum values. In case core is a vector, there is a single spectrum and the
number of points in that spectrum is the length of the vector. In case core is a matrix, the spectra are stored
in the columns, so the number of points in each spectrum is the number of rows. It is OK for the matrix to

page 3 of 14

have only 0 or 1 column. The column names (if any) are taken as the spectrum names. If no column names
are given, then 'S1', 'S2', ... are used. Names can also be assigned after construction too; see
specnames. Compare this function with ts.

wavelength
a numeric vector of wavelengths for all the spectra. The length of this vector must be equal to NROW(data).

quantity
a character string giving the quantity of all spectra; see Table 2.1 for a list of valid values. In case of 'auto',
a guess is made from the column names. This guess can be overridden later.

organization
a character string giving the desired organization of the returned colorSpec object. In case of 'auto', the
organization is 'vector' or 'matrix' depending on data. The organization can be changed later, see
the next section for discussion of all 4 possible organizations.

4 colorSpec object organization
A spectrum is similar to a time-series (with time replaced by wavelength), and so the organization of a
colorSpec object is similar to that of the time-series objects in stats. In that S3 object a single time-series is
organized as a vector with class ts, and a multiple time series is organized as a matrix (with the series in the
columns) with class mts. We decided to use a single class name colorSpec, continue the idea of different
organizations, and allow 2 more organizations. Here are the 4 possible organizations, ordered by increasing
complexity:

'vector'
The object is a numeric vector with attributes but no dimensions, like a time-series ts. This organization is
works for a single spectrum only, which is very common. The common arithmetic operations work well with
this organization. The length of the vector is the number of wavelengths. The class is c('colorSpec',
'numeric').

'matrix'
The object is a matrix with attributes, like a multiple time-series mts. This is probably the most suitable
organization in most cases, but it does not support extra data (see 'df.row' below). The common
arithmetic and subsetting operations work well; even round() works. The number of columns is the
number of spectra, and the spectrum names are stored as the column names. This organization can be
used for any number of spectra, including 0 or 1. The class is c('colorSpec', 'matrix').

'df.col'
The object is a data frame with attributes. The spectra are stored in the columns. But the first column is
always the wavelength sequence, so the spectra are in columns 2:(M+1), where M is the number of spectra.
This organization mirrors the most common organization in text files and spreadsheets. The common
arithmetic operations do not work, and the initial wavelength column is awkward to handle. The spectrum
names are stored as the column names of the data frame. This organization can be used for any number of
spectra, including 0 or 1. This organization imitates the "long" format in package hyperSpec. The class is
c('colorSpec', 'data.frame').

'df.row'
The object is a data frame with attributes. The last (right-most) column is a matrix which is the transpose of
the matrix used when the organization is 'matrix'. The spectra are stored in the rows of this matrix

page 4 of 14

(which has the name spectra though that is irrelevant). The common arithmetic operations do not work.
The spectrum names are stored as the row names of the data frame.. This organization can be used for any
number of spectra, including 0 or 1. This organization imitates the "tall" format in package hyperSpec. This
is the only organization that supports extra data associated with each spectrum, such as physical
parameters, time parameters, descriptive strings, or whatever. This extra data occupies the initial columns of
the data frame that come before the spectra, and so it can be any data frame with the right number of rows.
This extra data can be assigned to any spectrum with the 'df.row' organization. The class is
c('colorSpec', 'data.frame')

5 colorSpec object attributes
The attribute list is kept as small as possible. Here it is:

attribut
e

value comments when present

wavelength vector of increasing
numeric values

the physical units are always
nanometers

when organization is not
'df.col'

step.wl
difference between

consecutive values in
regular wavelength

usual values in colorimetry are 1, 5,
10, and 20 nm; but there are others.

when wavelength is
regular (i.e. an arithmetic

sequence)

quantity a string; for valid values
see Table 2.1 the quantity determines the type always

specname a string; the name of the
single spectrum

when organization is
'vector'

metadata <user-defined list> unstructured miscellaneous data that
the user may find useful always

sequence a list of other colorSpec
object

when the object was returned
from product()

calibration a list of calibration data when the object was returned
from calibrate()

Table 5.1 The colorSpec attributes

6 Spectrum File Import
There are 5 text file formats that can be imported. The function readSpectra() reads a few lines from the
top of the file to try and determine the type. If successful, it then calls the approprate read function; see the
help system for details. The file formats are:

XYY
There is a column header line matching '^(wave|wl)' (not case sensitive) followed by the the names of
the spectra. All lines above this one are taken to be metadata. This is probably the most common file
format; see the sample file ciexyz31_1.csv.

Spreadsheet
There is a line matching '^(ID|SAMPLE|Time)'. This line and lines below must be tab-separated. Fields
matching '^[A-Z]+([0-9.]+)nm$' are taken to be spectral data and other fields are taken to be
extradata. All lines above this one are taken to be metadata. The organization of the returned object is
'df.row'. This is a good format for automated acquisition, using a spectrometer, of many spectra.

Scope

page 5 of 14

This is a file format used by Ocean Optics spectrometer software. There is a line
>>>>>Begin Processed Spectral Data<<<<< followed by wavelength and power separated by a tab.
There is only 1 spectrum per file. The organization of the returned object is 'vector'. See the sample file
pos1-20x.scope.
CGATS
This is a complex format that is best understood by looking at some samples, such as Rosco.txt. For more
see [11]. The fields with spectral data match the pattern "^(nm|SPEC_|SPECTRAL_)[_A-Z]*([0-9.]+)
$" and other fields are considered extradata. The organization of the returned object is 'df.row'.

Control
This is a personal format used for digitizing images of plots from manufacturer datasheets and academic
papers. It is structured like a .INI file. There is a [Control] section establishing a simple linear map from
pixels to the wavelength and spectrum quantities. Only 3 points are really necessary. It is OK for there to be
a little rotation of the plot axes relative to the image. This is followed by a section for each spectrum, in XY
pixel units only. Conversion to wavelength and spectral quantities happens on-the-fly. The organization of
the returned objects is 'vector'.

During import, the read functions try to guess the quantity from spectrum names or other cues. For example
the first line in N130501.txt is IT8.7/1, which indicates that the quantity is 'transmittance' (a reflective
target is denoted by IT8.7/2). If the read function cannot make a confident guess, it takes a wild guess and
issues a warning message. If the quantity is incorrect, you can assign the correct value after import.
Alternatively you can add a line to the header part of the file with the keyword 'quantity' followed by the
correct value. It is OK to put the value in quotes. See example files under extdata.

There is no function to write a colorSpec object to text file for import later. But what one can do is change
the organization to 'df.col' and call write.table() with arguments quote and row.names set to
FALSE.

7 Package Options
There is a mechanism for setting options private to the package. There are 3 such options, and all are
related to a package logging mechanism. All messages go to the console.

There is an option for setting the logging level. The levels are the 6 standard ones taken from Log4J:
FATAL, ERROR, WARN, INFO, DEBUG, and TRACE. One can set higher levels to see more info.

By default, when an ERROR event occurs, execution stops. But there is a colorSpec option to continue. The
logging level FATAL is reserved for internal errors, when execution always stops.

Finally, there is an option for how the message is formatted - a layout option. For details see the help page
for the function cs.options().

8 Future Work
Here are a few possible improvements and additions.

wavelength
handling the wavelength sequence, e.g. for product() and resample(), is an annoyance. We might
consider adding a global wavelength option that all spectra are automatically resampled to.

page 6 of 14

fluorescent materials
Recall that a non-fluorescent material corresponds to a diagonal matrix, which operates in a trivial way on
light spectra. A diagonal matrix can be stored much more compactly as a plain vector, and multiplication of a
diagonal matrix by a vector simplifies to entrywise (Hadamard) multiplication. A fluorescent material
corresponds to a non-diagonal matrix – called the Excitation Emission Matrix or Donaldson Matrix. The
product in Appendix C is still multilinear, but the material product the middle is no longer symmetric, so
enhancements to the product computations must be made. This is a new level of complexity and memory
usage, and may require a new type of memory organization.

comparisons
There should a metric of some kind that compares two material spectra.
There should be a way to compare 2 colorSpec objects of the same type, especially
responsivity.light. For example, there would then be a way to evaluate how close an electronic
camera comes to satisying the Maxwell-Ives Criterion. Possible metrics would be the principal angles
between subspaces.

probeOptimalColors()
For optimal colors in 3D, better numerical handling of optimal colors near the cusps at black and white would
be an improvement. For optimal colors in 2D, it should be possible to probe the true optimal colors, and also
the 1-transition edge-colors, or Kantenfarben.

plot()
the product() function saves the terms with the product object, but the plot() function ignores them. It
may be useful to have an option to plot the individual terms too.

resample()
extrapolation is inconsistent and could be improved

9 References
[1] Wikipedia. Multiplication operator. http://en.wikipedia.org/wiki/Multiplication_operator.

[2] Koenderink, Jan J. Color for the Sciences. The MIT Press. 2010.

[3] Shevell, Steven K. The Science of Color. Elsevier Science; 2nd edition. 2003.

[4] Lang, Serge. Linear Algebra. 2nd edition. 1972. Addison Wesley.

[5] Lehnert, W. Lukas, Hanna Meyer, Joerg Bendix (2016). hsdar: Manage, analyse and simulate
hyperspectral data in R. R package version 0.4.1. http://cran.r-project.org/package=hsdar.

[6] Beleites, Claudia and Valter Sergo: hyperSpec: a package to handle hyperspectral data sets in R.
R package version 0.98-20150304. http://cran.r-project.org/package=hyperSpec.

[7] Zeileis, Achim and Gabor Grothendieck (2005). zoo: S3 Infrastructure for Regular and Irregular
Time Series. Journal of Statistical Software, 14(6), 1-27.

[8] Ihaka, Ross, Paul Murrell, Kurt Hornik, Jason C. Fisher, Achim Zeileis (2015). colorspace: Color
Space Manipulation. R package version 1.2-6. http://cran.r-project.org/package=colorspace.

[9] Gama, Jose. colorscience (2015). Color Science Methods and Data. R package version 1.0.2 .
http://cran.r-project.org/package=colorscience .

page 7 of 14

http://en.wikipedia.org/wiki/Multiplication_operator
http://cran.r-project.org/package=colorscience
http://cran.r-project.org/package=colorspace
http://cran.r-project.org/package=hyperSpec
http://cran.r-project.org/package=hsdar

[10] Maia R., Eliason C.M., Bitton P.-P., Doucet S.M. and Shawkey M.D. 2013. pavo: an R Package for
the analysis, visualization and organization of spectral data. Methods in Ecology and Evolution. R
Package version 0.5-5. http://cran.r-project.org/package=pavo.

[11] CGATS.17 Text File Format. http://www.colorwiki.com/wiki/CGATS.17_Text_File_Format.

page 8 of 14

http://cran.r-project.org/package=pavo

Appendix A - Built-in colorSpec Objects

The following are built-in colorSpec objects that are commonly used. They are global objects that are
automatically available when colorSpec is loaded. For more details on each see the corresponding help
topic.

quantity object name
spectr

a
step
(nm) comments

power

A.1nm 1 1 Incandescent / Tungsten CCT=2856 K

B.5nm 1 5 Direct sunlight at noon (obsolete)

C.5nm 1 5 Average / North sky Daylight (obsolete)

D50.5nm 1 5 Horizon Light

D65.1nm 1 1
Noon Daylight D65.5nm 1 5

daylight1964 3 5 3 components of daylight, used to construct
the entire daylight series

daylight2013 3 1 smoothed version of daylight1964
(proposed)

Fs.5nm 12 5 fluorescent standards F1 to F12

solar.irradiance 3 1 terrestrial and extraterrestrial direct, daylight
- from ASTM G173-03

photons/sec F96T12 1 1 not an illuminant – a real fluorescent bulb as
measured with LI-COR LI-1800

Table A.1 colorSpec objects, light sources. type='light'

quantity object spectra
step
(nm) comments

power-
>electrical

Adobe.RGB 3 1 a theoretical RGB camera

BT.709.RGB 3 1 a theoretical RGB camera

Flea2.RGB 3 10 an actual RGB camera

power->neural

lms1971.5nm 3 5 Vos & Walraven (1971) 2-degree human
cone fundamentals

lms2000.1nm 3 1 Stockman & Sharpe (2000) 2-degree human
cone fundamentals

xyz1931.1nm 3 1
2-degree human color matching functions xyz1931.5nm 3 5

xyz1964.1nm 3 1
10-degree human color matching functions xyz1964.5nm 3 5

photons->neural HigherPasserines 4 1 an example of an eye with tetrachromatic
vision

Table A.2 colorSpec objects, light responders. type='responsivity.light'

page 9 of 14

quantity object spectra
step
(nm) comments

transmittance
atmosphere2003 1 1 transmittance of the atmosphere, derived from

2 spectra in solar.irradiance (Table A.1)

Hoya 4 10 RGB filters, plus a blue light balancer

Table A.3 colorSpec objects, materials. type='material'

quantity object spectra
step
(nm) comments

material->electrical scanner.ACES 3 2 a standard for an RGB scanner for color film

Table A.4 colorSpec objects, material responders. type='responsivity.material'

page 10 of 14

Appendix B - Bonus Spectral Data

Each packaged colorSpec object in Appendix A takes time to document. Here are some bonus spectra
files under folder extdata that users may find interesting and useful. Use the function readSpectra()to
create a colorSpec object from the file, for example:

sunlight = readSpectra(system.file('extdata/illuminants/sunlight.txt', package='colorSpec'))

See the top of each file for sources, attribution, and other information. Alternatively, one can run summary()
on the imported object. Some of the files in Control format have associated JPG or PNG images of plots.

folder quantity filename format comments
illuminants power sunlight.txt XYY spectral irradiance of the solar disk

sources
power

BlueFlame.txt XYY blue part of a butane flame, see vignette blueflame

firefly1922.txt Control 1 species of fire-fly

firefly1964.txt Control 4 species of firefly

Gepe-G-2001-LED.sp CGATS white LED in a light-pad, captured by a ColorMunki

Lumencor-SpectraX.txt Control 7-channel source of light - time-multiplexed

NikonCi-L.full.sp CGATS white LED in a microscope, captured by a ColorMunki

NikonE600-
NCB11+slide.sp

CGATS halogen lamp in a microscope, with blue filter

pos1-20x.scope scope halogen lamp in a microscope. captured by a USB2000+

photons/sec Airam-GR8E.txt XYY a 60W incandescent bulb, made by Airam

Table B.1 More Spectral Data Files, light sources. type='light'

folder quantity filename format comments

action photons->action
BeanPhotosynthesis.txt XYY photosynthesis converts photons to

CO2 molecules etc.

Photosynthesis-DIN5031-
10.txt

Control from DIN standard 5031-10

cameras

power->electrical

Falcon-spectral.txt Control DALSA Falcon 4M30 RGB camera

orthicon-5820-A.txt XYY graylevel orthicon tube camera

Plumbicon30mm.txt XYY graylevel plumbicon tube camera

Red-Epic-Dragon.txt Control EPIC-M RED Dragon RGB camera

Toshiba-TCD2712DG-
spectral.txt

Control Toshiba TCD2712DG RGB line CCD

photons->electrical FoveonX3.txt Control Foven X3 RGB sensor (QE)

Zyla_sCMOS.txt Control scientific graylevel camera (QE)

eyes power->neural

Osmia-rufa.txt Control a bee can see U.V. !

scoptic1951.1nm.csv XYY low light human vision (1951)

xyz1978.txt XYY new and improved versions of the
1931 CMFsxyz2012.txt XYY

Table B.2 More Spectral Data Files, light responders. type='responsivity.light'

page 11 of 14

folder quantity filename format comments

stains absorbance EosinG.txt Control Eosin is a tissue stain

Hematoxylin.txt Control Hematoxylin is a tissue stain

targets

reflectance CC_Avg30_spectrum_CG
ATS.txt

CGATS the ever-popular Macbeth Color Checker
from http://babelcolor.com

transmittance E131102.txt spreadsheet IT8.7/1 Ektachrome target, from Wolf
Faust

N130501.txt spreadsheet T8.7/1 Velvia target, from Wolf Faust

filters transmittance
Midwest-SP700-2014.txt XYY an IR blocker

Rosco.txt CGATS a few filters from Rosco's vast collection,
see rosco.com

Table B.3 More Spectral Data Files, materials. type='material'

page 12 of 14

Appendix C - Spectrum Products

This Appendix is a very formal mathematical treatment of spectra. In infinite dimensions we use the
terminology of functional analysis in Hilbert spaces. In finite dimensions we use the terminology of linear
algebra.

For easier reference here is a repeat of Table 1.1:

type
physical

description
infinite dimensional

vector space description

vector
space

symbol

finite
dimensional
description

light

a light source
this includes both
physical and ideal

sources
(aka illuminants)

L2 integrable functions on a real
interval of wavelengths, e.g.
[380,780] nm, which form a Hilbert
space

L row vector

responsivity
.light

a light responder
also called a detector

continuous functionals on L, and

therefore in the dual space L*
;

All such functionals are defined by
an inner product with a responsivity
spectrum.

L* column vector

material
a diffuse reflector,

 or a non-scattering
transparent material

multiplication operators on L M diagonal matrix

responsivity
.material a material responder

continuous functionals on M and

therefore in the dual space M*
;

All are defined by an inner product
with a responsivity spectrum

M* diagonal matrix

Table C.1 The 4 types of spectra

There are 5 natural binary products on these spaces

product
mathematical
description in finite dimensions physical description

M × M → M
the composition of 2

multiplication operators is
a multiplication operator

the product of 2 diagonal
matrices is a diagonal matrix

stacking 2 transmitting filters
effectively creates a new filter

L × L* → R
evaluate a functional on a

vector to get a scalar –
the response

a row vector × a column
vector is a scalar – the
response

light hits a detector and generates
a response

L × M → L
a multiplication operator

acts on a vector to create
a vector

a row vector × a diagonal
matrix is a row vector

light passes through a filter and
emerges with a different spectrum

M × L* → L*
an operator on L,

followed by a functional
on L,

is a functional on L

a diagonal matrix × a
column vector is a column
vector

putting a transmitting filter in front
of a light responder, effectively
creates a new light responder

M × M* → R
evaluate a functional on a

vector to get a scalar –
the response

the product of 2 diagonal
matrices is a diagonal
matrix; extract the diagonal
of that product

a scanner (M*) (with both a light
source and a light responder)

responds to a material (M) placed
in the scanner

Table C.2 The 5 natural products

page 13 of 14

An equivalent way to handle these material diagonal matrices is to represent them instead as simple vectors
– the entries along the diagonal. The above products with diagonal matrices then become the much simpler
entrywise or Hadamard product. This is how it is done in colorSpec, using R's built-in entrywise product
operation.

The first 4 products can be strung together to get an associative product:

L × M1 × ... × Mm × L* → R
It is not hard to show that this product is multilinear. This means that if one fixes all terms except the ith

material location, then the composition:

M → L × M1 × ... × • × ... × Mm × L* → R

is linear, see [4]. The first inclusion map means to place the material spectrum M at the ith variable slot •
in the product. The composition map is a functional on M which is an element of M*, i.e. a material

responder. This special method of creating a material responder - a spectrum in M* - plus all the
products in the above table, are available in the function product() in colorSpec. See that help page for
examples.

The right-hand term R can be thought of as standing for Response or Real numbers. In colorSpec the light

responders can have multiple channels, e.g. R, G, and B, and so there are conventions on the admissible
numbers of spectra for each term in these products. See the help page for product() for details.

page 14 of 14

	1 Spectrum Types
	2 Spectrum Quantities
	3 creation of colorSpec objects
	4 colorSpec object organization
	5 colorSpec object attributes
	6 Spectrum File Import
	7 Package Options
	8 Future Work
	9 References
	Appendix A - Built-in colorSpec Objects
	Appendix B - Bonus Spectral Data
	Appendix C - Spectrum Products

