
Using regression makes extraction of shared
variation in multiple datasets easy ∗

Jussi Korpela Andreas Henelius Lauri Ahonen
Arto Klami Kai Puolamäki

June 2, 2016

Abstract

In many data analysis tasks it is important to understand the relationships be-
tween different datasets. Several methods exist for this task but many of them are
limited to two datasets and linear relationships. In this paper, we propose a new
efficient algorithm, termed cocoreg, for the extraction of variation common to all
datasets in a given collection of arbitrary size. cocoreg extends redundancy anal-
ysis to more than two datasets, utilizing chains of regression functions to extract
the shared variation in the original data space. The algorithm can be used with any
linear or non-linear regression function, which makes it robust, straightforward,
fast, and easy to implement and use. We empirically demonstrate the efficacy of
shared variation extraction using the cocoreg algorithm on five artificial and three
real datasets.

1 Introduction
Discovering relationships between different multivariate datasets is useful in many
fields, such as in ecology to study the shared variation between different sites (Leg-
endre and Legendre, 1998) or in neuroscience to locate brain areas with correlated
activity across subjects (Hasson et al, 2004; Dähne et al, 2014). One recent important
application area are the datasets produced by trendy wearable devices. These quanti-
fied self measurements usually consist of simultaneously recorded physiological data,
physical activity and other personal data, possibly from several individuals. One typical
question is which signals and individuals are somehow connected and when. Within
this setting it is interesting to complement the traditional single-dataset multivariate
methods with between-datasets analyses.

In this paper we focus on finding the shared variation between datasets in a data
collection that consists of several datasets. Each dataset is composed of multiple sig-
nals, i.e., vectors of data. The signals can be thought of as being composed of two
parts: a shared part that is similar to all of the other datasets’ signals and the remainder
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referred to as residual. What sets cocoreg apart from most other methods is that it
extracts only variation that is shared by all of the datasets. The output is a set of shared
variation projections, one for each dataset. These projections are related to one another
but not necessarily identical.

As an example of extracting shared variation, consider the data shown in the left-
most column of Figure 1. The plots show the International Monetary Fund (IMF)
commodity prices for products in three categories: energy, metals, and meat. The raw
price index data is shown on the left. The curves are spiky and fluctuate. It is diffi-
cult to directly draw conclusions regarding any shared economic trend of the different
commodities in the datasets.

Here we are interested in extracting this shared trend. The middle column shows
the shared variation for each commodity in the datasets, i.e., what the signals in one
dataset have in common with the signals in all of the other datasets. The individual
variation visible in the commodity price time series is suppressed and the underlying
shared variation is highlighted. An increasing trend from 2010 to 2012 is now visible,
and is similar in profile for all products, with the exception of the price development
of gas (pngasus_usd) and lamb (plamb_usd). The trend becomes even more clear when
viewed using the first principal component (PC) of the shared variation, plotted as a
gray line (PC1) in the middle column.

The extraction of the shared variation allows us to better understand the data and
draw conclusions, e.g., a recession affecting multiple commodity prices is visible as a
price dip around 2009. Finally, the rightmost column shows the residual variation for
each commodity, i.e., the amount of variation in each of the price curves not explained
by all the other commodities. The residual variation here mostly consists of fast price
fluctuations unique to a particular commodity, i.e., the spiky part of the price curves,
or fluctuations specific to a subset of the datasets.

There exists a wide variety of different methods for investigating shared variation
between datasets. However, most of the methods are only applicable to problems with
two datasets and do not easily generalize to problems with three or more datasets. Some
of the methods are complex and difficult to implement. In general there are two main
approaches to the problem of extracting shared variation: (i) to search for maximally
dependent projections between the datasets and (ii) factorization of the variance of
the data by constructing a generative model. Canonical Correlation Analysis (CCA)
(Hotelling, 1936) and Redundancy Analysis (RDA) (Legendre and Legendre, 1998)
belong to the first category, but are limited to the case of two datasets. The generative
approach, in turn, leads to a natural generalization to multiple datasets (Klami et al,
2015), but requires making explicit assumptions on the nature of the noise and the
relationships in the data.

The focus of this paper is a novel algorithm, termed cocoreg (Common Compo-
nents by Regression). It is designed for the simultaneous analysis of shared variation
between multiple datasets. cocoreg makes only few assumptions about the data and
can therefore be used in multiple fields. The algorithm is easy to implement using
existing robust and mature regression algorithms.

For two datasets, a regression model from one dataset to another naturally extracts
the shared variation by modeling their conditional relationship. In this work we use
this observation for extracting variation shared by multiple datasets, by constructing
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Figure 1: IMF commodity prices for energy, metals and meat. The original prices
of the products are shown in the left column, the shared variation for each particular
product with the other products in the middle column and the residual variation for each
commodity in the right column. The variable PC1 in the middle column (plotted with
gray) is the first principal component of the shared variation, scaled to unit variance
and shifted up to avoid overplotting.
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regression chains of multiple pairwise regressors. A regression chain is a sequence of
regressors transferring the signal from one dataset to another via all other sets, eventu-
ally producing a signal containing variation shared by all of the signals. In other words,
the regression functions act as filters that only pass shared variation from one dataset
to the next.

The cocoreg algorithm estimates the shared variation within the data collection di-
rectly, filtering out all variation that is either unique to a single dataset or to a subgroup
of datasets. This is in contrast to the generative modeling approach, which solves a
computationally more complex task and provides shared variation only as a side result.

Our algorithm has several advantages. The method is extremely flexible and can be
easily adapted to different datasets or analysis scenarios simply by selecting a different
regressor. Such changes are much more laborious to incorporate into the generative
modeling approach. The properties of regression models are well understood and there
exists an abundance of powerful regression techniques, which in turn helps in select-
ing the regressor to use. cocoreg is also easily extendable to non-linear settings by
selecting a non-linear regressor. Furthermore, the cocoreg algorithm is fast, making it
suitable for exploratory analysis and online applications. The algorithm is simple, intu-
itive and easy to implement and the output of cocoreg is expressed in the original data
space which is often desired for ease of interpretation. If a single time series describing
the shared variation is needed, principal component analysis (PCA) can be used as a
post-processing step.

Summarizing, the main contributions of this work are

• we present a fast and versatile method for extracting shared variation

• we show the theoretical relation of cocoreg to existing methods

• we show that cocoreg is an extension of RDA to more than two datasets

• we analyze synthetic and real datasets and compare the output of cocoreg to
existing methods for finding shared variation

In Section 2 we review related work and discuss the relation of cocoreg to these.
In Section 3 we present the cocoreg algorithm and the underlying theory. Section 4
contains empirical experiments in which we demonstrate the utility and properties of
cocoreg using both synthetic and real-world datasets. Finally, our conclusions are
presented in Section 5.

2 Related work
Since the introduction of CCA (Hotelling, 1936), numerous methods have been pro-
posed for extracting shared variation in datasets. Here we briefly discuss how cocoreg
is positioned amongst the most closely related methods.

The problem of decomposing the variation in a dataset into shared and residual
variation can in general be solved in two different ways. One approach is to search for
maximally dependent projections of the datasets to extract shared variation, explicitly
discarding everything else. This is typically done by maximizing some dependency
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criterion like correlation or various approximations of mutual information. The other
approach is to factorize the whole data variance, typically by constructing a generative
model that assumes each dataset is an additive composition of shared and residual
variation.

The primary method for the former approach is CCA that extracts correlating lin-
ear components. This approach is also easy to generalize for non-linear projections
by building on, e.g., kernel-based representations (Hardoon et al, 2004) or neural net-
works (Hsieh, 2000; Andrew et al, 2013). Irrespective of the functional form, the basic
optimization problem is still to maximize the dependency of the projections. This
approach, however, is difficult to generalize for multiple datasets because the natural
optimization criteria of correlation and mutual information are bivariate.

Various multi-set generalizations of CCA have still been presented (Kettenring,
1971; Tenenhaus, 2011), but they retain only a subset of the basic properties of CCA
depending on the generalization. As these methods optimize sums of bivariate depen-
dency criteria, the result is a weighted mixture of shared features, some of which might
not be common to all of the datasets. This is in contrast to cocoreg, which finds the
”smallest common denominator“ for the datasets.

Another solution would be to optimize with respect to multi-variate extensions of
mutual information (Fisher and Darrell, 2003) or recent multivariate extensions of cor-
relation (Nguyen et al, 2014) but these are computationally heavy due to working in
(often discretized) multidimensional spaces. See also Hwang et al (2013) for a multi-
set approach that resembles factor analysis.

The second approach of learning the full factorization requires explicitly assum-
ing a generative process for the data. For example, Klami et al (2013) implemented
a Bayesian version of CCA by assuming linear decomposition of variation to latent
components, combined with additive Gaussian noise. This Gaussian latent variable
model can be seen as a generative version of the traditional CCA with equivalence of
the models holding for multivariate Gaussian data.

These kinds of models are easy to generalize to multiple datasets by extending the
generative description to simply produce more sets. For multiple datasets they typically
assume a richer factorization including not only shared variation, but also terms that
describe joint variation between any subsets of the datasets, resulting in the method
of group factor analysis (GFA) (Klami et al, 2015). This approach, however, needs to
make explicit assumptions on the nature of the noise and does not generalize easily
to non-linear mappings. An example of this is the manifold relevance determination
(MRD) method by Damianou et al (2012) which allows for nonlinear dependence struc-
tures but is computationally heavy. From the perspective of extracting only the shared
variation, these type of methods solve a more complex task of fully factorizing the vari-
ation, and providing shared variation as a side-result. Typically it pays off to directly
solve the problem at hand instead of solving a more difficult one.

There are also methods, such as simultaneous component analysis (SCA) (Tim-
merman and Kiers, 2003), that divide datasets into components by explicitly assuming
some correlation structure for the components. These methods help in exploring possi-
ble shared covariance structures but do not solve the shared variation extraction prob-
lem defined later in Section 3.1. Their application is also restricted to data collections
in which all datasets have exactly the same variables.
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cocoreg combines the advantages of both main approaches described above, pro-
viding natural support for multiple datasets and easy extensions for nonlinear projec-
tions. In terms of modeling principle, it is somewhat of an outlier; it does not explicitly
optimize a dependency measure, nor does it specify a generative process. Instead, it
operates solely based on chains of bivariate regression functions, which is the main
reason for its flexibility. The same principle has earlier been used in RDA (Legendre
and Legendre, 1998). RDA is limited to only two datasets and linear regressors, and
it can be viewed as a special case of cocoreg. From this perspective, cocoreg extends
RDA to multiple datasets and nonlinear regressors.

3 Methods

3.1 Definitions
The following briefly describes the basic notation and definitions used in this paper.

Definition Data collection, dataset and signal Let the data collection D ∈ RN×D be
a data matrix with D signals each having N samples. Each column hence represents a
signal denoted as si = D[·, i]. We assume that it is meaningful to compare the signals
sample-by-sample. We define a disjoint partition of the columns of the data matrix into
K submatrices Dk ∈ R

N×dk ⊆ D. We refer to these partitions Dk as the datasets in the
data collection D.

The notation D{k, j }
Sk

is used for variation in Dk that is shared between datasets Dk

and D j . In general, the (true) shared variation projection is marked D{all}
S

and an esti-
mate of it as D̂{all}

S
.

The data collections in this paper consist of real-valued time series. The method
presented here does not explicitly take the time series nature of the signal into account
and hence generalizes to other types of data as well. In the following the signals si are
assumed to have zero mean and we use [N] to denote the set {1, . . . ,N }.

3.2 Identification of shared variation
By shared variation we mean variance that is shared by two or more datasets. In the
case of two datasets we would like to divide the datasets into two parts:

D1 = D{1,2}
S1 + D{1}

S1 (1)

D2 = D{1,2}
S2 + D{2}

S2 (2)

where D{1,2}
S1 is the variation in D1 that is shared by datasets 1 and 2 and D{1}

S1 is the
residual variation (and respectively for dataset 2). A problem with this construct is
that the partition is not unique. Variance may be freely shifted between the shared and
residual components without any change to the covariance matrix of the data collection
D.

One way to see this is to form a generative model for the data. Let us assume that
the datasets have been generated by three component vectors zt1 ∈ R

d1 , zt2 ∈ R
d2 , and
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zt12 ∈ R
max (d1,d2) , where each of the components are independent random variables

with zero mean and unit variance. More specifically, the generating mechanism is

D1[t, ·] = xt1 = A12zt12 + A1zt1 (3)
D2[t, ·] = xt2 = A21zt12 + A2zt2 (4)

where A12 ∈ R
d1×max (d1,d2) , A21 ∈ R

d2×max (d1,d2) , A1 ∈ R
d1×d1 , and A2 ∈ R

d2×d2 are
given real matrices, and t ∈ [N] is the time index. In this case the “shared component”,
for example, of dataset 2 is—at least intuitively—given by D{1,2}2 [t, ·] ' A21zt12 and the
“residual component” by D{2}2 [t, ·] ' A2zt2.

The correlation matrices are given by

R11 = E
[
xt1xtT1

]
= A12AT

12 + A1AT
1 , (5)

R22 = E
[
xt2xtT2

]
= A21 + AT

21 + A2AT
2 , (6)

R12 = E
[
xt1xtT2

]
= A12AT

21, (7)

R21 = RT
12 = A21AT

12. (8)

It is easy to see that we can, e.g., set A1 = 0 and still be able to set the other
matrices A12,A21 and A2 such that the covariance matrices remain intact. This implies
that we cannot specify the shared variation component without further restrictions. We
will next briefly compare two established ways of defining shared variation in a two
dataset case.

3.3 RDA and CCA for two datasets (K = 2)
CCA and RDA are both established methods that characterize shared variation between
two datasets using linear projections. The following defines RDA and CCA in the
context of this paper and highlights some differences between them.

In RDA the shared variation components of datasets 1 and 2 are:

D̂{1,2}
S1 = B12D2 = R12R−1

22 D2, (9)

D̂{1,2}
S2 = B21D1 = R21R−1

11 D1 (10)

where Bi j are set of linear ordinary least squares (OLS) regression coefficients when
explaining Di with D j . Hence RDA defines the shared variation of, e.g., dataset 1 to
be that part of the signal that can be explained using dataset 2.

In CCA the goal is to find (orthogonal) directions in each of the datasets such that
the projections of the data onto these directions are maximally correlated. That is, CCA
finds vectors w1 and w2 such that

arg max
w1,w2

wT
1 DT

1 D2w2 ' arg max
w1,w2

wT
1 R12w2 (11)

reaches its maximum. Once the vectors are found (see, e.g., Müller (1982)), vari-
ation in their direction is removed from the data and the process is repeated until
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dCCA = max (d1,d2) orthogonal directions have been found. The output of this pro-
cess is the original dataset expressed in a new basis. For the dataset whose dimension-
ality is smaller, this new basis is complete and expresses all variation in the data. For
the other dataset some variation might be left unexplained. Hence CCA does not find a
single shared variation projection of the data, but rather a set of orthogonal directions
which sequentially maximize the correlation between the datasets. In a linear OLS
setting maximizing correlation is equivalent to finding the OLS optimal fit.

3.4 Shared variation extraction problem
Following the example of RDA and CCA we adopt the following definition of shared
variation:

Definition Shared variation The variation that dataset k shares with dataset a is de-
fined as D{a,b }

Sb
= fa→b (Da ), where fa 7→b : RN×da 7→ RN×db is some regression

model that estimates Db using Da .

The main problem addressed in this paper can be formulated as:

Problem Shared variation extraction Given a data collection D with K datasets, ex-
tract from each of the datasets Dk , k ∈ [K], the variation shared by all datasets, i.e.,
D{[K ]}

Sk
.

We solve this problem using definition 3.4. This leads a solution that can be seen as
a generalization of the RDA method for data collections with more than two datasets
(K > 2). Next, we will explain how we estimate the shared variation of more than two
datasets.

3.5 Regression chains
The goal of cocoreg is to extract variation shared by multiple datasets without ex-
plicitly optimizing complex criteria formulated over multiple datasets. We do this by
creating a chain of pairwise regression models. To extract the variation that a dataset
Dk shares with all other datasets, we model it as the output of a chain of regressors
going through all other datasets. Since we use every dataset in the chain, only variation
shared by all datasets will be carried forward. Next, we will describe the concept of
regression chain in more detail.

The regression chain that finds the shared variation for Dk starts from some dataset
Di and always ends in Dk , visiting each of the other K − 2 datasets D[K ]\{i,k } exactly
once. Let l be a random permutation of the integers [K] \ {i, k}. To extract the shared
variation in Dk we can now define the regression chain from Di to Dk as

D{[K ]}
Sk

= f lK−2→k ◦ f lK−3→lK−2 ◦ . . . ◦ f l1→l2 ◦ f i→l1 (Di ), (12)

where ◦ denotes function composition.
In the regression chain, we hence start from the dataset Di and use this to model

the dataset Dl1 using f i 7→l1 , which gives us the estimate D∗
l1

of Dl1 . Next, we use D∗
l1

to
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Figure 2: The regression chain of Equation (12).

estimate Dl2 using f l1 7→l2 and so on for each link in the regression chain. This is shown
in Figure 2.

The regression function f in Equation (12) is general, and can be any function that
allows a mapping from one multidimensional dataset to another, such as ordinary linear
regression, regression using support vector machines, random forests etc.

We next present two theorems that describe the behavior of the regression chain at
two extreme cases. Let f i 7→ j be a consistent regression function if it outputs a constant
value in case the distributions of the datasets Di and D j are independent, i.e., Pr(D j |

Di ) = Pr(D j ).

Theorem Full loss of shared variation. For a consistent regression function the regres-
sion chain of Equation (12) outputs a constant value if the distribution of any of the
datasets is independent of the other datasets.

Theorem Full transfer of shared variation. If all of the regression functions in the the
regression chain of Equation (12) have zero error, then the output of the chain also has
zero error.

Proof. The proofs of Theorems 3.5 and 3.5 follow directly from Equation (12) and the
definition of the consistent regression function. � �

In other words, if at least one of the datasets is totally unrelated to the rest of
the datasets, the chain breaks and outputs a constant value (Theorem 3.5). On the
other hand, if all of the datasets contain the same variation and this is captured by
the regression function, the shared variation will be equal to the datasets themselves
(Theorem 3.5). Intuitively, the chain of regressors suppresses the part of the signal that
is not shared by all of the datasets and maintains the shared part.

Equation (12) defines a cocoreg projection using a single regression chain. How-
ever, there are K − 1 ways to choose the starting dataset Di and (K − 2)! possible
permutations of the intermediary datasets between Di and Dk , giving (K − 1)! pos-
sible regression chains differing only by the order in which the datasets are used. A
natural option is to weigh all regression chains equally and use the average over all
possible chains as the final Dshared

k
. We will refer to this as the full cocoreg algorithm

and abbreviate it as ccr.
Due to the large number of chains the computational load of ccr grows fast with

the number of datasets K . To reduce the burden, we can sample only a subset of all
possible regression chains. In this sampling-based variant of cocoreg, which we refer
to as sampling cocoreg and abbreviate as ccrs, one chain is randomly chosen for each
starting dataset Di . In the experiments below we study the chain variability and show
that ccr and ccrs produce practically the same result.
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3.6 A regression chain example
To demonstrate the concepts explained above, we will next compute the output of co-
coreg in the case of three datasets (K = 3) with one signal in each dataset (d1 = d2 =

d3 = 1). All signals are considered to be centered. Using a generative model similar to
Equation 4 we get for the OLS regression coefficients:

Bi j =
σi

σ j
ri j , (13)

where Bi j is the regression coefficient j → i, σk is the standard deviation of the k:th
dataset and ri j the Pearson correlation coefficient between datasets i and j. For, e.g.,
dataset 3 there are two possible paths and the average of these would be

x̂3 =
1
2

(B32B21x1 + B31B12x2) (14)

=
1
2

(
r23r12

σ3

σ1
x1 + r13r12

σ3

σ2
x2

)
. (15)

We see that the result is a weighted average where datasets are both scaled to match
in variance and also weighted according to the product of correlation coefficients along
the path. Note that this weighting obeys the properties of the above theorems. In the
case of Theorem 3.5 if dataset k is independent of the others we have rik = 0 for all
i and since at least one rik is present in every path we get x̂3 = 0 (the mean). For
Theorem 3.5 it holds that all r j i = 1 which is equivalent to xi = αx j =

σi

σ j
x j and

therefore x̂3 = x3.

3.7 The cocoreg algorithm
The cocoreg algorithm that solves the shared variation extraction problem (Prob-
lem 3.4) using regression chains for a data collection with K datasets is as follows:

1. Center each column of D (zero mean).

2. Create the K2 − K mappings fDi 7→D j between the K datasets.

3. Form the regression chains (all datasets): K (K − 1)! for ccr and K (K − 1) for
ccrs.

4. Using the chains, estimate Dshared
i in each of the K datasets.

The output of cocoreg is in the same space as original data. A single shared vari-
ation projection can be created by applying PCA to the cocoreg projections. The first
principal component from this analysis can be used as a signal describing the average
shared variation in the data collection. To make sure that all datasets contribute equally,
the cocoreg projections are scaled to unit variance prior to the PCA computation.

The cocoreg algorithm is available in CRAN as the R package cocoreg.

10



3.8 Computational complexity of the cocoreg algorithm
The computational complexity of the cocoreg algorithm depends on the regression
method used. We here denote the time complexity of training the regression function
by Ttrain and the time complexity of applying the regression function by Tapply.

In both versions of the cocoreg algorithm, K2 − K regression functions must be
trained, which gives a complexity of O

(
Ttrain

(
K2 − K

))
.

In the full version of cocoreg there are (K−2)! possible chains between the datasets
Di and Dk , K − 1 datasets to start from and K datasets to end in. This means that the
regression function is applied K! times. The time complexity of ccr is thus

O
(
Ttrain

(
K2 − K

)
+ TapplyK!

)
.

For ccrs only one chain per starting dataset is used, resulting in the evaluation of K (K−
1) regression models. This results in a total complexity of

O
((

Ttrain + Tapply
) (

K2 − K
))
.

For linear regression, the training time complexity Ttrain = O(C2N ) where C is the
number of regressors and N is the number of observations. The time complexity of
applying the linear regression function is Tapply = O(CN ). A conservative estimate is
obtained when C = maxk (dk ) = dmax. The time complexity for the cocoreg algorithm
using linear regression is thus O(K2d2

maxN + dmaxNK!) = O(dmaxNK!) for ccr and
O(d2

maxNK2) for ccrs.
One noteworthy observation is that K is typically fairly small, in our applications

at most six. Hence even the full version is often computationally feasible despite the
K! term, and the sampling version is only slower than the base regression models by
a small factor K2. Applications with very large K would require different modeling
tools, but the value of extracting variation shared by all datasets may in any case be
questionable for such applications.

4 Experiments

4.1 Experimental Setup
We run cocoreg in R (R Core Team, 2014) with three alternative regression func-
tions: Ordinary Least-Squares linear regression (OLS) from the package stats (R
Core Team, 2014), Random Forests (RF) from the randomForest package (Liaw and
Wiener, 2002) and Support Vector Machines (SVM) from the e1071 package (Meyer
et al, 2014). The OLS versions of cocoreg are named ccr (full paths) and ccrs (path
sampling), the RF version is named ccr-rf and the SVM ccr-svm. All regressors were
used at their default settings.

We compare cocoreg against two alternatives representing the tools typically used
for finding shared variation. The primary comparison method is gfa as implemented in
the R-package CCAGFA (Klami et al, 2015; Virtanen et al, 2012), chosen to represent
methods that factorize data variation. The output of gfa is a set of latent variables and
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Data collection N K dk [min, max]

synth-* 100 4 [3, 3]
synth-nl 100 2 [1, 1]
commodity-prices 275 6 [4, 20]
commodity-prices-small 275 3 [2, 2]
WHO-risk 30 3 [3, 3]
ERP 384 4 [6, 6]

Table 1: Data collections and their properties. N is the number of observations, K is
the number of datasets in the collection and dk are the dimensions of the kth dataset.

associated weights to reconstruct the original signal. A projection similar to cocoreg
output can be created by reconstructing data using only those latent variables that are
active in all datasets.

We additionally compare against the Regularized Generalized Canonical Correla-
tion Analysis (rgcca) (Tenenhaus, 2011), which generalizes canonical correlation to
three or more datasets and hence represents a method that finds shared variation using
maximally dependent projections. rgcca finds the projections by maximizing the av-
erage correlation over the whole data collection. This criterion differs from that used
by cocoreg, since the averaging process includes also variation that is shared only by
a subset of the datasets. Hence rgcca should not be considered as a direct replacement
to cocoreg.

The output of rgcca contains several orthogonal projections per dataset ordered by
strength of correlation. We only use the first rgcca projection, i.e., the one associated
with the highest average correlation. To be able to compare the outputs of rgcca and
cocoregwe do an OLS regression from the first rgcca projection back onto the original
variables to show what rgcca has picked up as shared.

These methods are compared using seven artificial and three real data collections.
The data collections are described in detail below.

4.2 Data collections
The basic properties of the data collections used in the experiments are presented in
Table 1. Each data collection is divided into K datasets, and the datasets in turn consist
of dk signals.

Synthetic data The linear synthetic data collections were created by combining si-
nusoidal waves, a linear trend and independent Gaussian noise. Figure 3 shows the data
collection synth-base. For this data collection the high frequency sinusoid is missing
from the fourth dataset (D4) while other components are present in all datasets. The ob-
served data is a sum of “shared-by-all” , “shared-by-some” and independent Gaussian
noise.

The data collections synth-uds, synth-uvar and synth-puvar are derived from
synth-base. In synth-uds the fourth dataset is replaced by random Gaussian noise,
thus rendering it unrelated to the other datasets. In synth-uvar the first variable of
the fourth dataset is replaced by random Gaussian noise. In synth-puvar the last
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Figure 3: Structure of the synthetic data Shown are from left to right: variation
shared by all datasets, variation shared by a subset of the datasets, observed data D,
and the cocoreg projections. Note how the higher frequency sine wave is not common
to all of the datasets and that cocoreg projection resembles the “shared-by-all” column
as desired.

50 observations of variables 1 and 2 from the fourth dataset are replaced by Gaussian
noise.

The non-linear dataset synth-nl contains two datasets: a linear trend as the first
dataset and piecewise linear transformation of this trend as the second dataset. Hence
there is shared variation, but that can only be revealed by a non-linear mapping.

Commodity prices data This data consists of monthly commodity prices1 as listed
by the IMF Primary Commodity Prices web site.2 The dataset contains 63 differ-
ent price indices both at the industry level (e.g., “energy”) as well as at the product
level (e.g., “oil”). We divided the price indices into six groups according to industry:
food, food_meat, beverages, energy, metals and other_materials. Each group forms
one dataset with price index time series as the signals. Only months without missing
data were accepted for analysis yielding N = 275 observations.

WHO health risk factors data This data collection consists of health risk factor
time series from different countries from the last three decades3. Mean trend estimates
standardized by age were included for blood cholesterol, glucose and pressure as well
as body mass index spanning the years 1980–2009. Additionally, the alcohol con-

1http://www.imf.org/external/np/res/commod/External_Data.xls
2http://www.imf.org/external/np/res/commod/index.aspx
3http://apps.who.int/gho/data/node.main.A867?lang=en
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sumption per capita between the years 1990–2012 was included. These variables were
averaged within region and only years with complete observations were included in
analysis. Each region (Europe, America, Africa) formed one dataset with the risk fac-
tor time series as the signals.

ERP data Electroencephalographic (EEG) data from the HeadIT repository4 was
used to investigate the efficacy of cocoreg in event-related potential (ERP) analysis.
The data is from an auditory oddball paradigm epoched into segments starting 100 ms
prior to the deviant stimuli and ending 1500 ms after the stimuli. Four subjects were
included in the analysis. The final data collection consists of electrode wise ERP data
from randomly selected six electrodes, 67–76 trials per electrode depending on the
subject. Each subject forms one dataset with the electrodes as the signals.

4.3 Basic concepts
It is important for the interpretation of the cocoreg output that all variables in all
datasets have been centered prior to analysis forcing the mode of the amplitude distri-
bution to zero. As a consequence, if there is no shared variation between two variables,
the output of their (linear) regression is the mode of the dependent variable, i.e., zero.
Hence, if the output is zero for many successive samples there is no shared variation,
otherwise there is. This is clearly visible above in Figure 3, where the higher frequency
sinusoidal component visible in datasets D1-D3 is close to zero in the cocoreg projec-
tion. The lower frequency sine and the linear trend are shared between all datasets and
hence remain visible. Note also how positive and negative correlation are both valid
forms of shared variation and are not suppressed.

Figure 4 illustrates what happens if one dataset is completely independent of the
others. In this case no part of the variation is shared between all datasets and D{all}

S
is

zero for all signals, in all datasets. This is again an example of the situation described
earlier in Theorem 3.5: one dataset blocks the flow of information forcing the linear
regressor to a constant output.

Figure 5 illustrates that if only a single variable in one of the datasets is unrelated
to the other datasets (thin black signal in D4), then only the shared variation of that
variable becomes zero.

Figure 6 shows observed data and shared variation for two datasets from the commodity-prices
data collection. The general rising trend and the exact location of the 2008 financial
crisis are clearer in the shared variation projection. The cocoreg projection of the price
of lamb meat is a flat line near zero meaning that lamb price does not share much with
the other price indices.

Figure 7 shows the ERP data. Here cocoreg is able to extract weak but consistent
shared variation that is almost completely hidden in the original data. The amplitude of
the cocoreg projection is very small compared to original data, which reflects the fact
that the shared part accounts for only a small fraction of the total variation. The co-
coreg projection reveals a consistent response to the auditory stimulus around 200 ms

4http://headit-beta.ucsd.edu/studies/9d557882-a236-11e2-9420-0050563f2612
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Figure 4: Unrelated datasets Original (left) and shared variation (right) for
synth-uds, datasets D1 and D4. Note how shared variation projection (right column)
is zero for all signals in both datasets.
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Figure 5: Related datasets Original (left) and shared variation (right) for synth-uvar,
datasets D1 and D4. Note how shared variation projection is close to zero for the
unrelated signal in D4 (thin black curve, bottom row). The higher frequency sinusoid
in D1 is attenuated as the corresponding component is not shared by all datasets (top
row).
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Figure 6: Original (left) and shared variation (right) data from the commodity-prices
data collection. Only datasets with meat (top) and metal prices (bottom) are shown.
The general trend is similar in both datasets. The price of lamb (PLAMB_USD, top
row, bold orange) has least in common with the other industries.

and 400 ms, as identified, e.g., from the first principal component of the cocoreg projec-
tions. Shared variation in channels 86, 89 and 220 (shades of blue and green) behaves
consistently for all subjects, implying that the response must be due to the stimulus
paradigm. The locations on the scalp of these channels are also relatively close to-
gether supporting the assumption that the induced activity is also localized. In sum,
cocoreg is able to extract weak but consistent activity from a collection of signals by
exploiting the fact that all signals are responses to the same stimulus. We found that
the results are meaningful for ERP experts and help them to interpret the signals.

4.4 Chain variability
As explained above in Section 3.5, the shared variation is computed using several re-
gression chains. When there are K ≥ 4 datasets in a data collection there are multiple
possible chains starting at dataset Di and ending at dataset Dk . We have observed that
in many data collections the cocoreg projections are more similar to each other, when
the projections originate from the same dataset, i.e., when they share the same starting
dataset. For a target dataset Dk , let a chain group be the set of all chains originating
from the same dataset Di . Our observations suggest that the variability within chain
groups is smaller than the variability between chain groups. This empirical observa-
tion is tested by computing the sum-of-squares variability of the chains separately for
each dataset, variable and time point. As shown in Table 2 the relative proportion of
variability between chain groups is largest for the simplest datasets. For more complex
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datasets the proportion of within-chain group variability increases.
These results suggests that if computation of all possible chains is computation-

ally unfeasible due to their large number, a good choice is to sample all chain groups
uniformly in order to capture most of the chain variability. This is also the sampling
strategy used by cocoreg. To test the validity of the sampling approach, we compared
the variances explained (R2), see Table 2. The results show, that the difference between
ccr and ccrs is in all cases negligible, less than 1%.

Table 2: Comparison of ccr and ccrs for datasets with K > 3. On the left, the relative
proportion of variability between chain groups, where chains from Di → Dk form the
i:th chain group. Shown are the mean sum-of-squares variabilities for data collections.
For simpler datasets the total chain variability consists of mainly between-group vari-
ability, whereas for the more complex ones also chains within each chain group vary
considerably. On the right, the mean difference in variance explained is shown in per
mille units. The confidence interval (mean ± se) is computed over all variables of a
data collection. The difference in R2 -values is negligible for all practical purposes
(largest difference in R2 below 1%).

Data collection Proportion of variability mean(R2
ccr − R2

ccrs) in ‰
between chain groups in %

synth-base 96 -0.64 [-1.34, 0.06]
synth-uds 69 0.17 [-0.22, 0.56]
synth-uvar 93 0.23 [-0.27, 0.73]
synth-puvar 94 -0.21 [-0.89, 0.47]
commodity-prices 58 -1.62 [-2.87, -0.37]
ERP 54 -0.66 [-1.90, 0.59]

4.5 Comparison to similar methods

In this experiment the estimated shared variation D̂{all}
S

computed using the cocoreg
algorithm is compared to the respective projection of gfa and rgcca. We use syn-
thetic data, for which the true shared variation D{all}

S
is known. For gfa we reconstruct

the data using only those latent components that are active in all datasets (function
CCAGFA::GFAtrim) and use this as D̂{all}

S
. For rgcca we use the first projection of

each dataset, projected back to the original data space using OLS regression.
Figure 8 shows the mean rmse error between D̂{all}

S
and D{all}

S
for several datasets

and methods. For the linear data collections (four leftmost columns) ccr and gfa show
lowest reconstruction error. gfa has an edge when datasets share information but it fails
when one of the datasets is independent of the others. This has to do with the selec-
tion of the active components. If a small contribution is considered enough to make
the component active, many components will be selected and the absence of shared
variation may go unnoticed. cocoreg lacks this selection step; variation that survives
the regression chain is shared by all – no further decisions needed. The non-linear
regressors perform poorly as they are incompatible with the assumption of linear rela-
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Figure 8: Mean rmse error between true and estimated shared variation for different
synthetic data collections (columns) and methods. The reported mean rmse is the aver-
age over signal rmse values within each data collection. The vertical lines indicate the
standard error of mean over five repetitions.

tionships between datasets. Large error for rgcca underlines the fact that this method
is not suitable for finding the smallest common denominator of the datasets.

For the non-linear data collection synth-nl the non-linear cocoreg methods ccr-
svm and ccr-rf outperform gfa and the linear versions of cocoreg. rgcca has the lowest
error which, however, is just an artifact: since there is only one signal in each dataset
the output of rgcca is almost the same as input, which in this case that happens to be
the correct solution. The main purpose of synth-nl is to show that gfa cannot model
non-linear relationships between datasets, not even in a simple case.

To sum up, we were able to demonstrate that ccrs performs comparably to gfa for
most of our synthetic datasets, it outperforms gfa for non-linear data, and it outperforms
the rgcca method for all data collections. This happens because rgcca models also
variation that is specific for a subset of the datasets (not shared by all).

4.6 Computation times
Typical running times for the different algorithms and datasets are shown in Table 3.
The experiments were run using unoptimized R-code on a quad-core 2.6 GHz Intel i5
CPU with 8 Gb RAM.

The important observation is that ccrs, the fastest cocoreg variant, is computation-
ally very efficient, taking less than half a second for all collections. The full ccr variant
computing all the chains is also still very fast despite the O(K!) complexity since K is
small, and even the non-linear variants can be computed efficiently for most data sets,
often faster than the linear comparison method of gfa. The running times of ccr-svm
and ccr-rf depend on the parameters and implementation of the SVM and RF mod-
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els. rgcca is included in the table for completeness although it does not extract shared
variation in the same sense as cocoreg.

Table 3: Wall-clock running times in seconds. It can be seen that cocoreg is fast
and with linear regressors faster than gfa. The use of non-linear regressors naturally
increases the computation time which still remains acceptable.

method

dataset ccr ccrs ccr-svm ccr-rf gfa rgcca

synth-base 0.1 0.1 0.7 3.7 10.1 0.2
synth-uds 0.1 0.1 0.6 3.3 2.9 0.1
synth-uvar 0.2 0.1 0.5 3.4 20.5 0.2
synth-puvar 0.1 0.1 0.6 2.9 54.4 0.1
synth-nl 0.0 0.0 0.0 0.2 84.7 0.0
commodity-prices-small 0.1 0.1 0.3 3.2 30.8 0.1
WHO-risk 0.0 0.0 0.2 0.4 335.2 0.0
commodity-prices 7.1 0.4 187.0 523.5 62.9 0.4
ERP 0.3 0.3 7.5 43.0 20.4 0.3

5 Discussion
In this work we present the cocoreg algorithm for extracting shared variation between
datasets. The cocoreg algorithm can be viewed as an extension of RDA to the case
with more than two datasets. The number of datasets is unlimited and they can be
multivariate. The only assumption of the cocoreg algorithm is that it is meaningful
to compare the nth observation across all datasets. If the signals in the datasets are
time series this follows naturally if all signals are sampled at the same time scale.
The cocoreg algorithm finds the shared variation by applying independently learned
regression models in a chain-like fashion over all datasets. Since the chains always
include all datasets only the variation shared by all datasets is transferred through. The
extracted shared variation is conveniently in the same data space as the original data
which makes the interpretation straightforward.

A strength of the cocoreg algorithm is that it works with all types of regression.
The regression function can be freely chosen so that it is suited for the structure of the
data being investigated. In this paper we primarily focus on the use of ordinary least
squares linear regressors since they are computationally efficient and well-studied. It
is also possible to use regression functions such as, e.g., random forests and support
vector machines that can capture nonlinear relationships in the data. Even though the
main effects in the real data sets studied here were linear, we demonstrated on artifi-
cial data that random forest regressors outperform linear ones when the data has clear
nonlinearities.

The main principle in the cocoreg algorithm is the use of regression chains. The
algorithm can either use all possible regression chains or a sampled subset of them.
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The experiments in this paper demonstrate that sampling of the chains reduces com-
putational load without significantly changing the result. In general, the computational
complexity of the cocoreg algorithm depends on the regression functions used.

While methods for computing the shared variation between two datasets are abun-
dant, there are clearly fewer methods that generalize to problems with multiple datasets.
One such method is group factor analysis (gfa) (Klami et al, 2015), which we used as
the primary comparison method. It produces a detailed generative model for the data,
but is slow to compute and assumes the datasets to be multivariate Gaussians. Accord-
ingly gfa is best suited for situations where the data is roughly Gaussian, remains fixed
and the computation time is not an issue. The advantages of cocoreg are the opposite:
it is most useful in exploratory or online settings where computation time is crucial.
cocoreg is also easier to adapt to the specific needs of the data, such as nonlinearities
or frequent outliers, by simply changing the type of regressor used.

Using synthetic data we showed that cocoreg is able to find shared variation as
accurately as gfa, even though cocoreg does not make as strong assumptions on the
data. The experiments also show that a simple nonlinearity in the data is enough to tip
the scale in favor of cocoreg (non-linear version).
cocoreg is designed to find only variation common to all datasets, which is desir-

able in many applications. This helps to reduce overfitting as well, because we do not
try to model variance shared by arbitrary subsets of datasets. Regularized regressors
can also be used to further reduce overfitting.

The fact that cocoreg outputs the shared variation in the original data space can be
an advantage or a limitation, depending on the application. If a compressed view of
shared variation is needed, PCA can be applied as a post-processing step to the cocoreg
output.

One should bear in mind that the choice of regressor affects the cocoreg output
like the choice of model affects any modeling outcome. Selecting a good regressor
to use with cocoreg essentially boils down to the well-known bias–variance dilemma
of modeling (see, e.g., ch. 7.3 in Hastie et al (2003)). A good regressor should have
both low bias (i.e., fit well to training data) and low variance (i.e., generalize well to
unseen data). To give a simple example, consider a case with two univariate datasets
where D1 would be uniformly distributed and D2 = D3

1 + ε , where ε represents a
small random measurement error. On the one hand, when modeling D2 using D1 a
linear regressor would not fit well as it cannot model the nonlinear relationship between
the variables, therefore leading to underfitting and an incomplete reconstruction of the
shared variation. On the other hand, a polynomial of high degree would model the
noise as well which would cause overfitting. Naturally here the smallest reconstruction
error would be provided by a properly fitted third order polynomial.

In general the regressor should be flexible enough to learn the essential features of
the data but also simple enough to avoid overfitting. The problem of bias is mostly
a matter of domain knowledge, i.e., one should use regressors that are able to model
the structures of interest. The problem of overfitting can be addressed using standard
procedures such as studying generalization error with a separate validation dataset,
cross-validation procedures or by using robust models that penalize for model com-
plexity (chapters 7.2, 7.10, and 3.4 in Hastie et al (2003)). For example simple linear
regression is known to be sensitive to outliers and therefore robust regression meth-
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ods such as the least absolute shrinkage and selection operator (LASSO) regression
(Tibshirani (1996)) should be used if outliers are present. A conservative choice is to
favor simpler models over more complex ones to avoid making false discoveries. The
upside is that regression models are well studied thus increasing the chances of finding
an appropriate model to a wide variety of problems.

It should also be noticed that the cocoreg algorithm assumes the relation between
datasets to remain fixed through time. To give an example, if two datasets start by hav-
ing a perfect positive correlation but this relation suddenly turns into a perfect negative
one, the output of cocoreg might indicate no shared variation at all. This is unintuitive
as the correlation has been perfect the whole time. Problems of this kind can be reme-
died by applying cocoreg to shorter time windows for which the assumption of a fixed
relation approximately holds.

Summarizing, we have presented a novel algorithm for extracting shared variation
between multiple datasets. Our approach is generic and allows one to use different
kinds of regressors and the method can thus be tuned to fit the properties of the data.
When used with linear regressors the method scales better than alternative approaches.
The cocoreg algorithm is available as the R package cocoreg in CRAN.

Possible future work includes extending cocoreg to clustering, such that datasets
or signals with a similar shared variation are placed in clusters. The solution would re-
quire multiple runs of cocoreg which would still be fast at least using linear regressors.
Another avenue for further development is to make the algorithm capable of extracting
shared variation even if the datasets are shifted with respect to each other in time.
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