Variable Clustering in High-Dimensional Linear
Regression : The R Package clere

by Loic Yengo, Julien Jacques, Mickael Canouil and Christophe Biernacki
29 septembre 2015

Résumé

Dimension reduction is one of the biggest challenge in high-dimensional regression
models. We recently introduced a new methodology based on variable clustering as
a means to reduce dimensionality. We present here an R package that implements
this methodology. An overview of the package functionalities as well as examples to
run an analysis are described. Numerical experiments on real data were performed
to illustrate the good predictive performance of our method compared to standard
dimension reduction approaches.

1 Introduction

High dimensionality is increasingly ubiquitous in numerous scientific fields in-
cluding genetics, economics and physics. Reducing the dimensionality is a challenge
that most statistical methodologies must meet not only to remain interpretable but
also to achieve reliable predictions. In linear regression models, dimension reduction
techniques often refer to variable selection. Approaches for variable selection are im-
plemented in publicly available software, that involve the well-known R packages
glmnet [[11]] and spikeslab [[16]]. The R package glmnet implements the Elastic
net methodology [[29]], which is a generalization of both the LASSO [|25]] and the
ridge regression (RR) [[14]]. The R package spikeslab in turn, implements the Spike
and Slab methodology [[15]], which is a Bayesian approach for variable selection.

Dimension reduction can not however be restricted to variable selection. Indeed,
the field can be extended to include approaches which aim is to create surrogate
covariates that summarize the information carried in initial covariates. Since the
emblematic Principal Component Regression (PCR) [[17]], many of the other me-
thods spread in the recent literature. As specific examples, we may refer to the OS-
CAR methodology [[5]], or the PACS methodology [[24]] which is a generalization
of the latter approach. Those methods mainly proposed variables clustering within
a regression model as a way to reduce the dimensionality. Despite their theoretical
and practical appeal, implementations of those methods were often proposed only
through Matlab or R scripts, limiting thus the flexibility and the computational
efficiency of their use. The CLusterwise Effect REgression (CLERE) methodology

[[28]], was recently introduced as a novel methodology for simultaneous variables
clustering and regression. The CLERE methodology is based on the assumption that
each regression coefficient is an unobserved random variable sampled from a mixture
of Gaussian distributions with an arbitrary number g of components. In addition,
all components in the mixture are assumed to have different means (b1,...,b,) and
equal variances ~2.

In this paper, we present the R package clere which implements the CLERE
methodology. The core of the package is a C++ program interfaced with R using
R packages Repp [|9]] and ReppEigen [[2]]. The R package clere can be down-
loaded from the Comprehensive R Archive Network (CRAN) at http : //cran.r —
project.org/web/packages/clere/.

The outline of the present paper is the following. In the following section the
definition of the model is recalled and the strategy to estimate the model parame-
ter is presented. Afterwards, the main functionalities of the R package clere are
presented. Real data analyses are then presented, aiming at illustrating the good
predictive performances of CLERE compared to standard dimension reduction me-
thods. Finally, perspectives and further potential improvements of the package are
discussed in the last Section.

2 Model definition and notation

Our model is defined by the following hierarchical relationships :

Y; ~ N <ﬁ0 + Z?zl ﬁjl‘ij, 02)
Bjlz; ~ N (37— brzj, 7°) (1)

Z; = (Zjl,...,ng) NM(1,7T1,...,7T9),

where N is the normal distribution and M (1,71, ...,7,) the one-order multinomial
distribution. For an individual ¢ = 1,...,n, y; is the response and z;; is an observed
value for the j-th covariate. §; is the regression coefficient associated with the j-th
covariate (j = 1,...,p), which is assumed to follow a mixture of g Gaussians. The
variable z; indicates from which mixture component 3; is drawn (z;j; = 1 if 3; comes
from component k of the mixture, z;;, = 0 otherwise). Let’s note that model (1) can
be considered as a variable selection-like model by constraining the model parameter
b1 to be equal to 0. Indeed, assuming that one of the component is centered in zero
means that a cluster of regression coefficients have null expectation, and thus that
the corresponding variables are not significant for explaining the response variable.
This functionality is available in the package.

Let 8= (G1,.--,0p), y= (y1,---»yn), X = (245), Z = (2jx), b= (b1...by)" and
w = (m1,...,mg)". Moreover, logp(y|X; @) denotes the log-likelihood of model (1)
assessed for the parameter @ = (ﬁo, b, m, 02,72). Model (1) can be interpreted as a
Bayesian approach. However, to be fully Bayesian a prior distribution for parameter
0 would have been necessary. Instead, we proposed to estimate 6 by maximizing the
(marginal) log-likelihood, log p(y|X; @). This partially Bayesian approach is referred
to as Empirical Bayes (EB) [[6]]. Let Z be the set of p x g-matrices partitioning p

covariates into g groups. Those matrices are defined as

3! k such as zj, =1

Z = (ij)léjép,lékég €ZevVi=l.p {if k' # k then zj, = 0.

The log-likelihood log p(y|X;) is defined as

>/ pp(y,ﬁ,Z|X;e>dﬂ] .

logp(y|X;0) = log [
ZcZ

Since it requires integrating over Z with cardinality ¢, evaluating the likelihood
becomes rapidly computationally unaffordable.

Nonetheless, maximum likelihood estimation is still achievable using the expecta-
tion maximization (EM) algorithm [|8]]. The latter algorithm is an iterative method
which starts with an initial estimate of the parameter and updates this estimate
until convergence. Each iteration of the algorithm consists of two steps, denoted as
the F and the M steps. At each iteration d of the algorithm, the E step consists in
calculating the expectation of the log-likelihood of the complete data (observed +
unobserved) with respect to p(8, Z|y, X;0?), the conditional distribution of the
unobhserved data given the observed data, and the value of the parameter at the cur-
rent iteration, 8(4). This expectation, often denoted as Q(0]0?) is then maximized
with respect to @ at the M step.

In model (1), the £ step is analytically intractable. A broad literature devoted to
intractable E steps recommends the use of a stochastic approximation of Q(0|6(%)
through Monte Carlo (MC) simulations [|26], |[18]]. This approach is referred to as
the MCEM algorithm. Besides, mean-field-type approximations are also proposed
[[12], [19]]. Despite their computational appeal, the latter approximations do not ge-
nerally ensure convergence to the maximum likelihood [[13]]. Alternatively, the SEM
algorithm [[7]] was introduced as a stochastic version of the EM algorithm. In this
algorithm, the £ step is replaced with a simulation step (S step) that consists in gene-
rating a complete sample by simulating the unobserved data using p(3, Z|y, X; B(d))
providing thus a sample (8(®, Z(4)). Note that the Monte Carlo algorithm we use
is the Gibbs sampler. After the S step follows the M step which consists in maxi-
mizing p(,B(d), Z(d)|y, X; 0) with respect to 6. Alternating those two steps generate
a sequence (H(d)), which is a Markov chain whose stationary distribution (when it
exists) concentrates around a local maximum of the likelihood.

3 Estimation and model selection

3.1 Initialization

The two algorithms presented in this section are initialized using a primary esti-
mate ﬂj(o) of each ;. The latter can be chosen either at random, or obtained from
univariate regression coefficients or penalized approaches like LASSO and ridge re-
gression. For large SEM or MCEM chains, initialization is not a critical issue. The
choice of the initialization strategy is therefore made to speed up the convergence

of the chains. A Gaussian mixture model with g component(s) is then fitted using
B0 = (ﬂgo), cee ;(,0)) as observed data to produce starting values b©@, 7 and

72(0) respectively for parameters b, 7 and 7?. Using maximum a posteriori (MAP)

clustering, an initial partition 70 = (z](g)) € Z is obtained as

2

) 0
Vie{l,...,p}, Zj('k:): .
0 otherwise.

Bo and o2 are initialized using B8 as follows :
2

3.2 MCEM algorithm
3.2.1 The Sochastic Approximation of the E step

Suppose at iteration d of the algorithm that we have { (,3(17‘“, Z(Ld)) Yy (B(M7d), Z(M’d)) },
M samples from p (B, Zly, X; B(d)). Then the MC approximation of the F-step can
be written

M
Q (616) = E [logply. 8, 21%: 69)ly, X; 09 ~ 3 logp(y, 8, 2" |X; 6.
m:l

However, sampling from p (,6, Zly, X; O(d)) is not straightforward. However, we can
use a Gibbs sampling scheme to simulate unobserved data, taking advantage of
D (,3|Z,y,X; H(d)) and p (Z|,8,y,X; O(d)) from which it is easy to simulate. Those
distributions, respectively Gaussian and multinomial, are described below in Equa-
tions (2) and (3).
BZ,y, X;0D ~ N (pu 2<d>)
2(d) d 52(@ 2@ 171

= {XXjLWI} X! y_ﬁ(())lp)+ 2@ {XX+ Caly| ZbY

-1
> — o‘2<d) [X/X + Z o>)I :|

2(d)
(2)
and (note that p (Z]B,y, X; H(d)) does not depend on X nor y)
B; — b(d)>
o . p(d) (d) _ (
P (zjk =1/8;60) o T, exp 272 . (3)

In Equation (2), I, and 1, respectively stands for the identity matrix in dimen-
sion p and the vector of RP which all coordinates equal 1. To efficiently sample
from p (ﬁ|Z,y,X; H(d)) a preliminary singular vector decomposition of matrix X
is necesary. Once this decomposition is performed the overall complexity of the ap-
proximated E step is O [M(p* + pg)].

3.2.2 The M step

Using the M draws obtained by Gibbs sampling at iteration d, the M step is
straightforward as detailed in Equations (4) to (8). The overall computational com-
plexity of that step is O (Mpg).

M
@1 _ 1 (m,d)
T = — Z . 5 4:
(d+1) 1 = (md) 40mid)
+1 m, m,
by (d+1) Z szk B (5)
MPWk m=1 j=1
2@t 1 N I () [almd) (@412
= Mp)PP ILH (53' — b)) (6)
m=1j=1 k=1

i=1 J=1 m=1
(d+1) 1 L& d P d i
1 m,
o :TZ yi—ﬁ(()Jr)—Zﬁj(- Jay | (8)
m=1 i=1 j=1

3.3 SEM algorithm

In most situations, the SEM algorithm can be considered as a special case of
the MCEM algorithm [[7]], obtained by setting M = 1. In model (1), such a direct
derivation leads to an algorithm which computational complexity remains quadratic
with respect to p. To reduce that complexity, we propose a SEM algorithm based on
the integrated complete data likelihood p(y, Z|X; @) rather than p(y, 3, Z|X;0). A
closed form of p(y, Z|X; @) is available and given subsequently.

3.3.1 Closed form of the integrated complete data likelihood

Let the SVD decomposition of matrix X be USV”’, where U and V are res-
pectively n x n and p X p orthogonal matrices, and S is n X p rectangular diagonal
matrix which diagonal terms are the eigenvalues ()\%, . ,)\%) of matrix X X’. We
now define X* = U’X and y* = U’y. Let M be the n X (g + 1) matrix which first
column is made of 1’s and which additional columns are those of matrix X“Z. Let
also t = (Bp, b) € RUtD and R be a n x n diagonal matrix which i-th diagonal term
equal 02 + 72)\12. With these notations we can express the complete data likelihood
integrated over 3 as

n 1 & 1 1w
logp (y, 2| X;0) = = log (2m) — 5 D Jlog (02 +7°A7) — 5 (y" — Mt) R™' (y" — M)

=1

+ ZZZJk log 7. (9)

j=1 k=1

3.3.2 Simulation step

To sample from p(Z|y, X;0) we use a Gibbs sampling strategy based on the
conditional distributions p (zj]y, Z7,.X; 0), Z 77 denoting the set of cluster mem-
) . N

bership indicators for all covariates but the j-th. Let w™7 = (wf],...,w;]) ,

where w;j =y — fo — Zl# >0 zalby. The conditional distribution p(zj, =

1/Z77,y, X;0) can be written

2

p(zjk = 11Z77,y,X;0) o mexp —%k (w?)/R_lw}‘ + by (w_j)/R_lw}‘] , (10)
where @7 is the j-th column of X*. In the classical SEM algorithm, convergence to
p(Z|y, X;0) should be reached before updating 8. However, a valid inference can
still be ensured in settings when 6 is updated only after one or few Gibbs itera-
tions. These approaches are referred to as SEM-Gibbs algorithm [[4]]. The overall
computational complexity of the simulation step is O (npg), so linear with p and no
quadratic as obtained previously with MCEM.
To improve the mixing of the generated Markov chain, we start the simulation
step at each iteration by creating a random permutation of {1,...,p}. Then, ac-
cording to the order defined by that permutation, we update each z;;, using p(z;; =
11Z77,y, X;0).

3.3.3 Maximization step

logp (y, Z|X;0) corresponds to the marginal log-likelihood of a linear mixed
model [[23]] which can be written

y'=Mt+Av+e (11)

where v is an unobserved random vector such as v ~ N (O,ngn), e~N (0, 02In)
and XA = diag (A1,...,An). The estimation of the parameters of model (11) can be
performed using the EM algorithm, as in [[23]]. We adapt below the EM equations
defined in [[23]], using our notations. At iteration s of the internal EM algorithm,
we define R(®) = az(s)In + 72(3))\’)\. The detailed internal E and M steps are given
below :

Internal F step :

ON) |:(yu — Mt — A’U), (,yu — Mt® —)\’U) |yu:|

G <yu B Mt(s)),R(s)R(s) <yu B Mt(s)) L o2 540 En:
o) = E [v’v\yu])

/
_ 74(8) (,yu _ Mt(s)) RENAR®) <yu _ Mt(s)) 1 x ,yz(s) _ 74(8) Z
h®) = E[y" — Avly"] = Mt + Uz(s)Rfl(s) (y“ - Mt(s)) :

6

- 52(8) _,_,YQ(S)/\z'

Internal M step :

0_2(5+1) _ U(s)/n

g

72(5+1) _ U(s)/n

te+) — (MM M’

Given a non-negative user-specified threshold § and a maximum number N,
of iterations, Internal E and M steps are alternated until

|logp (y, Z|X; 0(5)) —logp (y, Z|X; O(SH)) | < dor s = Ny

The computational complexity of the M step is O (¢° + ngNyaz), thus not
involving p.

3.3.4 Attracting and absorbing states

— Absorbing states. The SEM algorithm described above defines a Markov
chain which stationnary distribution is concentrated around values of 6
corresponding to local maxima of the likelihood function. This chain has
absorbing states in values of @ such as 02 = 0 or 4% = 0. In fact, the in-
ternal M step reveals that updated values for o2 and 42 are proportional
to previous values of those parameters.

— Attracting states. We empirically observed that attraction around % = 0
was quite frequent when matrix X is centered and p > n. To reduce this
attraction, we advocate users of the package not to center the columns
when p, the number of variables is smaller than n, the sample size. A
similar behavior was also observed with the MCEM algorithm when p >
n and M < 5.

3.4 Model selection

Once the MLE 8 is calculated (using one or the other algorithm), the maximum
log-likelihood and the posterior clustering matrix E [Z ly, X; é\} are approximated

using MC simulations based on Equations (9) and (10). The approximated maximum
log-likelihood [, is then utilized to calculate AIC [[1]] and BIC [|22]] criteria for model
selection. In model (1), those criteria can be written as

BIC = —2[+ 2(g + 1) log(n) and AIC = —2] + 4(g + 1). (12)

An additional criterion for model selection, namely the ICL criterion [[3]] is also
implemented in the R package clere. The latter criterion can be written

P g
ICL = —20 + 2(g + 1) log(n Z Zﬂjk log(mx), (13)
Jj=1k=1

where 7, = E [zjk]y, X; 5}

3.5 Interpretation of the special group of variables as-
sociated with b; =0

The constraint b1 = 0 is mainly driven by an interpretation purpose. The meaning
of this group depends on both the total number g of groups and the estimated value
of parameter v2. In fact, when ¢ > 1 and ~? is small, covariates assigned to that
group are likely less relevant to explain the response. Determining whether 2 is
small enough is not straightforward. However, when this property holds, we may
expect the groups of covariates to be separated. This would for example translate
in the posterior probabilities 7;; being larger than 0.7. In addition to the benefit
in interpretation, the constraint by = 0, reduces the number of parameters to be
estimated and consequently the variance of the predictions performed using the
model.

4 Package functionalities

The R package clere mainly implements a function for parameter estimation
and model selection : the function fit.clere(). Four additional functions for graphical
representation plot() (or ggPlot()), summarizing the results summary(), for getting
the predicted clusters of variables clusters() and for making predictions from new
design matrices predict() are also implemented in the package.

Examples of calls for the functions presented in this section are given in the next
Section.

4.1 The main function fit.clere()

The main function fit.clere() has only three mandatory arguments : the vector of
response y (size n), the matrix of explanatory variable x (size n x p) and the number
g of groups of regression coefficients which is expected. The optional parameter ana-
lysis, when it takes the value aic, bic or icl, allows to test all the possible number of
groups between 1 and g. The choice between the two proposed algorithms is possible
thanks to the parameter algorithm, but we encourage the users to use the default
value, the SEM algorithm, which generally overperforms the MCEM algorithm (see
the first experiment of the next section).

Several other parameters allow to tune the different numbers of iterations of the
estimation algorithm. Generally, higher are these parameters values, better is the
quality of the estimation but higher is the computing time. What we advice is to use
the default values, and to graphically check the quality of the estimation with plots
as in Figure 1 : if the values of the model parameters are quite stable for a sufficient
large part of the iterations, it is ok. If the stability is not reached sufficiently early
before the end of the iterations, higher numbers of iterations should be chosen.

Finally, among the remaining parameters (the complete list can be obtained with
help(fit.clere)), two are especially important : parallel allows to run parallel compu-
tations (if compatible with the user’s computer) and sparse allows to impose that
one of the regression parameter is equal to 0 and thus to introduce a cluster of not

significant explanatory variables.

4.2 Secondary functions summary(), plot(), ggPlot(), clus-
ters() and predict()

The summary() function prints an overview of the estimated parameters and
returns the estimated likelihood and information based model selection criteria (AIC,
BIC and ICL).

The call of functions plot() and ggPlot() are similar to the one of function sum-
mary(). The latter function produces graphs such as ones presented in Figure 1.
The function ggPlot() requires a prior installation of the R package ggplot2 [[27]].
However, there is no dependencies with the latter package since the R package clere
can be installed without ggplot2. When ggplot2 is not installed, the user can still
make use of the function plot().

The function clusters(), takes one argument of class Clere and a threshold argu-
ment. This function assigns each variable to the group which associated conditional
probability of membership is larger than the given threshold. When threshold =
NULL, the maximum a posteriori (MAP) strategy is used to infer the clusters.

The predict() function has two arguments, being a clere and a design matrix
X pew- Using that new design matrix, the predict() function returns an approximation

of E [Xnewmy,x; é]

5 Numerical experiments on real datasets

This section presents two sets of numerical experiments. The first set of experi-
ments aims at comparing the MCEM and SEM algorithms in terms of computational
time and estimation or prediction accuracy. The second set of experiments aimed at
comparing CLERE to standard dimension reduction techniques. The latter compa-
rison is performed on both simulated and real data.

5.1 SEM algorithm versus MCEM algorithm

5.1.1 Description of the simulation study

In this section, a comparison between the SEM algorithm and the MCEM algo-
rithm is performed. This comparison is performed using the four following perfor-
mance indicators :

1. Computational time (CT) to run a pre-defined number of SEM/MCEM itera-
tions. This number was set to 2,000 in this simulation study.

2. Mean squared estimation error (MSEE) defined as
MSEE, =E [(9 —0.)(6—8.)],
where a € {"SEM","MCEM"} and 0, is an estimated value for parameter @

obtained with algorithm a. Since 0 is only known up to a permutation of the
group labels, we chose the permutation leading to the smallest MSEE value.

0.4- 0.75 -
-(n 03 = -w
- -5'0 50
2 o
—o02- [
0.1-
l 0.25 -
0.0 -
1 1 1 1 1 1 1 1
0 500 1000 1500 2000 0 500 1000 1500 2000
SEM iterations SEM iterations
o~ 0.75 - 1.0-
<ch — gammaz2
= — sigmaz2
S o
2 0.50 - g 0.5 -
5 J (3
o k=
©
£0.25-
a A AR
(7]
0.00 - 1
1 1 1 1 1 1 1 1
0 500 1000 1500 2000 0 500 1000 1500 2000
SEM iterations SEM iterations

F1G. 1 — Values of the model parameters in view of SEM algorithm iterations. The vertical
green line in each of the four plots, represents the number nBurn of iterations discarded
before calculating maximum likelihood estimates.

3. Mean squared prediction error (MSPE) defined as

MSPE,=E |:(y'v _ X’Ué\a)/(yv _ X’Ué\a)] ,

10

where y” and XV are respectively a vector of responses and a design matrix
from a validation dataset.

4. Maximum log-likelihood (ML) reached. This quantity was approximated using
1,000 samples from p(Z|y; 0).

Three versions of the MCEM algorithm were proposed for comparison with the SEM
algorithm, depending on the number M (or nsamp) of Gibbs iterations used to ap-
proximate the F step. That number was varied between 5, 25 and 125. Those versions
were respectively denoted MCEM;5, MCEMs5 and MCEM;j95. The comparison was
performed using 200 simulated datasets. Each training dataset consisted of n = 25
individuals and p = 50 variables. Validation datasets used to calculate MSPE consis-
ted of 1,000 individuals each. All covariates were simulated independently according
to the standard Gaussian distribution :

(i,) zij ~ N(0,1).

Both training and validation datasets were simulated according to model (1) using
Bo=0,b=(0,3,15)", ® = (0.64,0.20,0.16)", 0> = 1 and 4% = 0. This is equivalent
to simulate data according to the standard linear regression model defined by :

32 42 50
yZNN ZOX{IIij—FZSXQZij—I-ZlE)XIU,l
j=1

j=33 j=43

All algorithms were run using 10 different random starting points. Estimates yielding
the largest likelihood were then used for the comparison.

5.1.2 Results of the comparison

Table 1 summarizes the results of the comparison between the algorithms. The
SEM algorithm ran faster than its competitors in 74.5% of the simulations. The
gain in computational time yielded by SEM was between 1.3-fold (when compared
to MCEM35) and 22.2-fold (when compared to MCEM;95). This improvement was
accompanied with a good accuracy in parameter estimation (second best median
MSEE : 0.258 ; smallest MSEE in 25.5% of the simulations) and a smaller prediction
error (smallest median MSPE : 1.237; smallest MSPE in 48.5% of the simulations).
Those good performances were mainly explained by the fact that the SEM algorithm
most of the time reached a better likelihood than the other algorithms.

5.2 Comparison with other methods
5.2.1 Description of the methods

In this section, we compare our model to standard dimension reduction ap-
proaches in terms of MSPE. Although a more detailed comparison was proposed
in [|28]], we propose here a quick illustration of the relative predictive performance
of our model. The comparison is achieved using data simulated according to the

11

% of times Median

Performance indicators Algorithms the algorithm was best (Std. Err.)
CT (seconds) SEM 74.50 1.60 (0.23)
MCEM; 25.50 2.04 (0.13)

MCEMs 0 7.63 (0.46)

MCEM 25 0 35.6 (2.22)

MSEE SEM 25.5 0.258 (0.19)
MCEM; 33.0 1.019 (1 0.97)

MCEMa; 22.5 0.257 (0.21)

MCEM 25 190 0.295 (0.25)

MSPE SEM 48.5 1.237 (0.16)
MCEM; 20.5 1.523 (10.49)

MCEMas 190 1.258 (0.19)

MCEM 25 120 1.272(0.21)

True parameter — 1.159 (0.08)

ML SEM 59.5 -78.60 (3.60)
MCEM; 105 -79.98 (5.78)

MCEMs 18.0 -79.00 (3.84)

MCEM 25 12.0 -79.47 (4.20)

(2.37)

True parameter

-77.60 (2.37

TAB. 1 — Performance indicators used to compare SEM and MCEM algorithms. Com-
putational Time (CT) was measured on a Intel(R) Xeon(R) CPU ET7- 4870 @ 2.40GHz
processor. The best algorithm is defined as the one that either reached the largest log-
likelihood (ML) or the lowest CT, Mean Squared Prediction Error (MSPE) and Mean
Squared Estimation Error (MSEE). The best algorithm for each criterion is highlighted

in bold font.

scenario described above in Section 5.1. The methods selected for comparison are
the ridge regression [[14]], the elastic net [[29]], the LASSO [[25]], PACS [|24]], the
method of Park and colleagues [|20]] (subsequently denoted AVG) and the spike and
slab model [[15]] (subsequently denoted SS). The first three methods are implemen-
ted in the freely available R package glmnet. The latter package was used with
default options regarding the choice of tuning parameters.
PACS methodology proposes to estimate the regression coefficients by solving a pe-
nalized least squares problem. It imposes a constraint on 3 that is a weighted com-
bination of the L' norm and the pairwise L> norm. Upper-bounding the pairwise
L*> norm enforces the covariates to have close coefficients. When the constraint is
strong enough, closeness translates into equality achieving thus a grouping property.

12

For PACS, no software was available. Only an R script was released on Bondell’s
webpage!.

Since this R script was running very slowly, we decided to reimplement it in C++
and observed a 30-fold speed-up of computational time. Similarly to Bondell’s R
script, our implementation uses two parameters lambda and betawt. In [[24]], the
authors suggest assigning betawt with the coefficients obtained from a ridge regres-
sion model after the tuning parameter was selected using AIC. In this simulation
study we used the same strategy ; however the ridge parameter was selected via 5-fold
cross validation. 5-fold CV was preferred to AIC since selecting the ridge parame-
ter using AIC always led to estimated coefficients equal to zero. Once betawt was
selected, lambda was chosen via 5-fold cross validation among the following values :
0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200 and 500. All other default
parameters of their script were unchanged.

The AVG method is a two-step approach. The first step uses hierarchical clustering
of covariates to create surrogate covariates by averaging the variables within each
group. Those new predictors are afterwards included in a linear regression model,
replacing the primary variables. A variable selection algorithm is then applied to
select the most predictive groups of covariates. To implement this method, we follo-
wed the algorithm described in [[20]] and programmed it in R.

The spike and slab model is a Bayesian approach for variable selection. It is based on
the assumption that the regression coefficients are distributed according to a mix-
ture of two centered Gaussian distributions with different variances. One component
of the mixture (the spike) is chosen to have a small variance, while the other com-
ponent (the slab) is allowed to have a large variance. Variables assigned to the spike
are dropped from the model. We used the R package spikeslab to run the spike and
slab models. Especially, we used the function spikeslab from that package to detect
influential variables. The number of iterations used to run the function spikeslab
was 2,000 (1,000 discarded).

When running fit.clere(), the number nItEM of SEM iterations was set to 2,000.
The number g of groups for CLERE was chosen between 1 and 5 using AIC (option
analysis="aic"). Two versions of CLERE were considered : the one with all para-
meters estimated and the one with by set to 0. The latter approach is subsequently
denoted CLERE, (option sparse=TRUE).

5.2.2 Results of the comparison

Figure 2, summarizes the comparison between the methods. In this simulated
scenario, CLERE outperformed the other methods in terms of prediction error. Those
good performances were improved when parameter by was set to 0. CLERE was also
the most parcimonous approach with an averaged number of estimated parameters
equal to 8.5 (6.7 when by = 0). The second best approach was PACS which also led
to parcimonous models. variable selection approaches as whole yielded the largest
prediction error in this simulation.

Lattp : / Jwwwd.stat.nesu.edu/ bondell /So ftware/ PACS/PACS.R.r

13

—— CLEREO (6.7 +/-0.1)

CLERE (8.5 +/-0.1) o ‘DIIID
PACS (17.3+/-0.5)
Elastic net (23.4 +/-0.5)
LASSO (17.7 +/-0.5) OIIIDO
AVG (18 +/-0.4)
Ridge (50 +/-0)

Spike and slab (2.3 +/-0.1) I ______________ -I o

I _________ ————~|ooo@o o

|~ ——~| oo o o O 0 @00 EOW@ OO COM O o o o
|~I——+.lmoom o o0 000 0O o

I I I I I I

1 5 10 50 100 500

Mean Squared Prediction Error

Fig. 2 — Comparison between CLERE and some standard dimension reduction ap-
proaches. The number of estimated parameters (+ /- standard error) is given with the
name of the method to be compared.

5.3 Real datasets analysis

5.3.1 Description of the datasets

We used in this section the real datasets Prostate and eyedata from the R pa-
ckages lasso2 and flare respectively.

The Prostate dataset comes from a study that examined the correlation between
the level of prostate specific antigen and a number of clinical measures in n = 97
men who were about to receive a radical prostatectomy. This dataset was used in
multiple publications including [[25]]. We used the prostate specific antigen (variable
Ipsa) as response variable and the p = 8 other measurements as covariates.

The eyedata dataset is extracted from the published study of [[21]]. This dataset
consists in gene expression levels measured at p = 200 probes in n = 120 rats.
The response variable utilized was the expression of the TRIM32 gene which is a
biomarker of the Bardet-Bidel Syndrome (BBS).

5.3.2 Other packages for high-dimensional linear regression

Those two datasets was utilized to compare CLERE to the following methods :
variable selection using LARS algorithm [[10]], the ridge regression [[14]], the elastic
net [[29]], the LASSO [|25]], PACS |[|24]], the method of Park and colleagues [|20]]
(subsequently denoted by AVG) and the spike and slab model [[15]] (subsequently
denoted by SS).

The first three methods are implemented in the freely available R package glm-

net. This package was used with default options regarding the choice of tuning
parameters.
PACS methodology proposes to estimate the regression coefficients by solving a pe-
nalized least squares problem. It imposes a constraint on 3 that is a weighted combi-
nation of the L' norm and the pairwise L> norm. Upper-bounding the pairwise L>
norm enforces the covariates to have close coefficients. When the constraint is strong
enough, closeness translates into equality achieving thus a grouping property. For
PACS, no software was available. Only an R script was released on Bondell’s web-
page (http : //wwwd.stat.ncsu.edu/ bondell/Software/ PACS/PACS.R.r). Since
this R script was running very slowly, we decided to reimplement it in C++ and
observed a 30-fold speed-up of computational time. Similarly to Bondell’s R script,
our implementation uses two parameters lambda and betawt. In [[24]], the authors
suggest assigning betawt with the coefficients obtained from a ridge regression mo-
del after the tuning parameter was selected using AIC. In this simulation study we
used the same strategy ; however the ridge parameter was selected via 5-fold cross
validation (CV). 5-fold CV was preferred to AIC since selecting the ridge parame-
ter using AIC always led to estimated coefficients equal to zero. Once betawt was
selected, lambda was chosen via 5-fold cross validation among the following values :
0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200 and 500. All other default
parameters of their script were unchanged.

The AVG method is a two-step approach. The first step uses hierarchical clus-
tering of covariates to create surrogate covariates by averaging the variables within
each group. Those new predictors are afterwards included in a linear regression mo-
del, replacing the primary variables. A variable selection algorithm is then applied
to select the most predictive groups of covariates. To implement this method, we
followed the algorithm described in [[20]] and programmed it in R.

The spike and slab model is a Bayesian approach for variable selection. It is
based on the assumption that the regression coefficients are distributed according

15

to a mixture of two centered Gaussian distributions with different variances. One
component of the mixture (the spike) is chosen to have a small variance, while the
other component (the slab) is allowed to have a large variance. Variables assigned
to the spike are dropped from the model. We used the R package spikeslab to run
the spike and slab models. Especially, we used the function spikeslab from that
package to detect influential variables. The number of iterations used to run the
function spikeslab was 2,000 (1,000 discarded).

When running fit.clere(), the number nIltEM of SEM iterations was set to 2,000.
The number g of groups for CLERE was chosen between 1 and 5 using AIC (option
analysis="aic"). Two versions of CLERE were considered : the one with all para-
meters estimated and the one with by set to 0. The latter approach is subsequently
denoted by CLERE((option sparse=TRUE).

All the methods were compared in term of out-of-sample prediction error esti-
mated using cross-validation (CV). 100 CV statistics were calculated by randomly
splitting each dataset into training (80% of the sample size) and validation (20% of
the sample size) sets. Those CV statistics were then averaged and compared across
the methods in Table 2.

5.3.3 Running the analysis

Before presenting the results of the comparison between CLERE and its compe-
titors, we illustrate the command lines to run the analysis of the Prostate dataset.
The dataset is loaded by typing :

R> library(lasso2)

R> data(Prostate)

R> y <- Prostate[,"lpsa"]

R> x <- as.matrix(Prostate[,-which(colnames(Prostate)=="1psa")])

Possible training (xt and yt) and validation (xv and yv) sets are generated as follows :
R> itraining <- 1:(0.8*nrow(x))

R> xt <- x[itraining,] ; yt <- y[itraining]

R> xv <- x[-itraining,] ; yv <- y[-itraining]

The fit.clere() function is run using AIC criterion to select the number of groups
between 1 and 5. To lessen the impact of local minima in the model selection, 5
random starting points are used. This can be implemented as written below

R> mod <- fit.clere(y=yt,x=xt,g=5,analysis="aic",parallel=TRUE,

+ nstart=>5, sparse=TRUE,nItEM=2000,nBurn=1000,

+ nItMC=10,dp=5,nsamp=1000)

R> summary(mod)

Model object 2 groups of variables (Selected using AIC criterion)

16

Estimated parameters using SEM algorithm are

intercept = -0.1395

b = 0.0000 0.4737
pi = 0.7188 0.2812
sigma2 = 0.3951

gamma?2 = 4.181e-08
Log-likelihood = -78.28
Entropy = 0.5152
ATIC = 168.57
BIC = 182.63
ICL = 183.15

R> plot(mod)

Running the command ggPlot(mod) generates the plot given in Figure 1. We can
also access the cluster membership by running the command clusters(). For example,
running the command clusters(mod,threshold=0.7) yields

R> clusters(mod,thresold=0.7)
lcavol lweight age lbph svi lcp gleason pggéb
2 2 1 1 1 1 1 1

In the example above 2 variables, being the cancer volume (Icavol) and the prostate
weight (lweight), were assigned to group 2 (by = 0.4737). The other 6 variables were
assigned to group 1 (by = 0). Posterior probabilities of membership are available
through the slot P in object of class Clere.

R> mod@P
Group 1 Group 2
lcavol 0.000 1.000

lweight 0.000 1.000
age 1.000 0.000
1bph 1.000 0.000
svi 0.789 0.211
lcp 1.000 0.000
gleason 1.000 0.000
pggib 1.000 0.000

The covariates were respectively assigned to their group with a prob/aibility larger
than 0.7. Moreover, given that parameter 42 had very small value (y2 = 4.181 x
107®), we can argue that cancer volume and prostate weight are the only relevant
explanatory covariates. To assess the prediction error associated with the model we
can run the command predict() as follows :

R> error <- mean((yv - predict(mod,xv))~2)
R> error
[1] 1.550407

17

5.3.4 Results of the analysis

Table 2 summarizes the prediction errors and the number of parameters obtained
for all the methods. CLERE(had the lowest prediction error in the analysis of the
Prostate dataset and the second best performance with the eyedata dataset. The
AVG method was also very competitive compared to variable selection approaches
stressing thus the relevance of creating groups of variables to reduce the dimen-
sionality. It is worth noting that in both datasets, imposing the constraint b; = 0
improved the predictive performance of CLERE.

In the Prostate dataset, CLERE robustly identified two groups of variables re-
presenting influential (b2 > 0) and not relevant variables (by = 0). In the eyedata
dataset in turn, AIC led to select only one group of variables. However, this did not
lessened the predictive performance of the model since CLEREy was second best
after AVG, while needing significantly less parameters. PACS low performed in both
datasets. The Elastic net showed good predictive performances compared to the va-
riable selection methods like LASSO or spike and slab model. Ridge regression and
Elastic net had comparable results in both datasets.

100x Averaged CV-statistic Number of parameters

Dataset Methods (Std. Error) (Std. Error)
Prostate LASSO 59.58 (3.46) 5.75 (0.29)
RIDGE 57.58 (3.36) 8.00 (0.00)
Elastic net 57.37 (3.39) 8.00 (0.00)
CLERE 58.18 (3.13) 6.00 (0.00)
CLERE, 55.48 (3.46) 6.00 (0.00)
AVG 60.59 (3.58) 6.30 (0.16)
PACS 67.08 (5.51) 5.15 (0.30)
Spike and slab 57.76 (3.21) 5.70 (0.28)
eyedata LASSO 0.878 (0.05) 27 (1.69)
RIDGE 0.854 (0.05) 200 (0.00)
Elastic net 0.851 (0.05) 200 (0.00)
CLERE 0.877 (0.06) 4 (0.00)
CLERE, 0.839 (0.05) 4.12 (0.07)
AVG 0.811 (0.06) 17.2 (0.98)
PACS 2.019 (0.023) 1.38 (0.07)
Spike and slab 0.951 (0.07) 11.5 (0.55)

TAB. 2 — Real data analysis. Out-of-sample prediction error (averaged CV-statistic) was
estimated using cross-validation in 100 splitted datasets. The number of parameters re-
ported for CLERE/CLERE, was selected using AIC.

18

6

Conclusions

We presented in this paper the R package clere. This package implements two

efficient algorithms for fitting the CLusterwise Effect REgression model : the MCEM
and the SEM algorithms. If the MCEM algorithm is to be preferred when p < n,
the SEM algorithm is more efficient for high dimensional datasets (n < p). Another
important feature for model interpretation is proposed by constraining the model
parameter by to equal 0, which leads to carry out variable selection. Such constraint
may also lead to a reduced prediction error. We illustrated on a real dataset, how to
run an analysis using a detailed R script. Our model can easily be extended to the
analysis of binary responses. This extension will be proposed in forthcoming version
of the package.

Références

1]
2]
3]

[4]

[5]

[6]
7]

8]

19]
[10]

[11]

H. Akaike. A new look at the statistical model identification. Automatic Control,
IEEE Transactions on, 19(6) :716-723, 1974.

D. Bates and D. Eddelbuettel. Fast and elegant numerical linear algebra using
the rcppeigen package. Journal of Statistical Software, 52(5) :1-24, 2013.

C. Biernacki, G. Celeux, and G. Goavert. Assessing a Mixture Model for Cluste-
ring with the Integrated Completed Likelihood. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(7) :719-725, 2000.

C. Biernacki and J. Jacques. A generative model for rank data based on inser-
tion sort algorithm. Computational Statistics and Data Analysis, 58 :162-176,
2013.

H. D. Bondell and B. J. Reich. Simultaneous Regression Shrinkage, Variable
Selection, and Supervised Clustering of Predictors with OSCAR. Biometrics,
64 :115-123, 2008.

G. Casella. An Introduction to Empirical Bayes Data Analysis. The American
Statistician, 39(2) :83-87, 1985.

G. Celeux, D. Chauveau, and J. Diebolt. Some Stochastic versions of the EM
Algorithm. Journal of Statistical Computation and Simulation, 55 :287-314,
1996.

A. P. Dempster, M. N. Laird, and D. B. Rubin. Maximum Likelihood from In-
complete Data via the EM Algorithm. Journal of the Royal Statistical Society :
Series B (Statistical Methodology), 39 :1-22, 1977.

D. Eddelbuettel and R. Francois. Rcpp : Seamless R and C++ Integration.
Journal of Statistical Software, 40(8) :1-18, 2011.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression.
Annals of Statistics, 32 :407-499, 2004.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization Paths for Generalized
Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1) :1-
22, 2010.

19

[12]

[13]

[14]
[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

G. Govaert and M. Nadif. Block clustering with Bernoulli mixture models :
Comparison of different approaches. Computational Statistics and Data analy-
sis, 52 :3233-3245, 2008.

A. Gunawardana and W. Byrne. Convergence theorems for generalized alterna-
ting minimization procedures. Journal of Machine Learning Research, 6 :2049—
2073, 2005.

A. E. Hoerl and W. Kennard. Ridge Regression : Biased Estimation for Nonor-
thogonal Problems. Technometrics, 12 :55-67, 1970.

H. Ishwaran and J. Sunil Rao. Spike and slab variable selection : frequentist
and Bayesian strategies. Annals of Statistics, 33(2) :730-773, 2005.

H. Ishwaran, J.S. Rao, and U.B. Kogalur. spikeslab : Prediction and variable
selection using spike and slab regression, 2013. R package version 1.1.5.

I. T. Jolliffe. A Note on the Use of Principal Components in Regression. Applied
Statistics, 31(3) :300+, 1982.

R. A. Levine and G. Casella. Implementations of the Monte Carlo EM Al-
gorithm. Journal of Computational and Graphical Statistics, 10(3) :422-439,
2001.

M. Mariadassou, S. Robin, and C. Vacher. Uncovering Latent Structure in
Valued Graphs : a Variational Approach. The Annals of Applied Statistics,
4(2) :715-742, 2010.

M. Y. Park, T. Hastie, and R. Tibshirani. Averaged gene expressions for re-
gression. Biostatistics, 8 :212-227, 2007.

T.E. Scheetz. Regulation of gene expression in the mammalian eye and its
relevance to eye disease. Proceedings of the National Academy of Sciences,
103(39) :14429, 2006.

G. Schwarz. Estimating the Dimension of a Model. Annals of Statistics, 6 :461—
464, 1978.

S.R. Searle, G. Casella, and C.E. McCulloch. Variance components. Wiley series
in probability and mathematical statistics : Applied probability and statistics.
Wiley, 1992.

D. B. Sharma, H. D. Bondell, and H. H. Zhang. Consistent Group Identification
and Variable Selection in Regression with Correlated Predictors. Journal of
Computational and Graphical Statistics., 22(2) :319-340, 2013.

R. Tibshirani. Regression Shrinkage and Selection Via the Lasso. Journal of
the Royal Statistical Society, Series B, 58 :267-288, 1996.

C. G. Wei and M.A. Tanner. A Monte Carlo Implementation of the EM Al-
gorithm and the Poor Man’s Data Augmentation Algorithms. Journal of the
American Statistical Association, 85 :699-704, 1990.

H. Wickham. ggplot2 : elegant graphics for data analysis. Springer New York,
2009.
L. Yengo, J. Jacques, and C. Biernacki. Variable clustering in high dimensional

linear regression models. Journal de la SociAQtAQ) FranA§aise de Statistique.
In Press., 155(2) :38-56, 2014.

20

[29] H. Zou and T. Hastie. Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society, Series B, 67 :301-320, 2005.

21

