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1. Introduction

The method presented here identifies associations between amino acid changes in “interes-
ting”positions in an alignment (taking into account several amino acid properties) with some
meta information (e. g. phenotypic data). The proposed method has general applicability to
other organisms, different amino acid properties and different meta data. As a motivating
example, we applied it to a set of 209 bacterial strains belonging to several genera (72 genera,
117 species) with the aim of finding amino acid changes that might be correlated with the
pathogenicity of the bacteria. Several studies have shown that the pathogenicity character of
different bacterial strains is determined by changes in amino acids causing changes in protein
structure, and hence function (Sokurenko et al. (1998); Conenello et al. (2007); Marjuki et al.
(2010)). Thus, the pathogenicity character can also be conferred by specific genetic variations
having an effect on protein function and not solely by the presence or absence of virulence
factor genes as previously assumed (Falkow (1997)). The proposed screening method identify
interesting sites in an alignment (which might confer the pathogenicity character to some
bacteria) through the application of linear mixed models on different amino acid properties
in each of those columns. Amino acid properties can be grouped according to an enourmous
number of different characteristics, such as size, polarity, alpha helix or beta sheet propensity.
However, a big number of different properties are highly correlated (Kawashima et al., 2008),
clustering in only six groups: α and turn propensities (A), β propensity (B), composition
(C), hydrophobicity (H), physicochemical (P), and other properties (O) (Tomii and Kanehi-
sa, 1996). Substitutions severely changing the value of some key properties (e. g. from polar
to non-polar) tend to have a stronger effect on the tertiary structure, and probably in the
function of the protein. If those substitutions are associated with the label (meta data) they
define an interesting alignment column, which might be responsible for pathogenicity. The
amino acid properties considered depend on the specific problem as will be discussed later.
Assuming that after a first fast filtering (to reduce the computational time) we keep only the
columns of potential interest, we will apply a linear mixed model on each of these columns.
The phylogenetic mixed model of Lynch (PMM) partitions each phenotypic values into three
components:

~Y = X~β + Z~a+ ~e, (1)

where ~Y is the vector of observations (the dependent variable), ~β is the vector of fixed effects,
~a is the vector of phylogenetic heritable additive effects and ~e is the vector of independent and
identically distributed residual errors. X is the incidence matrix that associates effects with
observations. The number of columns of X are the number of fixed effect levels one wants to
consider. Z is the matrix that associates additive effects with observations. Both of them, X
and Z, are matrices relating the observations ~Y to regressors the ~β and ~a.
Equation (1) is applicable to very general cases, especially ~β could be a vector holding the
regressors for many different fixed effects and several link functions can be used for Y, exten-
ding the theory to generalized linear mixed models. In the case of a binary labeling (such as
pathogen/non-pathogen), X contains the labels of the organisms, hence it has a dimension
of n × 2 (n corresponds to the number of organisms considered). Vector ~Xi1 corresponds to
the pathogens and it holds xi1 = 1 for pathogens, and xi1 = 0 for non-pathogens. Vector ~Xi2

stands for non-pathogens and it holds xi2 = 0 for pathogens, and xi2 = 1 for non-pathogens.
Each yi is the value of the amino acid property considered in the organism i. Z is the matrix
relating species to observations and in our case corresponds to a diagonal matrix of dimensions
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n×n. Random effects are normally distributed with mean 0 and variance matrices R and G,
corresponding to residual and additive effects, respectively. In the univariate case R = In×σ2e
and G = A×σ2a, σ2e and σ2a standing for residual and additive variances. The A matrix repre-
sents the phylogenetic relations between the n organisms. It holds evolutionary “time”values
tij representing the time that organism i shared with organism j before speciation. The ai and
ei values are the random organism effects and the error term for each organism, respectively.
These two vectors, and the fixed effects, ~β, are the ones to be estimated. ~β has dimension
2 (βp: pathogen, βnp: non-pathogen) in our binary case, since we are calculating the fixed
effects of the pathogenicity. In this work, a Bayesian approach similar to the one presented
by Naya et al. (2006) is chosen, hence not just a single value for the difference between ~βp
and ~βnp is determined, but a posterior probability distribution. Our package makes extensive
usage of the main function implemented in the MCMCglmm package (Hadfield (2010)) and
we strongly encourage users to read the corresponding documentation.

2. An example dataset

This document briefly describes an introduction to the usage of the bcool package, basically
analyzing the same information that used Spangenberg et al. (2011), which is available in the
package (rpoS”).

> library("bcool")

> data("rpoS")

> env <- new.env()

> utils::data("aaindex", package = "seqinr", envir = env)

> aaindex <- env$aaindex

>

>

In Spangenberg et al. (2011) an RpoS (σ38) alignment was scanned searching for relevant co-
lumns, sites probably associated with pathogenicity. The labels (pathogenicity“YES”or“No”)
were obtained from the NCBI. The phylogenetic tree was reconstructed from the concatenated
alignment of 7 groups of orthologous genes obtained from KEGG (K03070, K03073, K03076,
K03087, K030106, K030110, K03217). The dataset includes a table with the pathogenicity
labels (”labels”), the phylogenetic tree (”tree7”) and the alignment (rpoSalign”) of the RpoS
protein.

3. Analysis of the dataset

Before initiate our analysis we need to define which amino acid properties are relevant for us.
That is, which properties we consider that could provoke important changes in the function
of the protein. While the properties to be used only depend on the users knowledge, a good
starting point would be to consider out of the set of 500 properties included in the “aaindex”,
one representative of each of the six groups mentioned above (α and turn propensities, β pro-
pensity, composition, hydrophobicity, physicochemical, and other properties). As we only wish
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to demonstrate the basical usage of the package and the time involved is directly proportional
to the number of selected properties we will use only two properties here.

> options(width=50)

> prop<-c("CHOC760102","KYTJ820101")

> aaindex[prop]

$CHOC760102

$CHOC760102$H

[1] "CHOC760102"

$CHOC760102$D

[1] "Residue accessible surface area in folded protein (Chothia, 1976)"

$CHOC760102$R

[1] "LIT:2004094b PMID:994183"

$CHOC760102$A

[1] "Chothia, C."

$CHOC760102$T

[1] "The nature of the accessible and buried surfaces in proteins"

$CHOC760102$J

[1] "J. Mol. Biol. 105, 1-14 (1976)"

$CHOC760102$C

[1] "JANJ780101 0.973 GUYH850104 0.970 JANJ780103 0.959GUYH850105 0.946 OOBM770101 0.925 FAUJ880109 0.872ROSM880102 0.845 MEIH800102 0.839 PRAM900101 0.826ENGD860101 0.826 PUNT030101 0.809 RACS770102 0.809GUYH850101 0.807 KIDA850101 0.804 MEIH800103 -0.802EISD860103 -0.802 JACR890101 -0.803 NADH010104 -0.809JANJ790101 -0.809 RADA880101 -0.814 ROSG850102 -0.819DESM900102 -0.823 RADA880104 -0.830 WOLR790101 -0.834KYTJ820101 -0.838 WOLR810101 -0.840 NADH010103 -0.840CHOC760104 -0.845 WARP780101 -0.849 JURD980101 -0.851OLSK800101 -0.886 EISD840101 -0.892 NADH010102 -0.893CHOC760103 -0.912 RADA880107 -0.925 JANJ780102 -0.935JANJ790102 -0.969"

$CHOC760102$I

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys

25 90 63 50 19 71 49 23 43 18 23 97

Met Phe Pro Ser Thr Trp Tyr Val

31 24 50 44 47 32 60 18

$KYTJ820101

$KYTJ820101$H

[1] "KYTJ820101"

$KYTJ820101$D

[1] "Hydropathy index (Kyte-Doolittle, 1982)"

$KYTJ820101$R

[1] "LIT:0807099 PMID:7108955"

$KYTJ820101$A
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[1] "Kyte, J. and Doolittle, R.F."

$KYTJ820101$T

[1] "A simple method for displaying the hydropathic character of a protein"

$KYTJ820101$J

[1] "J. Mol. Biol. 157, 105-132 (1982)"

$KYTJ820101$C

[1] "JURD980101 0.996 CHOC760103 0.964 OLSK800101 0.942JANJ780102 0.922 NADH010102 0.920 NADH010101 0.918DESM900102 0.898 EISD860103 0.897 CHOC760104 0.889NADH010103 0.885 WOLR810101 0.885 RADA880101 0.884MANP780101 0.881 EISD840101 0.878 PONP800103 0.870WOLR790101 0.869 NAKH920108 0.868 JANJ790101 0.867JANJ790102 0.866 BASU050103 0.863 PONP800102 0.861MEIH800103 0.856 NADH010104 0.856 PONP800101 0.851PONP800108 0.850 CORJ870101 0.848 WARP780101 0.845COWR900101 0.845 PONP930101 0.844 RADA880108 0.842ROSG850102 0.841 DESM900101 0.837 BLAS910101 0.836BIOV880101 0.829 RADA880107 0.828 BASU050101 0.826KANM800104 0.824 LIFS790102 0.824 CIDH920104 0.824MIYS850101 0.821 RADA880104 0.819 NAKH900111 0.817CORJ870104 0.812 NISK800101 0.812 FAUJ830101 0.811ROSM880105 0.806 ARGP820103 0.806 CORJ870103 0.806NADH010105 0.804 NAKH920105 0.803 ARGP820102 0.803CORJ870107 0.801 MIYS990104 -0.800 CORJ870108 -0.802KRIW790101 -0.805 MIYS990105 -0.818 MIYS990103 -0.833CHOC760102 -0.838 MIYS990101 -0.840 MIYS990102 -0.840MONM990101 -0.842 GUYH850101 -0.843 FASG890101 -0.844RACS770102 -0.844 ROSM880101 -0.845 JANJ780103 -0.845ENGD860101 -0.850 PRAM900101 -0.850 JANJ780101 -0.852GRAR740102 -0.859 PUNT030102 -0.862 GUYH850104 -0.869MEIH800102 -0.871 PUNT030101 -0.872 ROSM880102 -0.878KUHL950101 -0.883 GUYH850105 -0.883 OOBM770101 -0.899"

$KYTJ820101$I

Ala Arg Asn Asp Cys Gln Glu Gly His Ile

1.8 -4.5 -3.5 -3.5 2.5 -3.5 -3.5 -0.4 -3.2 4.5

Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

3.8 -3.9 1.9 2.8 -1.6 -0.8 -0.7 -0.9 -1.3 4.2

3.1. Instantiation of the APPT.list object

We have now all the elements we require to instantiate the object of the main class APPT.list
(Alignment, Phenotype, Properties, Tree):

> myAPPT.list<-new("APPT.list",alignment=rpoSalign,pheno=labels,

properties=lapply(aaindex[prop],function(x) x$I),tree=tree7)

> head(columns(myAPPT.list))

[1] 1 2 3 4 5 6

> head(pheno(myAPPT.list))

spKEGG

1 aae

2 aeh

3 afe

4 afr

5 alv

6 amc

organism

1 Aquifex aeolicus

2 Alkalilimnicola ehrlichei

3 Acidithiobacillus ferrooxidans ATCC 53993

4 Acidithiobacillus ferrooxidans ATCC 23270

5 Allochromatium vinosum

6 Alteromonas macleodii

pathogenicity

1 No

2 No
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3 No

4 No

5 No

6 No

> properties(myAPPT.list)

$CHOC760102

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys

25 90 63 50 19 71 49 23 43 18 23 97

Met Phe Pro Ser Thr Trp Tyr Val

31 24 50 44 47 32 60 18

$KYTJ820101

Ala Arg Asn Asp Cys Gln Glu Gly His Ile

1.8 -4.5 -3.5 -3.5 2.5 -3.5 -3.5 -0.4 -3.2 4.5

Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

3.8 -3.9 1.9 2.8 -1.6 -0.8 -0.7 -0.9 -1.3 4.2

> tree(myAPPT.list)

Phylogenetic tree with 209 tips and 208 internal nodes.

Tip labels:

ect, ecp, ecq, ecz, eci, ecc, ...

Rooted; includes branch lengths.

>

3.2. Fast approaches

IMPORTANT: the alignment should be a matrix of one letter code. The properties are grou-
ped in a list of vectors, each with 20 values, which names are the amino acids in three letter
codes. You can use seqinr package to convert between formats if needed.

Our object contains now the essential data to start with the analysis. Usually the complete
analysis takes a while, then we can try to remove noninformative columns. In the paper of
Spangenberg et al. (2011) they tried three different fast approaches to select columns. Unfor-
tunately, these approaches were unsucessful. However, it is difficult to say that this occurs in
general and that it is independent from data idiosyncracies. For this reason we implemented
two of the three methods here (Conditional Entropy Reduction, CER and ANOVA) while
the third is straightforward to implement (Entropy). Note that we can explicit two obvious
restrictions that reduce the number of columns to analyze: the maximum number of gaps that
we allow and the minimum number of different aminoacids in each column (below 2 has no
sense).

> my.cer<-cer.APPT.list(myAPPT.list,class.var="pathogenicity",

which.columns=NULL,nummin=2,maxngaps=10)

> head(sort(my.cer))
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509 322 295 549 508

0.6434340 0.8088848 1.0914037 1.1435014 1.3091885

273

1.7166933

> tail(sort(my.cer))

287 304 428 277 340

17.64696 19.26519 19.77923 20.88705 22.16580

281

25.75515

> my.anova<-anovaAPPT.list(myAPPT.list,class.var=~pathogenicity,

which.columns=NULL,nummin=2,maxngaps=10)

> sum(my.anova$hm.signif==4,na.rm=TRUE)

[1] 0

> which(my.anova$hm.signif==4)

integer(0)

> head(my.anova)

CHOC760102 KYTJ820101 hm.signif median

95 0.013004205 1.910214e-04 1 2.8024170

96 0.002077156 1.455420e-01 1 1.7597712

97 0.774784231 5.850704e-02 0 0.6718055

98 0.112565016 2.440715e-07 1 3.7805397

99 0.038802670 2.352290e-02 0 1.5198238

126 0.004935960 5.641298e-02 1 1.7776247

mean

95 2.8024170

96 1.7597712

97 0.6718055

98 3.7805397

99 1.5198238

126 1.7776247

>

3.3. Setting the model

As the computation time is proportional to the number of columns our example will be run
in only 3 columns (arbitrarily chosen):

> colu<-c(374:376)

> # define the priors and run the model

> # here the number of processors is one (count=1).

> # increase this number if possible

> prior<-list(list(R=list(V=40, nu=1), G=list(G1=list(V=40, nu=1))),
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list(R=list(V=3, nu=1), G=list(G1=list(V=3, nu=1))))

> myAPPT.list<-MCMCglmm.APPT.list(myAPPT.list, ~ -1+pathogenicity,

random.eff="spKEGG",nitt=1.5e3,burnin=5e2,prior,scale=FALSE,

parallel=TRUE,which.columns=colu,maxngaps=10,nummin=2,

count=3,pr=FALSE)

3 slaves are spawned successfully. 0 failed.

3 slaves are spawned successfully. 0 failed.

>

>

Now

3.4. Monitoring convergence

After running the PMM we want to know in which properties and sites the model converged.
For this task we can simply realize a Geweke diagnostic test for each site and property. The
values obtained are the Z-scores for a test of equality of means between the first and last parts
of the chain.

> matGwk<-matrix(0,length(columns(myAPPT.list)),

length(properties(myAPPT.list)))

> for (i in 1:length(properties(myAPPT.list))){

for (j in 1:length(columns(myAPPT.list))){

matGwk[j,i]<-geweke.diag(as.mcmc(

multiMCMCglmm(myAPPT.list)[[i]][[j]]$Sol[,2]

-multiMCMCglmm(myAPPT.list)[[i]][[j]]$Sol[,1]

))$z

}

}

> colnames(matGwk)<-names(properties(myAPPT.list))

> rownames(matGwk)<-columns(myAPPT.list)

> matGwk

CHOC760102 KYTJ820101

374 0.7670528 1.3731115

375 -4.9478687 -0.4026659

376 1.3568568 -1.0811796

> which(abs(matGwk)>2,TRUE)

row col

375 2 1

>
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3.5. Summarizing the results

We finally arrived at the point where we can summarize the results. The method levelsMCMCglmm

report all levels available for contrast in the model. The output of the method summar-

yAPPT.list is a list with 6 elements. The first is a table with the gt0 values transformed via
2*(gt0-0.5). The second element is the table with the median effect sizes. The third report the
summary statistic STj . The fourth is the χ2

m statistic, calculated from the number of samples
taken from the MCMC sampling, with m corresponding to the number of properties. The
fifth is the χ2

m statistic but now calculated from the effective sample size from each MCMC
run. The last element report a table of amino acid frequencies for each site.

> levelsMCMCglmm(myAPPT.list)

[1] "pathogenicityNo" "pathogenicityYes"

> my.summary<-summaryAPPT.list(myAPPT.list,

contrast=c("pathogenicityYes","pathogenicityNo"),

class.var="pathogenicity",what.prop=NULL)

> attributes(my.summary)

$names

[1] "tabcor" "tabSize" "SumTr"

[4] "ChiSq" "ChiSq.eff" "AAlist"

> my.summary$tabcor

CHOC760102 KYTJ820101

374 -0.42 0.68

375 -0.66 0.12

376 0.02 -0.74

> my.summary$tabSize

CHOC760102 KYTJ820101

374 -0.0104176605 0.023066887

375 -0.0183836048 0.002633052

376 0.0005554163 -0.012892218

> my.summary$SumTr

374 375 376

0.3194 0.2250 0.2740

> my.summary$ChiSq

374 375 376

63.88 45.00 54.80

> my.summary$ChiSq.eff

374 375 376

1.879009 6.577161 1.172929

> my.summary$AAlist
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$374

A D E H

No 0.07368421 0.05263158 0.37894737 0.05263158

Yes 0.14912281 0.00000000 0.53508772 0.06140351

K L M N

No 0.08421053 0.03157895 0.01052632 0.06315789

Yes 0.01754386 0.03508772 0.00000000 0.05263158

Q R S T

No 0.05263158 0.07368421 0.03157895 0.06315789

Yes 0.01754386 0.00000000 0.00000000 0.00000000

Y

No 0.03157895

Yes 0.13157895

$375

A C E F

No 0.08421053 0.01052632 0.28421053 0.02105263

Yes 0.00000000 0.00000000 0.20175439 0.00000000

H K L M

No 0.05263158 0.12631579 0.25263158 0.02105263

Yes 0.00000000 0.02631579 0.23684211 0.00877193

Q R T V

No 0.04210526 0.03157895 0.00000000 0.02105263

Yes 0.46491228 0.03508772 0.02631579 0.00000000

Y

No 0.05263158

Yes 0.00000000

$376

A C F I

No 0.01052632 0.01052632 0.00000000 0.02105263

Yes 0.00000000 0.00000000 0.02631579 0.04385965

L M S T

No 0.75789474 0.01052632 0.08421053 0.04210526

Yes 0.58771930 0.01754386 0.16666667 0.13157895

V
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No 0.06315789

Yes 0.02631579

>

Relevant columns can be selected simply ranking the columns by STj , that is, by the statistical
significance of the aggregated properties, or alternatively by aggregating effect sizes via the
l2 norm (see Spangenberg et al. 2011).

3.6. Bootstrapping relevant columns

To check the relevance of the scores obtained for the selected columns we can perform a
bootstrap in few of them (one each time). The distributions of bootstrap scores obtained is
very similar for an ample range of STj scores and then you only need to do the bootstrap in
few scores (for details see Spangenberg et al. (2011)).

> myAPPT.list.boot<-bootMCMCglmm.APPT.list(

myAPPT.list, ~ -1+pathogenicity,boot=100,

contrast=c("pathogenicityYes","pathogenicityNo"),

random.eff="spKEGG",nitt=1.5e4,burnin=5e3,prior,

scale=FALSE,parallel=TRUE,what.prop=c(1,2),

which.column=c(376),maxngaps=10,nummin=2,count=3)

3 slaves are spawned successfully. 0 failed.

3 slaves are spawned successfully. 0 failed.

> boxplot(myAPPT.list.boot$SumTr,col="orange",notch=TRUE,ylim=c(0,1))

> par(new=TRUE)

> plot(my.summary$SumTr["374"],ylim=c(0,1),pch=16,col="blue",xaxt="n",

yaxt="n",cex=1.5,ylab="")

> par(new=TRUE)

> plot(my.summary$SumTr["375"],ylim=c(0,1),pch=17,col="black",xaxt="n",

yaxt="n",cex=1.5,ylab="")

> par(new=TRUE)

> plot(my.summary$SumTr["376"],ylim=c(0,1),pch=18,col="red",xaxt="n",

yaxt="n",cex=1.5,ylab="SumTr")

>
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3.7. Estimating heritabilities

Finally, as usual in the context of Bayesian MCMC, it is very easy to calculate heritability
for each site and property. For the meaning of these estimates in the comparative method
context see Lynch (1991), Naya et al. (2006) and Hadfield (2010).

> matH2<-matrix(0,length(columns(myAPPT.list)),

length(properties(myAPPT.list)))

> for (i in 1:length(properties(myAPPT.list))){

for (j in 1:length(columns(myAPPT.list))){

matH2[j,i]<-median(

multiMCMCglmm(myAPPT.list)[[i]][[j]]$VCV[,1]

/(multiMCMCglmm(myAPPT.list)[[i]][[j]]$VCV[,1]+

multiMCMCglmm(myAPPT.list)[[i]][[j]]$VCV[,2]))

}

}

> colnames(matH2)<-names(properties(myAPPT.list))

> rownames(matH2)<-columns(myAPPT.list)

> matH2
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CHOC760102 KYTJ820101

374 0.9976138 0.9935374

375 0.9975296 0.9932501

376 0.9890726 0.9779746

>

4. Conclusions

bcool is a simple package implemented in S4, which applies the PMM of Lynch (1991) in
a Bayesian framework as proposed by Naya et al. (2006). The package allow to identify
potentially interesting sites based on the statistical significance of the difference between
classes of organisms, or directly by the effect sizes of the difference in relevant properties.
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