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Abstract

A software package is described for the numerical evaluation of integrals that arise in Bayesian statis-
tical analysis. Different types of transformations that can be user selected to precondition the problem
are discussed. These all begin with a standardizing transformation, that can be adaptively constructed,
and is followed by a multivariate Normal, multivariate Student’s t or split-t transformation. Numerical
integration methods that are currently part of the package are Monte-Carlo, quasi Monte-Carlo, sub-
region adaptive, stochastic spherical-radial and product Gauss-Hermite and generalized Gauss-Hermite.
Tllustrative numerical results for examples from Bayesian statistics applications are given.
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1 Introduction

The BAYESPACK software was developed for the numerical evaluation of integrals in the form
19) = [ g(6)L(6)d,

where 0 is an m-dimensional vector of integration variables, and I~}(0) is proportional to a posterior density
function that has a dominant peak at its mode u. It assumed that essentially all of the contribution to the
integral comes from values of the integrand in some neighborhood of y. In typical applications ¢g(@) is some
elementary real-valued function (e.g., (@) = 6;, a component of ) and there are often many such integrals,
for various alternative choices of g(@), that need to be evaluated, so that the main quantities of interest are
expected values of the form I(g)/I(1), because L(8) is unnormalized. It is also assumed that the integration
region R™ = (—o0,00)™. For problems where this is not the case, initial transformations of some or all of
the integration variables will be necessary to place the problem into this standard form. Note: in typical
applications the normalizing constant for the posterior is I(1), assuming L(8) = p(y/0)n(0), where p(y/0)
is the density for the data, and 7(@) is the prior density.

The software in the BAYESPACK has been implemented in double precision FORTRAN 77 with driver
subroutines BAYSNT (short driver with defaults for some input parameters) or BANINT (long driver). If

we denote the posterior mean by ji = I(0)/I(1), and posterior covariance matrix by & = I(00")/I(1) — i i,
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the default outputs from BAYSNT and BANINT are approximate values for I(1) and j (and also 3 for
BANINT), with estimates for errors in I(1) and f. A user may also request additional posterior means
by defining a subroutine that computes a set of additional functions {g;(@)}. In this case BAYSNT and
BANINT will also return approximate values for {I(g;)/I(1)} with error estimates. The use BAYSNT or
BANINT is described later in this paper. These descriptions are preceded with descriptions of the integration
methods and the transformation methods that are implemented in the software.

2 The Integration Methods

There are three general types of integration methods implemented in BAYESPACK. The methods are
classified according to the type of integration region that they were originally developed for. U™ methods
are defined to be methods for the unit hypercube U™ = [0, 1], and require a transformation from R™ to U™
before they can be used. The U™ methods currently implemented are a simple Monte-Carlo method with
antithetic variates, a method that uses a sequence of increasing order randomized lattice rules (see Davis
and Rabinowitz, 1984) and a subregion adaptive method (a modified version of the DCUHRE subroutine
developed by Berntsen, Espelid and Genz, 1991).

The second type of method, R™ methods, are defined to be methods that can be used directly for
integration over R™. The one R™ method currently implemented uses an adaptive algorithm combined with
stochastic spherical-radial integration rules. This method was developed by Genz and Monahan (1996b)
(see also Monahan and Genz, 1996). A third type of methods, Normal-R™ methods, are defined to be

methods for numerical integration over R™, with the multivariate normal weight function (\/ﬂ)_me_%ato.
Three Normal-R™ methods are implemented, a method that uses a sequence of increasing degree product
Gauss-Hermite rules (see Davis and Rabinowitz, 1984), a method that uses a sequence of increasing degree
rules developed by Genz and Keister (1996) and a method that uses degree three stochastic radial-spherical
rules developed by Genz and Monahan (1996a).

All of the integration methods used in BAYESPACK allow input and simultaneous approximate integra-
tion of several different g functions. The methods also provide error estimates for the final integral estimates.
The BAYESPACK software is designed so that all of the integration methods have a standard interface.
New methods can easily be added and used with the rest of the software.

3 Transformations

3.1 The Standardizing Transformation

The integration methods in BAYESPACK use transformations of the initial integration problem(s). All of
the transformations for BAYESPACK begin with a standardizing transformation of the posterior density
0 = p + Cy. Here C is the lower triangular Cholesky factor of the modal covariance matrix ¥ (X = CC?),
the inverse of the negative of Hessian matrix for log(L(8)) at . The mode g and modal covariance matrix
3} are determined using numerical optimization for p, and extrapolated finite difference approximations for
the partial derivatives needed for 3. After applying the standardizing transformation, we have

/ / 9)d6 — [C| / / (i + Cy)E(p + Cy)dy.

In order to avoid the underflow problems that often arise with practical posterior densities, the BAYESPACK
computations use L(0)/L(p1)) during the numerical integrations. Part of the problem input for BAYESPACK
is a function to compute log(L(#)). This scaling of the problem is accomplished by adding — log(L(u)) to



log(L(@)) for each @ value that is used by the numerical integrations. Typical applications require normal-
ized results in the form I(g)/I(1) anyway, so this scaling does not theoretically affect these computations.
The final unscaled value for (1) is always output.

Because of heavy and/or skewed tail behavior in some problems, an additional optional “split” scaling
of the y integration is possible. This split scaling is implemented by an additional transformation of the
form y = D(w), where D(w) is a diagonal matrix function with entries d;;(w). These are defined by
dii(w) = w;(1 — 6; w;)/(1 — w;) if w; < 0 and di(w) = w;(1 + & w;) /(1 +w;) if w; >0 for 1 < i < m.
A method for determining the 2m parameters {0} is described in Genz and Kass (1996). After this
transformation, the original integral becomes

=il [ [ 1D'(w)lg(u + OD(w) Lk + CD(w))dw

R™ integration methods do not require any additional transformations and can be applied directly to
these integrals. Normal-R™ integration methods assume a multivariate Normal weight. For these methods,
the multivariate Normal factor is introduced at this point, and we have

1(g) = (Vam) ™ [~ [T e B /amm e Cl|D (wlg( + CD(w) E(u + CD(w))dw,
so that the input integrand for the Normal-R™ methods takes the form
F(w) = (V2m)™ex™"¥|C|| D' (w)|g(u + CD(w)) L(u + CD(w)).

3.2 The Multivariate Normal Transformation

U™ integration methods of assume [0, 1] integration limits for all of the variables, and therefore addi-
tional transformations are needed. The simplest option assumes that the posterior density is approximately
multivariate Normal, so that after the standardizing and scaling transformations, and univariate Normal
transformations of the form w; = ® !(z;), I(g) becomes

1 1
_ /0 /0 (i + CD(w(z))h(z)dz,
where w(z) = (®71(21), ..., 81 (zn))! and h(z) = |C|| D' (w(z))|(v21)™ez @ @ [ (4 + CD(w(z))).

3.3 The Multivariate Student’s ¢ Transformation

Another general model (see Evans and Swartz, 1995) that can be used for the posterior density is the mul-
tivariate Student’s ¢ density K,Sm)|2|_%(1 + (0_“)tzu_1(0_“))_HTm, where K™ = L&) /(T(%) (Vem)™).
In this case, the modal covariance matrix (the inverse of the the negative of the Hessian matrix H for the
model at @ = p), and the actual covariance matrix 3 differ by a factor of (v + m)/v, so that the correct

standardizing transformation matrix is C' = ,/”'FTmCA’, where H = —(CCY)~!. After the transformation
0 = p + Cy, and a further optional scaling transformation y = D(w), I(g) becomes

WtW

(KI™)~H1+ T)

wiw _vim
2

1D (w)lg(p + CD(w)) L(pe + CD(w))dw

o0 o0
1(g) = |C|KS™ /

The density is reqmred in a Varlables separated form for the U™ methods. This form is obtained using
the transformations w; = u;(I]} v+ - 1442 2/ (v + j)) for i =1,2,...,m. Then I(g) becomes

x® 2

2 1 Uu vim
KO /(1 ¢y g /(1 )= g+ OD(w(w) h(w(w)du,

—0o0 —00



where w(w) = (1, us((v-+2)/ (1))}, oyt (T (- — 1+02) (v-+)) ) amd B (w)) = [C]| D (w(w)|
(K,Sm))_l(l + M)Vtm L(p + CD(w(u))). The final transformations to the [0,1] variables z; use the
variables u; = twl-z 1(z) for i = 1,2,...,m, with t,(u) = KV J* (14 s2/v)~("T1)/2ds and the final form
for I(g) is

9= [ [ ol + CD(wla@))h(w(u(a))da,

where u(z) = (67 (21), - ty Ly (2m))'-

3.4 The Split-t Transformations

For the split-t option (see Genz and Kass, 1996, for more details), the univariate Normal transformations
z; = ®(w;) used with the multivariate Normal transformation method are modified. These univariate trans-
formations are split at the origin and replaced by (possibly) different transformation functions, chosen from
the Student’s ¢ family, for each of the w variables. With this option, during initialization the function L(8) is
investigated along both the positive and negative directions for each of the w variables in order to determine
the appropriate degrees of freedom z/ii and scale factors 5}, for i = 1,2, ...,m for the transformations. The

split transformations take the form

(2) t—i}( , +(z — 0.5) > 0 and v < Vg
w = . VA frd Vq, z
® Nz) if £(z —0.5) > 0 and v = vyee

with w € [0,1] and vq, = 10. The transformed integral over the unit m-cube is

= [ [ ot ODwla)) ),

where w(z) = (T7(21), . Ty ()" and h(z) = |C]|D(w(@))|(T[%, Js(w:)) L( + CD(w(z))), with the
transformation Jacobian factors J; defined by

Ji(wn) { (K(l))_ (1+ w%/yii)(”iiH)/2 if +w; > 0 and VfC < Vmnaa
i(wg) =

27re 22 if +w; > 0 and VZ.jE = Umaz-

4 Use of BAYESPACK

4.1 Parameters for BANINT

The software described in the previous sections has been implemented in double precision FORTRAN 77
with main driver subroutine BANINT. A short driver BAYSNT with an abbreviated parameter list is also
available. BAYSNT is described in the next section. The default outputs from BANINT are approximate
values for I(1), j» and ¥, with estimates for errors in I(1) and ji. The user can also request additional
means by specifying additional functions g;(#). In this case BANINT will also return approximate values
for I(g;)/I(1) with error estimates. BANINT has the calling sequence:
CALL BANINT( M, RELREQ, MAXVLS, RS, USRLGP, MN, USRMNS, PROBLM, MU, C, PU,
NUMTRN, METHOD, NRMCON, MEANS, ERRORS, COVRNC, INFORM )

The parameters for BANINT are defined in the following two subsections.
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4.1.1 Input Parameters

M integer number of integration variables m (the dimension of @), with 1 < M < 20.

RELREQ real requested relative accuracy; this parameter is used as a termination parameter for the
selected numerical integration method. The numerical integration proceeds until the relative errors in
all of the requested I(g) computations are less than RELREQ, or further work would require more
than MAXVLS posterior function values.

MAXVLS integer limit on the number of posterior function values allowed.

RS integer restart parameter.
If RS = 0, then it is assumed that this is the first call of BANINT and, if NUMTRN > 0, transformation
parameters are determined.
If RS > 0, then a continuation call of BANINT is assumed (typically with a larger value for MAXVLS),
and transformation parameters from the previous call are used.

USRLGP name of an external real function for computation log of the posterior.
It must have one input parameter, a real M-vector that defines the evaluation point 6.

MN integer length of final MEANS vector, with MN > M.

USRMNS name of an external subroutine for computation of the posterior means. It is used when MN >
M and the user require additional means. USRMNS allows the user to specify additional g;(@) functions
for computation of the means I(g;)/I(1) for i = 1,2,...,MN-M. USRMNS has two parameters: a real
input M-vector (the evaluation point 6), and a real (MN-M)-vector that returns the g; values at 6.

PROBLM character string for the name of the problem.
MU real M-vector of starting values for posterior mode optimization.

C real M(M+1)/2-vector, the lower triangular standardizing transformation array C, stored by rows, and
used for input only when RS > 0 or NUMTRN = 0.

PU integer Fortran output unit number.
If PU = 0, then no output is produced.
If PU > 0, transformation information, MEANS and ERRORS are sent to unit number PU.
If PU < 0, modal covariance Cholesky factor, modal covariance matrix, transformation information,
MEANS, ERRORS, and final covariance matrix are sent to unit number |PU]|.

NUMTRN integer used to control types of transformations used.
If NUMTRN = 0, no transformation is used.
If 0 < NUMTRN < 9, a standardizing transformation, with (for METHOD < 20) multivariate
Student’s t with v = NUMTRN.
If NUMTRN = 10, a standardizing transformation, with (for METHOD < 20 ) multivariate Normal.
If NUMTRN = 20, a scaled standardizing transformation, and with split-t for METHOD < 20.

METHOD integer method type:
If METHOD = 0, a Monte-Carlo importance sampling method.
If METHOD = 1, a randomized lattice rule method.
If METHOD = 10, a subregion adaptive method.
If METHOD = 20, a mixed stochastic spherical-radial method.



If METHOD = 30, a Gauss-Hermite product rules method.
If METHOD = 31, a modified Gauss-Hermite rules method.
If METHOD = 32, a stochastic radial-spherical method.

4.1.2 Output Parameters

RS integer restart parameter; RS = 1 on exit.
MU real M-vector for computed posterior mode.

C real M(M+1)/2-vector, the lower triangular standardizing transformation array, stored by rows. When
RS > 0 and NUMTRN > 0, this is the Cholesky factor of the modal covariance matrix.

NRMCON real estimated value for I(1), the normalizing constant, assuming L(8) = p(y/0)n(0), where
p(y /@) is the density for the data, and (@) is the prior density.

MEANS real MN-vector of estimates for posterior means.
ERRORS real MN-vector of estimated errors for MEANS.
COVRNC real lower left of approximate 3 matrix stored by rows as a long vector of length M(M-+1)/2.

INFORM integer completion information parameter:
If INFORM = 0, then integration was completed with estimated relative accuracy < RELREQ.
If INFORM = 1, then integration was not completed with estimated relative accuracy < RELREQ.

4.1.3 Example Use of BANINT

The use of BAYESPACK is illustrated in this section with the posterior density for the Stanford heart
transplant data (see Genz and Kass, 1996, for details). Here is a sample program for this problem.

PROGRAM HRTEST
EXTERNAL HRLPST, HRGFNS

Stanford Heart Data Test Program

CHARACTER*20 PROBLM
PARAMETER ( PROBLM = ’Stanford Heart Data’ )

INTEGER M, MN, RS, MAXVLS, INFORM, I, PU

PARAMETER ( M = 3, MN = 6, MAXVLS = 10000, PU = 6 )

DOUBLE PRECISION NRMCON, MEANS(MN), ERRORS(MN), COVRNC(M*(M+1)/2)
DOUBLE PRECISION MU(M), C( Mx(M+1)/2 )

DATA RS, MU / 0, 3.39D0, -9.24D-2, -7.23D-1 /

CALL BANINT( M, 1D-2, MAXVLS, RS, HRLPST, MN, HRGFNS,

& PROBLM, MU, C, PU, 20, 10,
& NRMCON, MEANS, ERRORS, COVRNC, INFORM )
CALL BANINT( M, 1D-2, 2*MAXVLS, RS, HRLPST, MN, HRGFNS,
& PROBLM, MU, C, PU, 20, 10,

& NRMCON, MEANS, ERRORS, COVRNC, INFORM )
END



SUBROUTINE HRGFNS( X, GFUNS )

For computing g function values for extra posterior means.

DOUBLE PRECISION X(*), GFUNS(x)

GFUNS (1)

EXP(X(1))

GFUNS(2) = EXP(X(2))

GFUNS(3)
END

EXP(X(3))

The original problem [0, 00) variables A, 7 and p were transformed to (—oo, 00) variables using a log trans-
formation for the posterior integrations, so HRGFNS allows posterior means for the original variables to
be computed. The log posterior function HRLPST is given in the Appendix. The transformation type re-
quested is split-t (NUMTRN = 20) and the method is subregion adaptive (METHOD = 10). The resulting
run pruduced the following information (sent to the usual default Fortran standard output unit 5):

Numerical Integration Results for Stanford Heart Data
Laplace Approx. for Constant is 3.949-164

Log Posterior Max
-375.304

Mode Vector
3.38503 -0.09242 -0.72288

Transformation Types
1:Nrml,Nrml 2:Nrml,Nrml 3:Nrml,Nrml
Delta Scale Factors
1: 1.0, 1.0 2: 0.9, 1.0 3: 1.0, 1.0
Subregion Adaptive Integration Results

Num Pts Constant
9877 4.089-164
Errests 7.379-167
Additional Means

1 2
32.61352 1.04385
0.06480 0.00909

Num Pts Constant
19920 4.092-164
Errests 3.685-167
Additional Means
1 2
32.60991 1.04571
0.02605 0.00295

Means

1 2 3
3.37086 -0.05164 -0.73586
0.00599 0.00289 0.00270
and Errors

3

0.49739

0.00044
Means

1 2 3
3.36999 -0.05103 -0.73669
0.00209 0.00072 0.00164
and Errors

3

0.49713

0.00016

The two sets of “Means” results correspond to separate calls to BANINT. For the first call, the standard-
izing transformation was computed after the numerical determination of the posterior mode. The split-t
algorithm decided that all the integration variables were Normal for both sign possibilities and the § param-
eters were all = 1.0, except for the second variable, where 0.9 was determined for the negative wo values.
The Laplace approximation result is |C|(v/27)™L(u). The “Num Pts” column refers to the number of L
values used for the numerical integration and the “Constant” column refers to the approximate value for
I(1). The “Errests” row is a vector of error estimates for “Means”, from the numerical integration method.



The software can also accommodate the use of an “adaptive” standardizing transformation (see Evans
and Swartz, 1995). With this option, both p and C are adjusted dynamically as the numerical integration
proceeds. Defining the Cholesky factor C, for 3, by & = CC?, once approximate values for jz and C are
available, these approximations are used instead of u and C, and dynamically updated at various stages in
the numerical integration. The use of an adaptive standardizing transformation is not directly compatible
with the split transformations, and therefore should not be used with the split transformations. This is
illustrated with a different integration method (METHOD = 20) and by changing the transformation type
to 10. If four lines of code are introduced to modify C using an approximation to ¥ from first call of
BANINT (CHOLSK computes the Cholesky decomposition for ¥ found in the BANINT output parameter
COVRNC), then the original calls to BANINT now become

CALL BANINT( M, 1D-2, MAXVLS, RS, HRLPST, MN, HRGFNS,
& PROBLM, MU, C, PU, 10, 20,
& NRMCON, MEANS, ERRORS, COVRNC, INFORM )
DO I =1, Mx(M+1)/2

C(I) = COVRNC(I)
END DO
CALL CHOLSK( M, C )
CALL BANINT( M, 1D-2, 2+MAXVLS, RS, HRLPST, MN, HRGFNS,
& PROBLM, MU, C, PU, 10, 20,
& NRMCON, MEANS, ERRORS, COVRNC, INFORM )

The output results are:

Numerical Integration Results for Stanford Heart Data
Laplace Approx. for Constant is 3.949-164
Log Posterior Max Mode Vector
-375.304 3.38503 -0.09242 -0.72288
Stochastic Radial Spherical Results
Means
Num Pts Constant 1 2 3
9760 4.099-164 3.37161 -0.05059 -0.73774
Errests 5.721-167 0.00536 0.00066 0.00132
Additional Means and Errors
1 2 3
32.66887 1.04553 0.49781
0.08209 0.00289 0.00113
Means
Num Pts Constant 1 2 3
19660 4.097-164 3.36814 -0.05045 -0.73706
Errests 4.375-167 0.00380 0.00110 0.00130
Additional Means and Errors
1 2 3
32.59738 1.04788 0.49715
0.05315 0.00219 0.00062

This section is concluded with an illustration of the use of the multivariate Student’s ¢ transformation.
Changing NUMTRN to 5, the calls to BANINT are:

CALL BANINT( M, 1D-2, MAXVLS, RS, HRLPST, MN, HRGFNS,



& PROBLM, MU, C, PU, 6, 10,

& NRMCON, MEANS, ERRORS, COVRNC, INFORM )
CALL BANINT( M, 1D-2, 2*MAXVLS, RS, HRLPST, MN, HRGFNS,
& PROBLM, MU, C, PU, 6, 10,

& NRMCON, MEANS, ERRORS, COVRNC, INFORM )

The output results are:

Numerical Integration Results for Stanford Heart Data
Laplace Approx. for Constant is 3.949-164
Log Posterior Max Mode Vector
-375.304 3.38503 -0.09242 -0.72288
Transformation Types
1. T-5, T-5 2: T-6, T-6 3: T-7, T-7
Subregion Adaptive Integration Results
Means
Num Pts Constant 1 2 3
9877 4.094-164 3.36871 -0.05073 -0.73738
Errests 7.194-167 0.00539 0.00160 0.00102
Additional Means and Errors
1 2 3
32.60766 1.04703 0.49700
0.05030 0.00119 0.00108
Means
Num Pts Constant 1 2 3
19920 4.096-164 3.36809 -0.05061 -0.73767
Errests 2.230-167 0.00119 0.00014 0.00071
Additional Means and Errors
1 2 3
32.59556 1.04688 0.49690
0.00531 0.00044 0.00018

4.2 BAYSNT: A Short Driver Subroutine for BANINT

A driver subroutine BAYSNT is also provided as part of BAYESPACK. This subroutine uses a subset of
the parameters for BANINT and automatically provides defaults for other parameters. The parameters for
BAYSNT are M, MAXVLS, USRLGP, MN, USRMNS, PU, PROBLM and MU. Default values for other
input parameters are RS = 0 and NUMTRN = 20. BAYSNT calls BANINT with METHOD = 0, 10, 20,
and outputs results to Fortran unit |PU|. The relevant parameter definitions from the previous section are
repeated here.

M integer number of integration variables m (the dimension of @), with 1 < M < 20.
MAXVLS integer limit on the number of posterior function values allowed.

USRLGP name of an external real function for computation log of the posterior.
It must have one input parameter, a real M-vector that defines the evaluation point 6.

MN integer length of final MEANS vector, with MN > M.



USRMNS name of an external subroutine for computation of the posterior means. It is used when MN >
M and the user require additional means. USRMNS allows the user to specify additional g;(@) functions
for computation of the means I(g;)/I(1) for i = 1,2,...,MN-M. USRMNS has two parameters: a real
input M-vector (the evaluation point 6), and a real (MN-M)-vector that returns the g; values at 6.

PROBLM character string for the name of the problem.
MU real M-vector of starting values for posterior mode optimization.

PU integer Fortran output unit number.
If PU = 0, then no output is produced.
If PU > 0, transformation information, MEANS and ERRORS are sent to unit number PU.
If PU < 0, modal covariance Cholesky factor, modal covariance matrix, transformation information,
MEANS, ERRORS, and final covariance matrix are sent to unit number |PU].

Here is an example program for BAYSNT for the Stanford heart transplant data posterior. HRLPST
and HRGFNS are the same as in the previous examples.

PROGRAM HRTEST
EXTERNAL HRLPST, HRGFNS

Stanford Heart Data Test Program

CHARACTER*20 PROBLM

PARAMETER ( PROBLM = ’Stanford Heart Data’ )

DOUBLE PRECISION MU(3)

DATA MU / 3.39D0O, -9.24D-2, -7.23D-1 /

CALL BAYSNT( 3, 10000, HRLPST, 6, HRGFNS, PROBLM, MU, 5 )
END

The output results are:

Numerical Integration Results for Test Problem
Laplace Approx. for Constant is 3.949-164
Log Posterior Max Mode Vector
-375.304 3.38503 -0.09242 -0.72288
Transformation Types
1:Nrml,Nrml 2:Nrml,Nrml 3:Nrml,Nrml
Delta Scale Factors
1: 1.0, 1.0 2: 0.9, 1.0 3: 1.0, 1.0
Monte Carlo Integration Results
Means
Num Pts Constant 1 2 3
10000 4.091-164 3.36863 -0.04768 -0.73855
Errests 1.004-166 0.00781 0.00380 0.00272
Additional Means and Errors
1 2 3
32.44704 1.05307 0.49583
0.13520 0.01179 0.00148
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Numerical Integration Results for Test Problem
Laplace Approx. for Constant is 3.949-164
Log Posterior Max Mode Vector
-375.304 3.38503 -0.09242 -0.72288
Transformation Types
1:Nrml,Nrml 2:Nrml,Nrml 3:Nrml,Nrml
Delta Scale Factors
1: 1.0, 1.0 2: 0.9, 1.0 3: 1.0, 1.0
Subregion Adaptive Integration Results
Means
Num Pts Constant 1 2 3
9877 4.089-164 3.37086 -0.05164 -0.73586
Errests 7.378-167 0.00599 0.00289 0.00270
Additional Means and Errors
1 2 3
32.61352 1.04385 0.49739
0.06480 0.00909 0.00044

Numerical Integration Results for Test Problem
Laplace Approx. for Constant is 3.949-164
Log Posterior Max Mode Vector
-375.304 3.38503 -0.09242 -0.72288
Delta Scale Factors
1: 1.0, 1.0 2: 0.9, 1.0 3: 1.0, 1.0
Stochastic Radial Spherical Results
Means
Num Pts Constant 1 2 3
9840 4.098-164 3.36703 -0.05005 -0.73828
Errests 5.533-167 0.00462 0.00057 0.00116
Additional Means and Errors
1 2 3
32.60254 1.04761 0.49675
0.06948 0.00232 0.00091

5 Concluding Remarks

The BANINT software has been tested using a variety of statistics integration problems (see the POSTPACK
software available on the web page with url “http://www.sci.wsu.edu/math/faculty/genz/homepage”). For
most of these problems exact answers are not known, but the results obtained using different methods were
usually found to be consistent with the bounds provided by the error estimates for the methods. It is
hoped that the BANINT software will provide efficient solutions to statistics integration problems where the
dimensionality is not too high (possibly for 2 < m < 15). The BANINT software can also provide a means
of comparison with some of the currently popular Markov chain Monte-Carlo methods, where practical error
estimation is sometimes difficult.

Two problems sometimes found initially when using the package are i) failure with the numerical op-
timization to determine the approximate p, because of a poor starting value, and ii) numerical overflows

or underflows that occur in the computation of log(L). The first problem can usually be solved by the
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use of a better starting value for g that can come from detailed knowledge of the application problem or
the use of some auxiliary numerical optimization method. The second problem can usually be solved by a

careful examination of the Fortran function that is used for the definition of the log(L), followed by minor
modifications to the source code to trap for underflows and overflows.
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Appendix: HRLPST

DOUBLE PRECISION FUNCTION HRLPST(X)

To compute log posterior for Stanford Heart Transplant Data
Reference:
Naylor, J. C. and Smith, A. F. M. (1988), "Econometric
Illustrations of Novel Numerical Integration Strategies for
Bayesian Inference", J. Econometrics, 38, pp. 103-125.

DOUBLE PRECISION X(3), LAMBDA, TAU, P

DOUBLE PRECISION LGL, LGT, LGP, FVAL, ESUM, ETSUM, EMX

INTEGER I, NCASES

PARAMETER ( NCASES = 82, EMX = 100 )

INTEGER WAIT(NCASES),SURVIV(NCASES),EXACT(NCASES),TREATD (NCASES)
SAVE TREATD, WAIT, EXACT, SURVIV

DATA TREATD/ 30%0, 52%1/
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DATA WAIT/

& 49, 5, 17, 2, 39, 84, 7, 0,
& 35, 36, 1400, 5, 34, 15, 11, 2,
& 1, 39, 8, 101, 2, 148, 1, 68,
& 31, 1, 20, 118, 91, 427, 0, 35,
& 50, 11, 25, 16, 36, 27, 19, 17,
& 7, 11, 2, 82, 24, 70, 15, 16,
& 50, 22, 45, 18, 4, 1, 40, 57,
& 0, 1, 20, 35, 82, 31, 40, 9,
& 66, 20, 77, 2, 26, 32, 13, 56,
& 2, 9, 4, 30, 3, 26, 4, 45,
& 25, 5/

DATA EXACT/ 10%1, 0, 16%1, 3x0, 14x1, 0, 3*1, 2*0,

& 4x1, 2x0, 1, 0, 1, 2%0, 3%1, 0, 1, 0, 1, 2x0,
& 3%1, 0, 1, 2%x0, 2%1, 3*0/

DATA SURVIV/ 30%0,

& 15, 3,

& 624, 46, 127, 61, 1350, 312, 24, 10,
& 1024, 39, 730, 136, 1379, 1, 836, 60,
& 1140, 1153, 54, 47, 0, 43, 971, 868,
& 44, 780, 51, 710, 663, 253, 147, 51,
& 479, 322, 442, 65, 419, 362, 64, 228,
& 65, 264, 25, 193, 196, 63, 12, 103,
& 60, 43/

LGL = X(1)

LAMBDA = EXP( MIN( MAX( LGL, -EMX ), EMX ) )

LGT = X(2)

TAU = EXP( MIN( MAX( LGT, -EMX ), EMX ) )

LGP = X(3)

P = EXP( MIN( MAX( LGP, -EMX ), EMX ) )
FVAL = 0

ESUM = 0

ETSUM = 0

DO I = 1, NCASES
ESUM = ESUM + EXACT(I)
ETSUM = ETSUM + EXACT(I)*TREATD(I)
FVAL = FVAL + P*LOG( LAMBDA/( LAMBDA+WAIT(I)+TAU*SURVIV(I) ) )
FVAL = FVAL - EXACT(I)*LOG( LAMBDA+WAIT(I)+TAU*SURVIV(I) )
END DO
HRLPST = X(1)+X(2)+X(3) + FVAL + ESUM*LGP + ETSUM*LGT
END
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