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Abstract

This design document works out details of approximate maximum
likelihood estimation for aster models with random effects. Fixed and
random effects are estimated by penalized log likelihood. Variance
components are estimated by integrating out the random effects in the
Laplace approximation of the complete data likelihood (this can be
done analytically) and maximizing the resulting approximate missing
data likelihood. A further approximation treats the second derivative
matrix of the cumulant function of the exponential family where it
appears in the approximate missing data log likelihood as a constant
(not a function of parameters). Then first and second derivatives of
the approximate missing data log likelihood can be done analytically.
Minus the second derivative matrix of the approximate missing data
log likelihood is treated as approximate Fisher information and used
to estimate standard errors.

1 Theory

Aster models (Geyer, Wagenius and Shaw, 2007; Shaw, Geyer, Wagenius,
Hangelbroek, and Etterson, 2008) have attracted much recent attention.
Several researchers have raised the issue of incorporating random effects in
aster models, and we do so here.

1.1 Complete Data Log Likelihood

Although we are particularly interested in aster models (Geyer et al.,
2007), our theory works for any exponential family model. The log likelihood
can be written

() =y o —c(e),



where y is the canonical statistic vector, ¢ is the canonical parameter vector,
and the cumulant function c satisfies

1(p) = Ep(y) = () (1)
W (p) = vary(y) = " (¢) (2)

where /() denotes the vector of first partial derivatives and ¢’ () denotes
the matrix of second partial derivatives.
We assume a canonical affine submodel with random effects determined
by
¢=a+ Mo+ 2D, (3)

where a is a known vector, M and Z are known matrices, b is a normal
random vector with mean vector zero and variance matrix D. The vector a
is called the offset vector and the matrices M and Z are called the model
matrices for fixed and random effects, respectively, in the terminology of the
R function glm. The matrix D is assumed to be diagonal, so the random
effects are independent random variables. The diagonal components of D
are called variance components in the classical terminology of random effects
models (Searle et al., 1992). Typically the components of b are divided into
blocks having the same variance (Searle et al., 1992, Section 6.1), so there
are only a few variance components but many random effects, but nothing
in this document uses this fact.

The unknown parameter vectors are « and 6, where D is a function of
#, although this is not indicated by the notation. Temporarily, we leave the
choice of exactly what function D is of 6 unspecified. That choice will be
made in Section 1.6 below.

The “complete data log likelihood” (i. e., what the log likelihood would
be if the random effect vector b were observed) is

le(a,b,0) = l(a + Ma+ Zb) — 16" D~'b — L log det(D) (4)

in case none of the variance components are zero. We deal with the case of
zero variance components in Section 1.4 below.

1.2 Missing Data Likelihood

Ideally, inference about the parameters should be based on the missing
data likelihood, which is the complete data likelihood with random effects b
integrated out

L (a,0) = / elel@b ) gp (5)
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Maximum likelihood estimates (MLE) of o and 6 are the values that max-
imize (5). However MLE are hard to find. The integral in (5) cannot be
done analytically, nor can it be done by numerical integration except in very
simple cases. There does exist a large literature on doing such integrals by
ordinary or Markov chain Monte Carlo (Thompson and Guo, 1991; Geyer
and Thompson, 1992; Geyer, 1994; Shaw, Promislow, Tatar, Hughes, and
Geyer, 1999; Shaw, Geyer and Shaw, 2002; Sung and Geyer, 2007), but these
methods take a great deal of computing time and are difficult for ordinary
users to apply. We wish to avoid that route if at all possible.

1.3 Laplace Approximation

Breslow and Clayton (1993) proposed to replace the integrand in (5) by
its Laplace approximation, which is a normal probability density function
so the random effects can be integrated out analytically. Let b* denote the
result of maximizing (4) considered as a function of b for fixed o and 6.
Then log L, («, 6) is approximated by

q(a,0) = —3 log det[x" (b*)] — k(b¥)

where
k(b) = —=l.(a+ Ma+ Zb)
K () =—-2Ty+ Z u(a + Ma + Zb) + Db
K'(b) = ZTW(a+ Ma+ Zb)Z + D!
Hence

(e, 0) = lc(a,b*,0) — Llog det [r" (b%)]
=l(a+ Ma+ 2b*) — ()" D7 'b* — Llogdet(D)
— glogdet[Z"W(a+ Mo + Zb*)Z + D' (6)
=l(a+ Ma+ 2b*) — L(v*)"D 1"
— Llogdet[D'2Z"W (a + Ma + Zb%) ZDY? + 1]
where I denotes the identity matrix of the appropriate dimension (which
must be the same as the dimension of D for the expression it appears in
to make sense), where b* is a function of o and 6 and D is a function of 6,
although this is not indicated by the notation, and where the last equality

uses the rule sum of logs is log of product and and the rule product of deter-
minants is determinant of matrix product (Harville, 1997, Theorem 13.3.4)



and D/2 denotes the symmetric square root of D, which in this case is
the diagonal matrix whose diagonal components are the square roots of the
corresponding diagonal components of D. Our equation (6) is our analog of
equation (5) in Breslow and Clayton (1993).

The key idea is to use (6) as if it were the log likelihood for the unknown
parameters (« and 6), although it is only an approximation. However, this
is also problematic. In doing likelihood inference using (6) we need first and
second derivatives of it (to calculate Fisher information), but W is already
the second derivative matrix of the cumulant function, so first derivatives
of (6) would involve third derivatives of the cumulant function and second
derivatives of (6) would involve fourth derivatives of the cumulant func-
tion. For aster models there are no published formulas for derivatives higher
than second of the aster model cumulant function nor does software (the R
package aster, Geyer, 2012) provide such — the derivatives do, of course,
exist because every cumulant function of a full regular exponential family
is infinitely differentiable at every point of the canonical parameter space
(Barndorff-Nielsen, 1978, Theorem 8.1) — they are just not readily avail-
able. Breslow and Clayton (1993) noted the same problem in the context
of GLMM, and proceeded as if W were a constant function of its argument,
so all derivatives of W were zero. This is not a bad approximation because
“in asymptopia” the aster model log likelihood is exactly quadratic and W is
a constant function, this being a general property of likelihoods (Geyer, in
press). Hence we adopt this idea too, more because we are forced to by the
difficulty of differentiating W than by our belief that we are “in asymptopia.”

This leads to the following idea. Rather than basing inference on (6), we
actually use

q(e,0) = l(a+ Ma+ Zb*) — $(b*)"' D7 'b*

— Llogdet[DV2ZTW ZD'? + 1 7
where W is a constant matrix (not a function of o and #). This makes sense
for any choice of W that is symmetric and positive semidefinite, but we will
choose W that are close to W (a + Mé + Zb), where & and 0 are the joint
maximizers of (6) and b = b*(&,0). Note that (7) is a redefinition of g(v, 6).
Hereafter we will no longer use the definition (6).

1.4 Zero Variance Components

When some variance components are zero, the corresponding diagonal
components of D are zero, and the corresponding elements of b are zero



almost surely. The order of the elements of b does not matter, so long as the
rows of Z and the rows and columns of D are reordered in the same way.
So suppose these objects are partitioned as

() =) »=(2 )

where Dy = 0 and the diagonal components of D; are all strictly positive,
so the components of by are all zero almost surely and the components of
b1 are all nonzero almost surely. Since Zb = Z1b; almost surely, the value
of Zs is irrelevant. In the expression for D we are using the convention
that 0 denotes the zero matrix of the dimension needed for the expression it
appears in to make sense, so the two appearances of 0 in the expression for D
as a partitioned matrix denote different submatrices having all components
zero (they are transposes of each other).
Then the correct expression for the complete data log likelihood is

le(a,b,0) = l(a + Ma + Ziby) — 361 D7 'by — L log det(Dy) (8)

that is, the same as (4) except with subscripts 1 on b, Z, and D. And this
leads to the correct expression for the approximate log likelihood

qg(a,0) = l(a + Ma + Z,b%) — (01T Dy v

Py (9)
— Llogdet[D}/?ZIW 2, D}/ + 1]

where again I denotes the identity matrix of the appropriate dimension
(which now must be the dimension of D for the expression it appears in
to make sense) and where b] denotes the maximizer of (8) considered as a
function of by with « and 6 fixed, so it is actually a function of a and 6
although the notation does not indicate this. Since

1/2 7755 1/2 1/2 7755 1/2

DUV2ZTWZDY? 4 T — DY2ZIWziDI* +1  DY?ZIW Z,DY
1/2 7755 1/2 1/2 7555 1/2
Dy " Zy W Z1 D, Dy, ZyWZyDy' ™ +1

_ (D}”ZlTWZlD}/Q +1 0)
0 I

where again we are using the convention that I denotes the identity matrix of
the appropriate dimension and 0 denotes the zero matrix of the appropriate
dimension, so I denotes different identity matrices in different parts of this
equation, having the dimension of D on the left-hand side, the dimension of
D1 in the first column of both partitioned matrices, and the dimension of



D5 in the second column of both partitioned matrices, and 0 also denotes
different zero matrices, the two appearances being transposes of each other,

det(DY2ZTW ZDY? + I) = det(Dy*ZTW 2, DY/* + I) det(I)
= det(DV?ZTW 2, DY + I

by the rule that the determinant of a block-diagonal partitioned matrix is
the product of the determinants of the blocks on the diagonal (Harville,

1997, Theorem 13.3.1). And since Z1b; = Zb almost surely,
q(e,0) = l(a + Ma + Zb*) — 3(b1)" Dy 'b} (10)
— Llogdet[DY2ZTW zD'? + 1]

that is, the subscripts 1 are only needed in the term where the matrix inverse
appears and are necessary there because D! does not exist. Breslow and
Clayton (1993, Section 2.3) suggest using the Moore-Penrose pseudoinverse
(Harville, 1997, Chapter 20)

D7 0
+ 1
=% )

(e, 0) = l(a+ Ma+ Zb*) — $(b*) " DT b*
— Llogdet[DV2Z"W ZD"? + 1]

which gives

(11)

for the approximate log likelihood. Partitioned matrices are no longer needed
when the Moore-Penrose pseudoinverse is used. The definition of b* must
change, however; it must now have the form

. (b
r= ()

so partitioning seems to be needed here. Alternatively, we can say that b*
is the constrained maximizer of

l(a+ Ma+ Zb) — 36" DTb (12)

considered as a function of b with o and 6 fixed subject to the constraints
that the elements of b corresponding to diagonal components of D that
are zero are constrained to be zero. With this introduction of constrained
optimization, partitioning is no longer necessary at all. This finishes our
description of the method of Breslow and Clayton (1993, Section 2.3) for
dealing with zero variance components.



1.5 A Digression on Partial Derivatives

Let f(a,c,0) be a scalar-valued function of three vector variables. We
write partial derivative vectors using subscripts: fq(a, ¢, ) denotes the vec-
tor of partial derivatives with respect to components of . Our convention
is that we take this to be a column vector. Similarly for f.(a,c,8). We also
use this convention for partial derivatives with respect to single variables:
fo, (e, c,0), which are, of course, scalars. We use this convention for any
scalar-valued function of any number of vector variables.

We continue this convention for second partial derivatives: fu(a,c, @)
denotes the matrix of partial derivatives having 4, j component that is the
(mixed) second partial derivative of f with respect to a; and ¢;. Thus the
row dimension of fu.(a, ¢, 0) is the dimension of «, the column dimension is
the dimension of ¢, and feo(a, ¢, @) is the transpose of fo.(a,c,8).

This convention allows easy indication of points at which partial deriva-
tives are evaluated. For example, fu.(«,c*,0) indicates that ¢* is plugged
in for ¢ in the expression for fu.(a,c,0).

We also use this convention of subscripts denoting partial derivatives
with vector-valued functions. If f(«, ¢, @) is a column-vector-valued function
of vector variables, then f,(a, ¢, ) denotes the matrix of partial derivatives
having 4, j component that is the partial derivative of the i-th component of
fa(a,c,0) with respect to a;. Thus the row dimension of f,(a,c,0) is the
dimension of f(a,¢,6) and the column dimension is the dimension of a.

1.6 Nearly Zero Variance Components

The method described in Section 1.4 for dealing with zero variance com-
ponents (due to Breslow and Clayton, 1993, Section 2.3) does not help with
variance components that are nearly zero but not exactly zero, in which
case there may be huge components of D' making calculation of (12) prob-
lematic due to inexactness of computer arithmetic. Another way to look at
the problem is that the Moore-Penrose pseudoinverse operation D + D7 is
not continuous: components of DT corresponding to components of D that
are nearly but not exactly zero are huge, whereas components of D' corre-
sponding to components of D that are exactly zero are themselves exactly
Zero.

So the question arises: is the approximate log likelihood derived by
Laplace approximation a continuous function of the parameters a and 6,
or is it discontinuous? And, whatever the answer to that question is, how
do we deal with any discontinuity or apparent discontinuity so inexact com-



puter arithmetic does not cause computational problems?
To start an attack on this problem, we start with the case where all
variance components are nonzero, although perhaps nearly zero, and define

c= D12, (13)

where D~1/2 is the diagonal matrix whose diagonal components are 1 /v dii,
where d;; are the diagonal components of D, where in this paragraph only
subscripts indicate components rather than partial derivatives, so

b= D% (14)

where D'/2 is the diagonal matrix whose diagonal components are v/dj;. We
use the substitution (14) everywhere. Then the penalized log likelihood for
estimating ¢* = D~1/2p* is

h(c) = l(a+ Ma+ ZDY?c) — LcTe (15)

Since (15) is a strictly concave function with bounded level sets, the max-
imizer ¢* exists and is unique. In fact if we replace D'/2 by an arbitrary
matrix in (15), the maximizer still exists and is unique.

We now choose the parameter . We choose the components of 6 to be
real numbers whose squares are variance components. Thus we have one
component of 6 for each distinct variance component. We allow negative
components of # so our reparameterization is not identifiable, because the
variance components do not depend on the signs of the components of 6 only
on their absolute values. Also define a diagonal matrix A having components
of # as its diagonal components and satisfying A2 = D, so the diagonal
components of A and D correspond. We can replace (15) with

h(c) =l(a+ Ma+ ZAc) — Lclc (16)

if we also replace (14) by
b= Ac. (17)

If all components of 6 are nonnegative, then A = DY/2 and (15) and (16)
are the same as are (14) and (17). But since components of 6 are allowed to
be negative, (16) and (17) are more general. When components are nega-
tive, nothing bad happens. The components of ¢ corresponding to negative
components of 6 are the negative of what they would be if sign of the corre-
sponding component of 6 were positive. By the argument given above, the
maximizer ¢* of (16) exists and is unique.



Doug Bates (personal communication) says the reparameterization (17)
is part of the folklore and used in various R packages of which he is an author
(nlme, 1me, 1me4, lmer).

The derivative of (16) is

he(c) = AZT [y — pla+ Ma+ ZAc)| —c (18)
This is equal to zero when ¢ is equal to the maximizer ¢* of (16), so
c* :AZT[y—u(a—i—Ma—l—ZAc*)] (19)

from which we see that components of ¢* corresponding to zero variance
components are actually zero (because they are something finite multiplied
by the corresponding component of #, which is zero). This fact is also clear
from the fact that components of ¢ corresponding to components of A that
are zero appear in (16) only in the second term, which is clearly maximized
when they are zero.

Now consider minus the right-hand side of (18) considered as a function
of all the variables

fla,e,0) =c— AZ" [y — p(a + Ma + ZAc)] (20)

which has derivatives

fala,c,0) = AZTW (a4 Ma + ZAc)M (21)
fola,c,0) = AZ"W(a+ Ma+ ZAc)ZA + 1 (22)
fo,(a,c,0) = —E,Z7 ly — wla+ Ma+ ZAc)]
+ AZTW(a + Ma + ZAc)ZEyc (23)
where
Ey, = Ay, (0) (24)

is the diagonal matrix whose components are equal to one if the correspond-
ing components of A are equal to 6y by definition (rather than by accident
when some other component of 6 also has the same value) and whose compo-
nents are otherwise zero. For now the only important point is that f.(a;, ¢, 0)
is strictly positive definite because W (a+ M a+Z Ac) is positive semidefinite,
being a variance matrix by (2).

The implicit function theorem (Browder, 1996, Theorem 8.29) says that
c*(a, 0) is locally well defined and differentiable. Our previous analysis shows



that it is actually globally well defined, so the implicit function theorem only
adds the knowledge that it is differentiable. Derivatives are given by

ci(,0) = —fula, ¢ (a,0),0) " fu(a, ¢*(, 0),6) (25)
¢y, (0, 0) = —fe(o, ¢* (e, 0), 9)71f9k (o, ¢* (v, 0),0) (26)

We now know that ¢* is a differentiable function of o and 6. Hence the
approximate log likelihood

q(a,0) =lla+ Ma+ ZAc*) — %(C*)TC*

1 T (27)
— 5 logdet [AZ WZA+ I]
is a differentiable function.

There is, however, a question about whether (27) is correct. The middle
term should be % (c*)TAD* Ac* rather than what it is. Are these the same?
This is the sum of terms (c})%a2d;; because of A and D being diagonal ma-
trices, where in this paragraph only subscripts indicate components rather
than partial derivatives. For i such that a; # 0, we have d; = 1/d;; and
the term is £ (c})?, which is the same as the corresponding term of 3(c*)7c*.
For i such that a; = 0, we have d;’; = 0 and the term is zero, which is the
same as the corresponding term of %(C*)TC*, because ¢; = 0. Thus we see
that (27) is a correct approximate log likelihood and is differentiable for all

« and 6.

1.7 Approximate Maximum Likelihood Estimates

As Breslow and Clayton (1993) also note, an immediate consequence of
treating W as a constant function of its argument is that then only the first
term of (27) contains «. Let & denote the point at which the maximum
of (27) considered as a function of « for fixed 6 is achieved. Since the first
term of (27) is a strictly concave function of «, the maximizer is unique if
it exists. Then define &(f) = c*(&(6),6).

Clearly, we get the same thing if we jointly maximize

g(a,e) =l(a+ Ma+ ZAc) — Lclc (28)

which is the right-hand side of (16) considered as a function of a and ¢ for
fixed 6, that is, the maximizer is (&, ¢).

The latter process is much easier, because (28) is a strictly concave func-
tion (Barndorff-Nielsen, 1978, Theorem 9.1) and hence every local maximizer
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is the unique global maximizer (local maximizers need not exist, but typi-
cally they will; if they do not the summary function applied to the aster model
fit for the model containing only fixed effects and having model matrix M
will complain about “possible directions of recession”).

Thus we arrive at

r(0) = q(a(9),9) (20)

= l(a+ Ma + ZA&) — 3&"c — Logdet[AZTW ZA + 1]

as an (approximate) profile log likelihood for #, where on the right-hand side

@, ¢, and A are functions of 8, although :chis is not indicated by the notation.
Maximizing (29) gives an estimate 6 of §. Then

(0)
(0)c(0)

are “estimates” of the corresponding quantities. Since « is a parameter
vector, & is a (vector) parameter estimate. Since the random effect vector
b is not a parameter, b is not a parameter estimate. It is a competitor of

BLUP predictions of random effects in normal-normal (normal response and
normal random effects) random effects models.

D5

o
Il
jo))

>
Il
N

1.8 Halftime Summary

All of this is quite confusing. So we recap. The key quantity is
pla,e,0) = l(a+ Ma+ ZAc) — LcTe — Llogdet[AZTWZA + 1] (30)

where, as the left-hand side says, «a, ¢, and 6 are all free variables and, as
usual, A is a function of €, although the notation does not indicate this.

1.8.1 Joint and Profiles

If we maximize (30) considered as a function of ¢ for fixed a and 6 we
get ¢*, which is a function of o and 6. If we maximize (30) considered as a
function of a and ¢ for fixed € we get & and ¢, both of which are functions
of 6 (only). Then we have

q(a, 0) = p(a,c*(a, 0), 9) (31)
r(0) = p(a(d),c(6),0) (32)
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which repeat (27) and (29). Both of these are of interest. In fact, since
we know that maximizing a profile is the same as maximizing the original
function, if we let (d, ¢,0) denote the joint maximizer of (30), then 6 is the
maximizer of (32) and (4, 0) is the joint maximizer of (31) and & = &(f)
and ¢ = ¢*(&,0) = &(f). These are just different ways of describing the joint
optimizer of the key quantity (30).

1.8.2 Treating W as Nonconstant

In computing estimators, the easiest and simplest method will be to just
optimize (30) directly with no optimization of functions themselves com-
puted by optimization (profiles), or at least it would be easiest and simplest
if we did not ever want to adjust W. Since we do want to adjust W, we
start with a procedure that is none of these, optimizing

s(0) =l(a+ Ma+ ZA¢) — 3é'¢

pt (33)
tlogdet[AZ"W (a+ Ma+ ZAG)ZA+1|

where on the right-hand side & and ¢ and A are all functions of 8 although
the notation does not indicate this. Of course, (33) is what we do not know
how to differentiate because we do not know derivatives of W (). Thus we
will have to use a no-derivative method of optimization to get close to the
solution. Then we can switch to optimizing (30), for which we do have first
and second derivatives.

1.8.3 Fisher Information

In doing inference, neither (30) nor (32) are helpful because they are
not log likelihoods nor even approximate log likelihoods. Their derivatives
do not give anything even approximating Fisher information (the derivative
of a profile likelihood does not give Fisher information). Thus only (31)
is helpful in deriving approximate standard errors. We are treating (31)
as an approximate log likelihood, so minus its second derivative matrix is
approximate observed Fisher information.

1.9 First Derivatives

Start with (30). Its derivatives are
pala,c,0) = MT [y — p(a+ Ma + ZAc)] (34)

pe(a, e, 0) = AZT[y—u(cH—Ma—i—ZAc)] —c (35)
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and
T T
po,(a,c,0) = ¢ EpZ" [y — pla+ Ma + ZAc)]
~Su([AZTWzA+ 1) B ZTWZA+ AZTWZE] )
= cT'EZ" [y — pla+ Ma+ ZAc)]
~t([AZ"WZA+ 1) AZTWZEy)

(36)
where Fj is given by (24). The formula for the derivative of the log of
a determinant of a symmetric matrix comes from Searle et al. (1992, Ap-
pendix M, Section 7.f). The simplification of the trace in (36) is the fact
that for any square matrices U and V' we have tr(U + V) = tr(U) + tr(V)
and tr(UV) = tr(VU) = tr(VITUT) (Harville, 1997, Sections 5.1 and 5.2).

Some of this repeats work done in Section 1.6, but (36) is new.
The estimating equation for ¢* can be written

pc(a, (a,0), 9) =0 (37)
which repeats (19). And the estimating equations for & and ¢ can be written
Pa(6(0),2(6),0) =0 (38)
pe(6(0),2(0),0) =0 (39)

Actually, (39) is a consequence of (37), because of ¢(6) = c¢*(a(6),6). All of
these are useful in simplifying expressions for derivatives.
Now we have

da(@,0) = pa(a, ¢, 0) + ¢ (a,0) pe(a, ¢*, 0)

= pal(a, c*,0) (40)
by (37), and
g0, (a,0) = ¢, (a, H)Tpc(a, c*,8) + pg, (a, ", 0) (41)
= po, (o, ¢, 0)
again by (37), and
r9, (0) = &, ()" pa(@, & 0) + &, (0) pe(@, ¢,0) + po, (&, ¢,0) (42)

= pg, (&, ¢, 0)
by (38) and (39).
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Now by definition of § we have (42) equal to zero at 6 = 0, that is,
ro, (0) = po, (&, ¢,0) =0 (43)

and this implies X R
q9,, (da 9) = Do, (da év 0) =0

and we already have
4 (6(6),0) = pa(a(6),8(0),6) = 0

holding for all # and, in particular, for 8 = 0 by (38). Thus derivatives of
the (approximate) log likelihood and profile log likelihood are zero at the
(approximate) maximum likelihood estimators. This must, of course, have
been the case, but it is good that everything checks.

1.10 Second Derivatives

We will proceed in the opposite direction from the preceding section,
calculating abstract derivatives before particular formulas for random ef-
fects aster models, because we need to see what work needs to be done
before doing it (we may not need all second derivatives). We do only second
derivatives of ¢, ignoring r, because it is not yet clear that second derivatives
of r are useful. (It turns out that r is not used at all in the function reaster
that calculates random effects aster models in the R package aster (Geyer,
2012). See Section 2 below.)

Now by the multivariate chain rule (Browder, 1996, Theorem 8.15)

Qaa(aa 9) = paa(aa c, 0) + pocc<aa c’, 0)02(047 9)
dab,, (Ck, 9) = Paby, (CM, C*a 0) + pO&C(av 0*7 H)Czk ((X, 6)
46,6, (Oé, 9) = Do;6 (Oé, C*a 6) + p@jc(aa C*v Q)Czk (a7 9)

The derivatives of ¢* needed here have already been derived in (25) and (26),
but we note that

fla,e,0) = —pe(a, c,0)
so (25) and (26) can also be written

cr(a,0) = —pec(a, ¢, 9)*1pca(a, c*,0) (44)
G, (0,0) = —pecls ¢, 6)  pey (0, ", 0) (45)
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and the second derivatives above can be rewritten

Goa(@,0) = Paa(@, ¢*,0) = pac(a, ¢, 0)pec(a, ¢*,0) ' peala, ¢*, 0)
qu‘)k (Oé, 9) - pa@k (Oé, 6*7 0) - paC(aa C*y 9)pcc(a7 C*a 9)_1p69k (aa C*7 9)
QQij (OZ, 9) = pejek (Oé, 6*7 9) - pejc(aa C*a e)pCC(av 6*7 9)_1p09k (Oé, C*’ 6)

a particularly simple and symmetric form. If we combine all the parameters
in one vector ¥ = («, ) and write p(v, ¢) instead of p(a, ¢, §) we have

Guw (1) = Py (1, ) = Py (¥, ) pec (1, ) ™ pey (1, ) (46)

This form is familiar from the conditional variance formula for normal dis-

tributions if
X1 Ew)
47
(Zm Y99 (47)

is the partitioned variance matrix of a partitioned normal random vector
with components X; and Xy, then the variance matrix of the conditional
distribution of X7 given X5 is

Y11 — D198, Tog (48)

assuming that X5 is nondegenerate (Anderson, 2003, Theorem 2.5.1). More-
over, if the conditional distribution is degenerate, that is, if there exists a
nonrandom vector v such that var(v? X; | X3) = 0, then

UTX1 = UT2122521X2

with probability one, assuming X; and X5 have mean zero (also by An-
derson, 2003, Theorem 2.5.1), and the joint distribution of X; and Xs is
also degenerate. Thus we conclude that if the (joint) Hessian matrix of p is
nonsingular, then so is the (joint) Hessian matrix of ¢ given by (46).

The remaining work for this section is deriving the second derivatives of
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p that we need (it has turned out that we need all of them)

Poala,c,0) = —MTW(a+ Ma + ZAc)M
Pacla,¢,0) = =MW (a+ Ma + ZAc)ZA
pec(a,c,0) = —AZTW(a+ Mo+ ZAc)ZA — T
Do, (a,¢,0) = —MTW(a+ Ma + ZAc)ZEyc
Po,c(a, ¢, 8) = [ —pla+ Mo+ ZAC)] ZE,
— "B ZT™W(a+ Ma+ ZAc)ZA

o6, (v, c,0) = ~c"E;Z"™W(a+ Ma + ZAc)ZEyc
~u([AZTWZA+ 1) B ZTW ZE;)
+tr([aZ"WzA+ 1)

(B ZTWZA+ AZTW ZEy]
[AZTWZA+ 1) AZ"W ZE;)
where the formula for the derivative of a matrix inverse comes from Searle

et al. (1992, Appendix M, Section 7.e). This finishes the derivation of all
the derivatives we need.

1.11 Fisher Information

The observed Fisher information matrix is minus the second derivative
matrix of the log likelihood.
Assembling stuff derived in preceding sections and introducing
p'=pla+ Mo+ ZAc (a,6))
W*=W(a+ Ma+ ZAc*(a,0))
H* = AZ"W*ZA+1
H=AZ"WZA+1

we obtain for the «a, a block of the observed Fisher information matrix

—Gaa(0,0) = MTW*M — MTW*ZAfC(a,c*, 0)_1fa (o, ", 0)
= MTW*M — MTW*ZA(H*)*AZTW*M
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for the «, #), block of the observed Fisher information matrix

—qap, (0, 0) = MT™W*ZEyc* — MTW*ZAf, (a, c*, 9)_1ka (a, c’, 0)
= MTW*ZEy.c*
— MT"W*ZAH*) [AZ"W* ZEye* — ExZ7 (y — u¥)]
and for the 0, 6, block of the observed Fisher information matrix

—qo,0, (., 0) = () ' E; ZTW*Z Ejc*
+tr(H B ZTW ZEj)
—tr(H ' AZ"WZE H Y AZTW ZE;)
—te(H By ZTWZAH Y AZTW ZE;)
[ E,Z"W* ZA~ (y— ) 2B
*k -1 *
fe(a,e*,0) " fo, (a, ¢*,0)
= ()T E;Z"W* ZEyc*
+te(H B ZTW ZE;)
—te(H P AZ"W ZE H Y AZTW ZE;)
—te(H ' By ZTWZAH Y AZTW ZE;)
* * 17T
— [AZ™W*ZE;c* — E;Z" (y — u*)]
(H*) AZTW*ZEe* — ExZ7 (y — p*)]
In all of these ¢*, u*, W*, and H* are functions of o and 6 even though
the notation does not indicate this and A is a function of 6 even though the
notation does not indicate this.
It is tempting to think expected Fisher information simplifies things

because we “know” E(y) = p and var(y) = W, except we don’t know that!
What we do know is

E(y|c)=pla+Ma+ ZAc)

but we don’t know how to take the expectation of the right hand side (and
similarly for the variance). Rather than introduce further approximations
of dubious validity, it seems best to just use (approximate) observed Fisher
information.
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1.12 Penalized Likelihood Calculation

For penalized likelihood calculation of either ¢* or (jointly) of & and é
we need first and second derivatives of the objective function, which is given
by (15) in the first case and by (28) in the second case.

In the first case we have derivatives

he(c) = pe(a, ¢, 0)
hcc C) = pcc(a7 c, 9)

1.13 Standard Errors for Random Effects

Suppose that the approximate Fisher information derived in Section 1.11
can be used to give an approximate asymptotic variance for the parameter
vector ¢ = (a,#). This would be qu(vf), &)1, where qyy (1), ¢*) is given by
(46) and ¢ = (&, 6) and ¢ = ¢*(&, 6).

We would like standard errors for the point estimates of the random
effects

~

b= Aé =u(a,0) (49)

where

u(a, 0) = A(6)c* (a, 0)

To apply the delta method to get asymptotic standard errors for b we need
the derivatives

ua(a, ) = A(Q)CZ( 0)
—A(O)cE (e, O)pec(ar, ¢, 0) 1 peala, c*, 0)
uek(a,e) = Epc*(a,0) + A(0)c, (o, 0)
= Eyc*(a,0) = A(0)pec(ev, ¢*,0) ' peg, (v, ¢, 0)
which use (24), (44), and (45). Stacking these we obtain



and the delta method gives
wy () 4y, (D) (1) (50)

for the asymptotic variance of the estimator b.

It must be conceded that we are living what true believers in random ef-
fects models would consider a state of sin in this section. The random effects
vector b is not a parameter, yet (49) treats it as a function of parameters
(which is thus a parameter) and the “asymptotic variance” (50) is derived by
considering b just such a parameter estimate. So (50) is correct in what it
does, so long as we buy the assumption that qu(z/}) is approximate Fisher
information for 1, but it fails to treat random effects as actually random.
Since any attempt to actually treat random effects as random would lead
us to integrals that we cannot do, we leave the subject at this point. The
asymptotic variance (50) may be philosophically incorrect in some circles,
but it seems to be the best we can do.

1.14 REML?

Breslow and Clayton (1993) do not maximize either the approximate
log likelihood (27) or the approximate profile log likelihood (29), but make
further approximations to give estimators motivated by REML (restricted
maximum likelihood) estimators for linear mixed models (LMM). Breslow
and Clayton (1993) concede that the argument that justifies REML estima-
tors for LMM does not carry over to their REML-like estimators for general-
ized linear mixed models (GLMM). Hence these REML-like estimators have
no mathematical justification. Even in LMM the widely used procedure of
following REML estimates of the variance components with so-called BLUE
estimates of fixed effects and BLUP estimates of random effects, which are
actually only BLUE and BLUP if the variance components are assumed
known rather than estimated, is obviously wrong: ignoring the fact that the
variance components are estimated cannot be justified. Hence REML is not
justified even in LMM when fixed effects are the parameters of interest. In
aster models, because components of the response vector are dependent and
have distributions in different families, it is very unclear what REML-like
estimators in the style of Breslow and Clayton (1993) might be. The analogy
just breaks down. Hence, we do not pursue this REML analogy and stick
with what we have described above.
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2 Practice

2.1 Step 1

To get close to § starting from far away we minimize the function s(6)
defined by (33). For starting points of this optimization we first set a equal
to the MLE for the fixed effects model (leaving out random effects) and set
all components of 6 to one. Then we evaluate c*(a, 0) at this starting point
and then set 0 to be the empirical standard deviation of the components
of ¢*(«,0) that have 6 as their standard deviation. We then use this 6 as
the starting point for the minimization of s()

Because we cannot calculate derivatives of s(#), we optimize using by
the R function optim with method = "Nelder-Mead", the so-called Nelder-
Mead simplex algorithm, a no-derivative method nonlinear optimization, not
to be confused with the simplex algorithm for linear programming.

Evaluation of s() requires an inner optimization to evaluate &(#) and
¢(#). Since we have first and second derivatives of the objective function
g(a, ¢) whose joint optimizer is (&, ¢) we can use a method of optimization
that uses these derivatives (given in Section 1.12). The current version of
the reaster function in the aster package (Geyer, 2012) uses the optimizer
trust in the trust package to do this inner optimization that occurs inside
each evaluation of s(f).

A minor technical detail is the starting value for the inner optimization.
We need a value of (a, c) to start at, and it would be silly to use the same
starting point for every inner optimization. Even if we had a good starting
point at the beginning, it would rapidly become bad as 6 changes throughout
the minimization. Since every inner optimization maximizes the function
g(c, ¢) which is encoded as an R function penmlogl, which just calculates
g(a, ¢) and its derivatives, there is no way to return the “good” values of («, 6)
found in each inner optimization for use in the next inner optimization. We
could, of course, just write these in the R global environment, using it as
a scratchpad, but it is better programming practice to not define things in
the R global environment that users will wonder where they came from (and
might even clobber user defined objects if there was a name collision), thus
we write it down in a special environment, which is an argument cache to the
function pickle that evaluates s(f). Each evaluation of s(f) “remembers”
(in the environment cache) the value of (a, ¢) which was the optimal value
of g(a, ¢) in this evaluation. Then that value is used as the starting point
for the next inner optimization.

20



2.2 Step 2

Having found a 6 close to 0 via the preceding step, we then set a and ¢ to
a(0) and ¢(0), respectively, to obtain a starting point for the minimization
of p(a, ¢,0) given by (30), which is computed by the R function pickle3 in
the aster package. To define (30) we also need a W and we take the value
at the current values of «, ¢, and 6. Because W is typically a very large
matrix (n X n, where n is the number of nodes in complete aster graph, the
number of nodes in the subgraph for a single individual times the number
of individuals), we actually store Z7W Z, which is only 7 x r, where 7 is the
number of random effects. We set

Z™WZ = Z"W(a+ Ma + ZAc)Z (51)

where «, ¢, and A = A(0) are the current values before we start minimizing
p(a, ¢, 0) and this value of ZTW 7 is fixed throughout the minimization, as
is required by the definition of p(a, ¢, 0).

Because we have first and second derivatives of p(«, ¢, ) we can use these
derivatives in the optimization. The current version of the reaster function
in the aster package uses the optimizer trust in the trust package.

Having minimized p(a, ¢, ) we are still not done, because now (51) is
wrong. We held it fixed at the values of «, ¢, and 6 we had before the min-
imization, and now those values have changed. Thus we should re-evaluate
(51) and re-minimize, and continue doing this until convergence. We termi-
nate this iteration when 6 values do not change (to within some prespecified
tolerance) because the o and ¢ values are, in theory, determined by 6, as &(6)
and ¢(0), respectively, so we do not need to worry about them converging.

When this iteration terminates we are done with this step and we have
our point estimates &, ¢, and 0. We also have our points estimates b given
by (49) of the random effects on the original scale.

2.3 Step 3

Point estimation is now done. All that remains is computation of stan-
dard errors. Now we come to an issue that came as a shock to your humble
author (though in hindsight, it shouldn’t have). The beautiful formula (46)
does not work in a computer because of inexactness of computer arithmetic.
When the Hessian matrix of p(a, ¢, )

paa(aa c, 9) pac(aa c, 9) DPab (Oé, ¢, ‘9)
pca(aa c, 0) pcc(aa ¢, 0) DPeo (057 ¢, 9)
p@a(a7 c, 9) p@c(aa c, 0) p@@(aa c, 0)
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is ill conditioned (when the ratio of its largest and smallest eigenvalues is
large) there is no reason to expect (46) to yield a positive definite matrix.

The minus sign in (46) is the culprit. Subtracting two large positive
quantities that are supposed to have a small positive difference doesn’t al-
ways work in inexact computer arithmetic. This is called “catastrophic can-
cellation.” Worse we see no way to rearrange the computation to avoid
catastrophic cancellation.

There is, however, another way to get at gy (¢). We can compute its
Hessian matrix by finite-difference approximation. We hand the function
q(a, 8), which is computed by the function pickle2 in the aster package,
to the R function optim with method = "BFGS", a quasi-Newton optimizer,
and option hessian = TRUE, asking it to compute the Hessian by finite
differences. Because we start at the (already found) solution (&, 6) the only
work that needs to be done is calculating the Hessian. Because we provide
first derivatives, given by (34), (35), and (36), the calculation of the Hessian
is as efficient as possible (given that we have no useful analytic formula).
This gives a good estimate of qu(lﬂ) that can be used to calculate standard
errors of the parameters a and 6. These standard errors are the square roots
of the diagonal elements of gy ()L,

Then we use (50) to calculate standard errors of b. There is no catas-
trophic cancellation here.

2.4 To Do

A few issues that have not been settled. Points 1 and 2 in the following
list are not specific to random effects models. They arise in fixed effect
aster models too, even in generalized linear models and log-linear models in
categorical data analysis.

1. Verify no directions of recession of fixed-effects-only model.
2. Verify supposedly nested models are actually nested.

3. How about constrained optimization and hypothesis tests of variance
components being zero? How does the software automagically or edu-
cationally do the right thing? That is, do we just do the Right Thing
or somehow explain to lusers what the Right Thing is?
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