
Multidimensional Bayesian regression in R

Fraser I. Lewis

Abstract

This vignette introduces the abn package of R for identifying and exploring depen-
dencies in multi-dimensional data through the application of additive Bayesian network
models. Among the models currently implemented is a multidimensional analogue of lo-
gistic regression. Laplace approximations are used to estimate marginal likelihoods for
model selection and also to compute marginal posterior densities.

Keywords: R, Bayesian Networks, additive models, structure discovery.

1. Introduction

Bayesian network (BN) modeling (? ?; ? ?; ? ?; ? ?) is a form of graphical modeling which
attempts to separate out indirect from direct association in complex multivariate data, a pro-
cess typically referred to as structure discovery (? ?). Unlike other widely used multivariate
approaches where dimensionality is reduced through exploiting linear combinations of random
variables, such as in principal component analysis, graphical modeling does not involve any
such dimension reduction. Bayesian networks have been developed for analyzing multinomial,
multivariate Gaussian or conditionally Gaussian networks (a mix categorical and Gaussian
variables). A number of libraries for fitting such BNs are available from CRAN. These types
of BN have been constructed to ensure conjugacy, that is, enable posterior distributions for
the model parameters and marginal likelihood to be calculated analytically. The purpose of
abn is to provide a library of functions for more flexible BNs which do not rely on conjugacy,
which opens up an extremely rich modeling framework but at some considerable additional
computational cost.

This first release of abn includes functionality for fitting non-conjugate BN models which are
multi-dimensional analogues of logistic regression, with the caveat that all the variables in
the data are binary. Also included are traditional conjugate BN models for multinomial data
and a range of heuristic search options for determining locally optimal models.

The general objective in BN modeling/structure discovery is to perform a model search on the
data to identify a locally optimal model, recall that BN models have a vast search space and
it is generally impossible to determine a globally optimal model. We consider two different
approaches for identifying a “best” locally optimal BN model: firstly by conducting a series of
heuristic searches and then selecting the best model found (? ?); and secondly by building a
summary network using results across many different searches (? ?; ? ?). There are obvious
pros and cons to either approach and both are common in the literature and provide a good
first exploration of the data. For a general non-technical review of BN modeling applied in
biology see ? ?. A case study in applying BN models to epidemiological data using the

2 The abn package

conjugate BN functionality in abn can be found in ? ?.

2. Searching and model fitting

The package comes with several simulated data sets for use with the examples in the help
files. The data set we use here comprises of ten random variables where each of these is a
factor and is binary.

> library(abn)

> data(sim10varadd);

> head(sim10varadd);

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1 0 1 1 1 1 0 1 0 1 1

2 1 1 1 0 0 1 1 1 1 1

3 0 0 1 0 0 1 1 1 1 1

4 0 0 0 0 0 0 0 1 1 1

5 0 1 0 1 0 1 1 1 0 1

6 0 0 1 0 0 0 1 1 1 1

We now conduct a single heuristic search using a stepwise hill-climbing algorithm where the
search commences from random initial network model. To avoid excessive computation on
overly complex models we impose a limit on the maximum number of parents (arcs go from
parent to child) which each node can have, this should be large enough so that it does not
affect the model search but small enough to sensibly limit the model search space. It is also
possible to further restrict the search space by forbidding certain arcs between variables, this
is given as a matrix with one row for each child node and the columns are parents. This must
be provided as a numeric matrix where a 1 is for the arc to be banned - the search will not
consider any models containing this arc. In the following analyzes we do not ban any arcs.

> banned<-matrix(c(0,0,0,0,0,0,0,0,0,0, ##

+ 0,0,0,0,0,0,0,0,0,0, ##

+ 0,0,0,0,0,0,0,0,0,0, ##

+ 0,0,0,0,0,0,0,0,0,0, ##

+ 0,0,0,0,0,0,0,0,0,0, ##

+ 0,0,0,0,0,0,0,0,0,0, ##

+ 0,0,0,0,0,0,0,0,0,0, ##

+ 0,0,0,0,0,0,0,0,0,0, ##

+ 0,0,0,0,0,0,0,0,0,0, ##

+ 0,0,0,0,0,0,0,0,0,0 ##

+),byrow=TRUE,ncol=10);# 10 x 10 matrix

> rownames(banned)<-names(sim10varadd);# must have rownames set

> colnames(banned)<-names(sim10varadd);# must have colnames set

> set.seed(10000);# only random part is the initial choice of network

> myres<-searchabn(data.df=sim10varadd,banned.m=banned,

+ hyper.params=list(

Fraser I. Lewis 3

+ mean=c(0,0,0,0,0,0,0,0,0,0,0),

+ var=c(1000,1000,1000,1000,1000,

+ 1000,1000,1000,1000,1000,1000)),

+ max.parents=3,init.permuts=10);

initial network: (log) network score = -6457.506054

search iteration...1 new score=-6442.953014

search iteration...2 new score=-6437.488063

search iteration...3 new score=-6432.029875

search iteration...4 new score=-6401.874728

search iteration...5 new score=-6396.717416

search iteration...6 new score=-6391.616027

search iteration...7 new score=-6386.598619

search iteration...8 new score=-6381.680833

search iteration...9 new score=-6376.853649

search iteration...10 new score=-6372.701646

search iteration...11 new score=-6369.532669

search iteration...12 new score=-6366.762068

search iteration...13 new score=-6366.762049

The above analyzes use the default parameter priors of diffuse Gaussian densities with mean
zero and variance of 1000. These priors are fixed across all models in the search process and
therefore it does not make sense for these to be given as informative during a search, but may
be appropriate when fitting a single BN model e.g. using fitabn().

3. Multiple searches

To perform many searches then the following code is appropriate which repeats the above
single search 1000 times (where this is implemented as a separate function at C rather than
R level).

set.seed(10001);

myres.1<-hillsearchabn(data.df=sim10varadd,banned.m=banned,

hyper.params=list(

mean=c(0,0,0,0,0,0,0,0,0,0,0),

var=c(1000,1000,1000,1000,1000,

1000,1000,1000,1000,1000,1000)),

max.parents=3,init.permuts=10, num.searches=1000);

Multiple searches make take many hours to run and such a task is ideal for task farming over
multiple cpus. In this case using R in batch mode is an obvious solution repeating the above
code but using a different seed in each search. Using this approach the search results must
then be recombined and any duplicates removed - since it is theoretically possibly for searches
to start from the same randomly chosen network. This also applies if running all the searches
within a single call to hillsearchabn() as this does not check for duplicate starting networks.
Supposing two such separate “parallel” searches were conducted then the following code could

4 The abn package

be used to combine the results as if they had been conducted in one call to hillsearchabn() and
then also removing duplicates.

all.res<-list();

all.res$init.score<-c(myres.1$init.score,myres.2$init.score);

all.res$final.score<-c(myres.1$final.score,myres.2$final.score);

all.res$init.dag<-c(myres.1$init.dag,myres.2$init.dag);

all.res$final.dag<-c(myres.1$final.dag,myres.2$final.dag);

now remove any duplicate searches

indexes<-uniquenets(all.res$init.dag);

create a list of all results

all.res.f<-list();

all.res.f$init.score<-all.res$init.score[indexes];

all.res.f$final.score<-all.res$final.score[indexes];

all.res.f$init.dag.<-all.res$init.dag[indexes];

all.res.f$final.dag<-all.res$final.dag[indexes];

3.1. Summary and model visualization

After conducting many searches then the results can be summarized by either by choosing the
best network found or else by computing a consensus network, where the latter is produced
by building a network out of all the arcs which appear in at least a minimum proportion
of locally optimal networks. To choose the best single network from the results of a call to
hillsearchabn() and to write the network structure out to a file in an appropriate format for
Graphviz then

best.scores<-which(all.res.f$final.score==max(all.res.f$final.score));

tographviz(all.res.f$final.dag[[best.scores[1]]],outfile="best1.dot");

To view the best single network as a matrix in the R console then simply type
all.res.f$final.dag[[best.scores[1]]], this matrix can then be used with fitabn() to
fit the corresponding BN model to data.

Graphviz is probably the best known tool for plotting and visualizing networks and is available
for free download (and now with an open source form of license, although not GPL) from
www.graphviz.org. There is a graphviz library for R available via the bioconductor project
which requires a separate graphviz installation.

To create a majority consensus network, which comprises of a network constructed of those
arcs present in at least 50% of all locally optimal network, then

see ?prunenets - a side effect is freq.dist of all arcs

mypruneddags<-prunenets(all.res.f$final.dag,

round(0.50*length(all.res.f$final.dag)));

a convenience function for use with apply

myfunc<-function(arg1,threshold,netdata){

if(arg1>=round(threshold*length(netdata$final.dag))){

Fraser I. Lewis 5

return(1);} else {return(0);}}

build a consensus 50% network/matrix

con.50<-apply(mypruneddags$arcs.sum,c(1,2),

FUN=myfunc,threshold=0.50,

netdata=all.res.f);## make reading easier

tographviz(con.50,outfile="con50.dot");#format for reading into graphviz

4. Parameter estimation

We now demonstrate how to estimate the marginal parameters in an additive BN using the
best network found in the single search at the start of Section 2. In this network we find
that, for example, node X7 has X3 as a parent, X5 has X2 as a parent and X6 has X7 as a
parent. Each of these corresponds to a local logistic regression with the parent being a “main
effect” parameter in the classical additive glm sense. As usual we wish to estimate these
parameters to see whether are statistically significantly different from zero, and also examine
the magnitude of their effect on the log odds of the “response variable”, e.g. X7, X5 and X6. To
estimate the marginal densities then the following is sufficient, which estimates the densities
at 1000 equally spaced points between 0 and 2, which is sufficient for these parameters and
were chosen after examining the densities over various ranges.

> mynetwork<-myres[[length(myres)]];#the best network is the last one

> x7.x3<-getmarginal(sim10varadd,mynetwork,whichnode="X7", whichvar="X3",

+ hyper.params=list(

+ mean=c(0,0,0,0,0,0,0,0,0,0,0),

+ var=c(1000,1000,1000,1000,1000,

+ 1000,1000,1000,1000,1000,1000)),

+ post.x=seq(0,2,len=1000), verbose=FALSE);

> x5.x2<-getmarginal(sim10varadd,mynetwork,whichnode="X5", whichvar="X2",

+ hyper.params=list(

+ mean=c(0,0,0,0,0,0,0,0,0,0,0),

+ var=c(1000,1000,1000,1000,1000,

+ 1000,1000,1000,1000,1000,1000)),

+ post.x=seq(0,2,len=1000), verbose=FALSE);

> x6.x7<-getmarginal(sim10varadd,mynetwork,whichnode="X6", whichvar="X7",

+ hyper.params=list(

+ mean=c(0,0,0,0,0,0,0,0,0,0,0),

+ var=c(1000,1000,1000,1000,1000,

+ 1000,1000,1000,1000,1000,1000)),

+ post.x=seq(0,2,len=1000), verbose=FALSE);

>

Figure 1 shows the marginal posterior densities estimated using the Laplace approximation
and with the same default diffuse Gaussian priors as used in the model search. The numerical
values used to create each density are returned from getmarginal() as a two column numer-
ical matrix with the first column the value of the variable (named x) and the second column
the value of the density f(x), (named f), see the getmarginal() help page for more details.

6 The abn package

logit(X7)=X3, logit(X5)=X2, logit(X6)=X7

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Posterior densities

Figure 1: Marginal posterior distributions for parameters in selected nodes

5. Follow-up analyzes via MCMC

So far we have considered exploring the model space to find a good locally optimal BN. Such
analyzes are ideal for initial exploration of multi-dimensional data to narrow down the possi-
ble structural features present. Estimation of the marginal posterior densities as given above
is useful for checking whether the marginal likelihood has not been sufficiently parsimonious
in the model selection (which can be particularly problematic with small data sets). Gener-
ally speaking, however, once a good model has been identified then more detailed modeling
may be appropriate, for example by using other forms of priors on individual parameters or
introducing other complexities such as random effects into the graphical model to account for
grouping effects or other forms of correlation. These are not currently available within the
modeling framework in abn, but it is generally straightforward to implement a model identi-
fied using the model search capabilities in abn into a graphical model within Gibbs sampler
software such as JAGS or WinBUGS, which then allow almost arbitrary levels of additional
complexity. In short, one approach to multivariate analyses is to use BN modeling for initial
explorations through performing numerous model searches, and then once a good model has
been identified then use MCMC to further refine this.

Fraser I. Lewis 7

6. Other features and future directions

The package also includes model search and fitting routines for conjugate multinomial BN
models, whose functions are analogous to those shown above (except without explicit marginal
posterior density estimation). Similar models can be fitted using other R packages such as
deal or bnlearn. In abn the model space for multinomial BNs can be similarly restricted as
above by imposing a limit on the maximum number of parents, and also includes the K2
metric as well as the Bayesian Dirichlet metric, each of which use different parameter priors
and therefore give different marginal likelihood estimates.

While the models shown above only include main effects (in the sense of an additive linear
model) it is straightforward to include interaction terms by simply adding nodes to the model
as additional columns in the model matrix, and as additional columns in the data.frame, so
they are treated simply as additional variables.

Currently the only non-conjugate BN model implemented is the logistic BN model (note
that details of a non-Bayesian equivalent are presented in ? ?), and only for binary data.
This is arguably the simplest useful, non-conjugate additive BN model. It is also typically
possible to discretize continuous or multinomial data into binary data, at least for exploratory
purposes. It is hoped to extend the current functionality to include multinomial variables
and then models comprising categorical and (Gaussian) continuous variables. In the longer
term including more complex structures such that appropriate for ecological count data, e.g.
Poisson and negative binomial distributions, and also models with random effects may be
possible.

Affiliation:

F. I. Lewis
Vetsuisse Faculty
University of Zurich
Winterthurerstrasse 270
Zurich CH-8057
Switzerland
E-mail: fraseriain.lewis@uzh.ch

mailto:fraseriain.lewis@uzh.ch

	Introduction
	Searching and model fitting
	Multiple searches
	Summary and model visualization

	Parameter estimation
	Follow-up analyzes via MCMC
	Other features and future directions

