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This document illustrates the use of coverage diagnostics from the abctools package in
an analysis of the human dataset provided with the abc package. Parameter inference and
model choice analyses are presented. These are similar to the analyses done in the Prangle
et al. (2013) paper on other datasets, but with less demands on time and computational
resources. One of the aims of this document is to illustrate how to produce plots from
package output, so the full details of R commands are included.

1 Background

There follow some excerpts from the abc package help files describing the human dataset.
The full abc package help files and vignettes contain more details, such as of the summary
statistics used.

“Data is provided to estimate the posterior probabilities of classical demographic sce-
narios in three human populations: Hausa, Italian, and Chinese. These three populations
represent the three continents: Africa, Europe, Asia, respectively. par.italy.sim may
then [be] used to estimate the ancestral population size of the European population as-
suming a bottleneck model.”

“The observed statistics were taken from Voight et al. (2005) (Table 1.). Also, the
same input parameters were used as in Voight et al. (2005) to simulate data under the
three demographic models. Simulations were performed using the software ms and the
summary statistics were calculated using sample_stats” [n.b. ms is described in Hudson
(2002) and sample_stats is provided with ms and described in its manual]

“data(human) loads in four R objects: stat.voight is a data frame with 3 rows and
3 columns and contains the observed summary statistics for three human populations,
stat.3pops.sim is also a data frame with 150,000 rows and 3 columns and contains the
simulated summary statistics, models is a vector of character strings of length 150,000
and contains the model indices, par.italy.sim is a data frame with 50,000 rows and 4
columns and contains the parameter values that were used to simulate data under a pop-
ulation bottleneck model. The corresponding summary statistics can be subsetted from
the stat.3pops.sim object as subset(stat.3pops.sim, subset=models=="bott").”

2 Parameter inference

We focus on parameter inference under the bottleneck model using the stat.voight ["italian",]
observations. First we create a dataframe containing the summary statistics simulated
under this model.



> library(abctools)
> data (human)
> stat.italy.sim <- subset(stat.3pops.sim, subset=models=="bott")

Next we perform an initial ABC rejection sampling analysis.

> abc.out <- abc(target = stat.voight["italian", ], param = par.italy.sim,
+ sumstat = stat.italy.sim, tol = 0.05, method = "rejection")

Amongst other information, the abc function returns details of the distance between each
simulated dataset and the observations. This information is important to the coverage
diagnostic analysis. Firstly it allows calculation of the ABC threshold € equivalent to the
5% tolerance level used above:

> nacc <- nrow(par.italy.sim)*0.05
> sort(abc.out$dist, partial=nacc) [nacc]

[1] 0.7074183

Secondly, distance information can be used to find an interesting range of € values. Here,
the e values to be investigated cover the full range of distances which can be achieved
from these simulations (Equally spaced values on a log scale are used). This is in order
to illustrate some properties of the coverage diagnostics. In practice the lower end of
this range would usually be of most interest, as these produce the most accurate ABC
analyses.

> summary (abc.out$dist)

Min. 1st Qu. Median Mean 3rd Qu. Max .
0.06088 1.31100 1.84900 1.99800 2.48600 10.07000

> epsvec <- seq(log(0.06), log(10), length.out=15)
> epsvec <- exp(epsvec)

The coverage diagnostics are calculated by performing ABC analyses on many test sets
i.e. datasets simulated from known parameter values (also sometimes referred to as
pseudo-observed datasets.) These are selected from amongst those already simulated in
stat.italy.sim. Prangle et al. (2013) recommend using the rows with minimal distance
to the observed data as test data sets. Our initial ABC analysis output can be used to
determine these. As a comparison we will also look at the performance of choosing test
data sets by a simple random sample.

> set.seed(1)
> testsets.anywhere <- sample(1:50000, 200)
> testsets.neardata <- order(abc.out$dist) [1:200]

Now the abctools package code is used. The cov.pi command performs ABC analyses
using each of the test sets as the observerations and several choices of €. Each analysis
uses the same simulated parameter values and data sets (after removing the row currently
being used as observations). The results are used to compute diagnostic statistics. The
required ABC analyses are run in parallel using the parallel package (This can be disabled
by setting multicore=FALSE.)



> cabc.out.anywhere <- cov.pi(param=par.italy.sim, sumstat=stat.italy.sim,

+ testsets=testsets.anywhere, eps=epsvec,

+ diagnostics=c("KS", "CGR"), multicore=TRUE, cores=4)
> cabc.out.neardata <- cov.pi(param=par.italy.sim, sumstat=stat.italy.sim,

+ testsets=testsets.neardata, eps=epsvec,

+ diagnostics=c("KS", "CGR"), multicore=TRUE, cores=4)

The coverage property is a desirable property of a method producing approximations
to a Bayesian posterior. It focuses on the case of a scalar parameter. For multivariate
parameters, each can be examined separately. Roughly speaking, the coverage property
asserts that credible intervals have the claimed coverage levels. For example 95% of 95%
credible intervals should contain the true parameters values. An equivalent condition is
that the cdf values of the true parameter values under the approximate posteriors (refered
to po values) are uniformly distributed on [0, 1]. This is what the cov.pi command tests.

For each ABC analysis it performs, cov.pi records a vector of estimated py values of
the correct parameters. A Bayesian estimator is used which is similar to the empirical
cdf, but avoids the extreme values of 0 and 1, as some later calculations cannot cope with
these. These estimators are recorded in one component of cov.pi output, raw.

> head(cabc.out.anywhere$raw)

testset eps nacc Ne a duration start
1 13276 0.06 1 0.6666667 0.6666667 0.3333333 0.3333333
2 18606 0.06 3 0.8000000 0.4000000 0.8000000 0.2000000
3 28642 0.06 1 0.6666667 0.3333333 0.6666667 0.6666667
4 45408 0.06 2 0.5000000 0.5000000 0.2500000 0.7500000
5 10084 0.06 0 0.5000000 0.5000000 0.5000000 0.5000000
6 44915 0.06 3 0.2000000 0.4000000 0.6000000 0.6000000

Each row corresponds to one combination of test set and €. These values are recorded
as the first two columns. The third column gives the number of acceptances in the ABC
analysis, and the remaining columns give p, estimates for each parameter (column titles
giving the parameter names).

The cov.pi commands above have also computed several diagnostic statistics to test
whether the py estimates are roughly uniform on [0, 1]. For each combination of parameter,
€ and test statistic, a p-value of the statistic is given under the assumption that the
coverage property holds. These are recorded in another component of the output, diag.

> tail(cabc.out.anywhere$diag)

eps parameter pvalue test
115 6.938994 duration 0.55279077 CGR
116 6.938994 start 0.90431836 CGR
117 10.000000 Ne 0.03070583 CGR
118 10.000000 a 0.49117877 CGR
119 10.000000 duration 0.54812453 CGR
120 10.000000 start 0.90639422 CGR

The purpose of the diagnostics statistics is that they can easily be plotted to judge when
there is evidence to reject the hypothesis that the coverage property holds, as follows.



library(ggplot2)
diag.all <- rbind(cbind(cabc.out.anywhere$diag, V="Anywhere"),
cbind(cabc.out.neardata$diag, V="Near data"))
gplot (x=eps, y=pvalue, colour=test, facets=parameter~V, data=diag.all,
log="y") + geom_line()
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This figure illustrates several points of interest. Firstly, using a random sample of test
sets does not reject the coverage hypothesis for large e. In fact it can be proved (Prangle
et al., 2013) that for this choice of test sets the coverage property holds under the prior
distribution, which is the ABC target distribution for sufficiently large . Secondly, using
a random sample of test sets cannot assess as wide a range of € values as the alternative
choice (i.e. fewer points are plotted in the left column.) This is because for the smallest e
value some of the test data sets produce too small an ABC sample to produce trustworthy
estimates of py values and so these diagnostics are reported as NA (The threshold of
acceptances below which this happens can be set by the cov.pi argument nacc.min. Its
default is 20.) These are the main reasons that we recommend using test sets chosen near
the data.

Another point is that there is some disagreement between the diagnostics. For ex-
ample, the bottom right panel shows that for ¢ = 10 the coverage property for the start
parameter is rejected by one diagnostic only. We argue in Prangle et al. (2013) that
no test statistic can be expected to detect all types of deviation from uniformity so the
raw results should be investigated for interesting values of €. Here, for test sets near the



observed data, we investigate ¢ = 0.26 (the smallest value that produced enough accep-
tances), 0.77 (the closest value to that used in the analysis of the real data), and 10 (to
investigate the disagreement just mentioned).

> temp <- subset(cabc.out.neardata$raw, eps Jinj, epsvec[c(5,8,15)])

> parnames <- colnames(par.italy.sim)

> temp2 <- reshape(temp, varying=list(parnames), v.names="p0",

+ direction="long", timevar="parameter", times=parnames)
> temp2%eps <- signif (temp2%eps,2)

> ggplot(temp2, aes(x=p0)) +

+ geom_histogram(aes(y=..density..), breaks=0:10/10) +

+  facet_grid(parameter ~eps)
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As € is reduced, the histograms become closer to the uniform pdf, in line with the be-
haviour of the KS diagnostic in the previous figure. However even the choice of ¢ = 0.26
appears too large for coverage to hold for all parameters. Note that for ¢ = 10, the
histogram for the start parameter shows a deviation from uniformity: the estimated py
values are biased toward smaller values. The KS diagnostic has detected this deviation
while the CGR diagnostic has not.

The analysis can be repeated for ABC followed by regression post-processing. The
plots below show ¢ = 0.77 is a roughly acceptable choice in this case.

> cabc.out.corr<- cov.pi(param=par.italy.sim, sumstat=stat.italy.sim,
+ testsets=testsets.neardata, eps=epsvec,
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method="loclinear", diagnostics=c("KS", "CGR"),
multicore=TRUE, cores=4)
diag.all <- rbind(cbind(cabc.out.neardata$diag, method="Rejection"),
cbind(cabc.out.corr$diag, method="Local linear"))
gplot (x=eps, y=pvalue, colour=test, facets=parameter method, data=diag.all,
log="y") + geom_line()
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temp <- subset(cabc.out.corr$raw, eps Jinj, epsvec[c(5,8,15)])
temp2 <- reshape(temp, varying=list(parnames), v.names="p0", direction="long",
timevar="parameter", times=parnames)
temp2%eps <- signif (temp2%eps,2)
ggplot (temp2, aes(x=p0)) + geom_histogram(aes(y=..density..), breaks=0:10/10) +
facet_grid(parameter ~eps)
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3 Model choice

The abctools package can be used similarly for model choice. Here we consider model
choice between three candidate models using the same observed data as before. Again
we start by performing an ABC rejection sampling analysis (This is done with the abc
command rather than postpr so that distances from simulated to observed data are
available as a byproduct.)

> mod.num <- as.numeric(factor(models))
> abc.mod <- abc(target = stat.voight["italian", ], param=mod.num,
+ sumstat=stat.3pops.sim, tol = 0.05, method = "rejection")

As before, the computed distances are used to find an interesting range of € values and
choose test data sets.

set.seed(2)

testsets.anywhere <- sample(1:1.5E5, 200)
testsets.neardata <- order(abc.mod$dist) [1:200]
##Which value of epsilon was used in analysis?
nacc <- 1.5E5%0.05

sort (abc.mod$dist, partial=nacc) [nacc]

vV V.V Vv VvV

[1] 1.011973



> ##Find interesting range of epsilon values
> summary (abc.mod$dist)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.05862 1.95100 2.79100 2.76200 3.50800 11.50000

> epsvec <- seq(log(0.06), log(12), length.out=15)
> epsvec <- exp(epsvec)

Similar syntax to the parameter inference case is used to perform the ABC analyses and
the calculation and plotting of diagnostics. A rough definition of the coverage property
for model choice is given below: see Prangle et al. (2013) for more discussion.

cabc.mod.anywhere <- cov.mc(index=models, sumstat=stat.3pops.sim,
testsets=testsets.anywhere, eps=epsvec,
diagnostics=c("freq", "loglik.binary",
"loglik.multi"),
multicore=TRUE, cores=4)
cabc.mod.neardata <- cov.mc(index=models, sumstat=stat.3pops.sim,
testsets=testsets.neardata, eps=epsvec,
diagnostics=c("freq", "loglik.binary",
"loglik.multi"),
multicore=TRUE, cores=4)
diag.all <- rbind(cbind(cabc.mod.anywhere$diag, V="Anywhere"),
cbind(cabc.mod.neardata$diag, V="Near data"))
gplot (x=eps, y=pvalue, colour=test, facets=parameter~V, data=diag.all,

>
+
+
+
+
>
+
+
+
+
>
+
>
+ log="y") + geom_line()
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The freq, loglik.binary and loglik.multi diagnostics correspond to the test statistics U,V
and W in Prangle et al. (2013). The first two of these test coverage for one model in
particular, so we show three rows considering each model in turn. On the other hand,
loglik.multi tests coverage for all models, so it is shown in a separate row. As for the
parameter inference case, using test sets sampled from the prior does not reject coverage
for large € values, and choosing test sets close to the data is recommended. The plots
suggest € = 0.40 is sufficient for coverage to approximately hold.

The raw data now take a different form. For each combination of test data set and e
value, the estimated probability of each model is given (as well as number of acceptances):

> tail(cabc.mod.anywhere$raw)

testset eps nacc bott const exp
2995 75360 12 149993 0.3333333 0.3333200 0.3333467
2996 30194 12 149999 0.3333333 0.3333333 0.3333333
2997 29920 12 149993 0.3333333 0.3333200 0.3333467
2998 26686 12 149993 0.3333333 0.3333200 0.3333467
2999 41026 12 149998 0.3333289 0.3333356 0.3333356
3000 19568 12 149999 0.3333333 0.3333333 0.3333333

Under the coverage property, the true probability that a model occurs conditional on
an estimated probability z, should equal zy, and the diagnostics test this. Testing this
property is harder than the continuous parameter case, and the diagnostics are intended



as a starting point for analysis that should be treated with caution. Raw plots of results
for a particular € value and target model can be plotted using the mc.ci command. This
splits the range of estimated model probabilities [0, 1] into intervals and estimates the
conditional true probability of the model for each interval. When coverage holds, the
95% credible intervals shown should usually contain the 45 degree line. Colours are used
in the plot to distinguish results for adjoining intervals.

> par(mfcol=c(3,3))

> for (i in c(6,8,15)) {

mc.ci(cabc.mod.neardata$raw, eps=epsvec[i], modname="bott",
modtrue=models)

title(main=paste("eps=", signif(epsvec[il],2)))

if (i==15) mtext("Bottleneck'", side=4, line=1)

mc.ci(cabc.mod.neardata$raw, eps=epsvec[i], modname="const",
modtrue=models)

if (i==15) mtext("Constant", side=4, line=1)

mc.ci(cabc.mod.neardata$raw, eps=epsvec[i], modname="exp",
modtrue=models)

if (i==15) mtext ("Exponential", side=4, line=1)
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The plots illustrate that coverage fails to hold for ¢ = 12. Here all predicted probabilities
roughly equal 1/3, the prior weight, which is incorrect. The plots are not conclusive here
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for smaller € and serve only as a starting point for application specific further investigation.
One way to do so is to use a different partition of [0,1]. mc.ci also supports intervals
based on quantiles of predicted probabilities, which in this case are harder to interpret
visually but do reveal some possible deviations from coverage for e = 0.85:

> par(mfcol=c(3,3))
> for (i in c(6,8,15)) {
+ mc.ci(cabc.mod.neardata$raw, eps=epsvec[i], modname="bott",

+ modtrue=models, bintype="quantile")
+ title(main=paste("eps=", signif(epsvec[i],2)))
+ if (i==15) mtext("Bottleneck", side=4, line=1)
+ mc.ci(cabc.mod.neardata$raw, eps=epsvec[i], modname="const",
+ modtrue=models, bintype="quantile")
+ if (i==15) mtext("Constant", side=4, line=1)
+ mc.ci(cabc.mod.neardata$raw, eps=epsvec[i], modname="exp",
+ modtrue=models, bintype="quantile")
+ if (i==15) mtext("Exponential", side=4, line=1)
+ }
eps= 0.85 eps=12
= 1 4
3 3 3 3 e D
2 - : - 2 - c
2 < | 2 < 2 = Qo
o o Ko} o e} o ::
o - o - o - )
o | o ] o m
© T T T T o T T T T © T T 17T T T T°1
0.85 090 0.95 1.00 0.80 0.90 0.330 0.333 0.336
Predicted Predicted Predicted
1 N 1 R
o _| © _] «© c
g <] g e g o] g
g < g = g < | @
8§ ° 1 . g ° | 5 ° 4 Q
o o | o | . O
© o T T T T © T 171 T 1T T 1
0.02 0.06 0.10 0.14 0.05 0.15 0.330 0.333 0.336
Predicted Predicted Predicted
[ee] ] e} [ee] ] E
T S 3 o 3 S ] IS
2 - 2 2 - @
2 < 2 < 2 = | =
a o a o o o o
o - o o - %
o o o
SH T T T T S] S T T T T T T L
-1.0 0.0 05 10 0e+00 4e-04 8e-04 0.330 0.333 0.336
Predicted Predicted Predicted
References

Hudson, R. R. (2002). Generating samples under a Wright-Fisher neutral model of genetic
variation. Bioinformatics, 18:337-338.

11



Prangle, D., Blum, M. G. B., Popovic, G., and Sisson, S. A. (2013). Diagnostic
tools for approximate Bayesian computation using the coverage property. Preprint.
arxiv.org/abs/1301.3166.

Voight, B. F., Adams, A. M., Frisse, L. A., Qian, Y., Hudson, R. R., and Di Rienzo, A.
(2005). Interrogating multiple aspects of variation in a full resequencing data set to
infer human population size changes. PNAS, 102:18508-18513.

12



