Consider now a \(d\)-dimensional stochastic process \(X_{t}\) defined on a probability space \((\Omega, \mathfrak{F},\mathbb{P})\). We say that the bridge associated to \(X_{t}\) conditioned to the event \(\{X_{T}= a\}\) is the process: \[ \{\tilde{X}_{t}, t_{0} \leq t \leq T \}=\{X_{t}, t_{0} \leq t \leq T: X_{T}= a \} \] where \(T\) is a deterministic fixed time and \(a \in \mathbb{R}^d\) is fixed too.
bridgesdekd()
functionsThe (S3) generic function bridgesdekd()
(where k=1,2,3
) for simulation of 1,2 and 3-dim bridge stochastic differential equations,It? or Stratonovich type, with different methods. The main arguments consist:
drift
and diffusion
coefficients as R expressions that depend on the state variable x
(y
and z
) and time variable t
.N
.M
(default: M=1
).x0
at initial time t0
.y
final time T
Dt
(default: Dt=(T-t0)/N
).type="ito"
for Ito or type="str"
for Stratonovich (by default type="ito"
).method
(default method="euler"
).By Monte-Carlo simulations, the following statistical measures (S3 method
) for class bridgesdekd()
(where k=1,2,3
) can be approximated for the process at any time \(t \in [t_{0},T]\) (default: at=(T-t0)/2
):
mean
.moment
with order=2
and center=TRUE
.Median
.Mode
.quantile
.min
and max
.skewness
and kurtosis
.cv
.moment
.summary
.We can just make use of the rsdekd()
function (where k=1,2,3
) to build our random number for class bridgesdekd()
(where k=1,2,3
) at any time \(t \in [t_{0},T]\). the main arguments consist:
object
an object inheriting from class bridgesdekd()
(where k=1,2,3
).at
time between \(s=t0\) and \(t=T\).The function dsde()
(where k=1,2,3
) approximate transition density for class bridgesdekd()
(where k=1,2,3
), the main arguments consist:
object
an object inheriting from class bridgesdekd()
(where k=1,2,3
).at
time between \(s=t0\) and \(t=T\).pdf
probability density function Joint
or Marginal
.The following we explain how to use this functions.
bridgesde1d()
Assume that we want to describe the following bridge sde in It? form: \[\begin{equation}\label{eq0166} dX_t = \frac{1-X_t}{1-t} dt + X_t dW_{t},\quad X_{t_{0}}=3 \quad\text{and}\quad X_{T}=1 \end{equation}\] We simulate a flow of \(1000\) trajectories, with integration step size \(\Delta t = 0.001\), and \(x_0 = 3\) at time \(t_0 = 0\), \(y = 1\) at terminal time \(T=1\).
R> f <- expression((1-x)/(1-t))
R> g <- expression(x)
R> mod <- bridgesde1d(drift=f,diffusion=g,x0=3,y=1,M=1000,method="milstein")
R> mod
Itô Bridge Sde 1D:
| dX(t) = (1 - X(t))/(1 - t) * dt + X(t) * dW(t)
Method:
| First-order Milstein scheme
Summary:
| Size of process | N = 1001.
| Crossing realized | C = 974 among 1000.
| Initial value | x0 = 3.
| Ending value | y = 1.
| Time of process | t in [0,1].
| Discretization | Dt = 0.001.
Monte-Carlo Statistics for X(t) at time t = 0.5
| Crossing realized 974 among 1000
Mean 1.98205
Variance 1.48837
Median 1.67933
Mode 1.28981
First quartile 1.15515
Third quartile 2.48642
Minimum 0.38182
Maximum 10.27865
Skewness 1.94209
Kurtosis 8.81024
Coef-variation 0.61552
3th-order moment 3.52644
4th-order moment 19.51694
5th-order moment 107.39652
6th-order moment 688.14117
In Figure 1, we present the flow of trajectories, the mean path (red lines) of solution of \(X_{t}|X_{0}=3,X_{T}=1\):
R> plot(mod,ylab=expression(X[t]))
R> lines(time(mod),apply(mod$X,1,mean),col=2,lwd=2)
R> legend("topleft","mean path",inset = .01,col=2,lwd=2,cex=0.8,bty="n")
Bridge sde 1D
Figure 2, show approximation results for \(m(t)=\text{E}(X_{t}|X_{0}=3,X_{T}=1)\) and \(S(t)=\text{V}(X_{t}|X_{0}=3,X_{T}=1)\):
R> m <- apply(mod$X,1,mean)
R> S <- apply(mod$X,1,var)
R> out <- data.frame(m,S)
R> matplot(time(mod), out, type = "l", xlab = "time", ylab = "", col=2:3,lwd=2,lty=2:3,las=1)
R> legend("topright",c(expression(m(t),S(t))),col=2:3,lty=2:3,lwd=2,bty="n")
The following statistical measures (S3 method
) for class bridgesde1d()
can be approximated for the \(X_{t}|X_{0}=3,X_{T}=1\) process at any time \(t\), for example at=0.55
:
[1] 1.9035
[1] 1.5899
[1] 1.5775
[1] 1.1897
0% 25% 50% 75% 100%
0.32299 1.07949 1.57748 2.35522 12.37977
[1] 14.852
[1] 2.6276
[1] 0.66275
[1] 0.32299
[1] 12.38
[1] 37.619
[1] 125.48
The result summaries of the \(X_{t}|X_{0}=3,X_{T}=1\) process at time \(t=0.55\):
Monte-Carlo Statistics for X(t) at time t = 0.55
| Crossing realized 974 among 1000
Mean 1.90351
Variance 1.59150
Median 1.57748
Mode 1.18973
First quartile 1.07949
Third quartile 2.35522
Minimum 0.32299
Maximum 12.37977
Skewness 2.62755
Kurtosis 14.85244
Coef-variation 0.66275
3th-order moment 5.27547
4th-order moment 37.61937
5th-order moment 292.25260
6th-order moment 2544.14187
Hence we can just make use of the rsde1d()
function to build our random number generator for \(X_{t}|X_{0}=3,X_{T}=1\) at time \(t=0.55\):
[1] 2.85901 0.93959 1.48894 0.47225 2.11850 0.72946 0.71184 1.64045
[9] 1.20608 2.10977
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.323 1.079 1.577 1.903 2.355 12.380
Display the random number generator for \(X_{t}|X_{0}=3,X_{T}=1\), see Figure 3:
R> plot(time(mod),mod$X[,1],type="l",ylab="X(t)",xlab="time",axes=F,lty=3)
R> points(s,x[1],pch=19,col=2,cex=0.5)
R> lines(c(s,s),c(0,x[1]),lty=2,col=2)
R> lines(c(0,s),c(x[1],x[1]),lty=2,col=2)
R> axis(1, s, bquote(at==.(s)),col=2,col.ticks=2)
R> axis(2, x[1], bquote(X[t==.(s)]),col=2,col.ticks=2)
R> legend('topright',col=2,pch=19,legend=bquote(X[t==.(s)]==.(x[1])),bty = 'n')
R> box()
The function dsde1d()
can be used to show the kernel density estimation for \(X_{t}|X_{0}=3,X_{T}=1\) at time \(t=0.55\) (hist=TRUE
based on truehist()
function in MASS package):
Density of X(t-t0)|X(t0) = 3, X(T) = 1 at time t = 0.55
Data: x (974 obs.); Bandwidth 'bw' = 0.2164
x f(x)
Min. :-0.3261 Min. :0.00000
1st Qu.: 3.0126 1st Qu.:0.00095
Median : 6.3514 Median :0.00547
Mean : 6.3514 Mean :0.07480
3rd Qu.: 9.6901 3rd Qu.:0.05867
Max. :13.0289 Max. :0.50888
Approximate the transitional densitie of \(X_{t}|X_{0}=3,X_{T}=1\) at \(t-s = \{0.25,0.75\}\):
R> plot(dsde1d(mod,at=0.75))
R> plot(dsde1d(mod,at=0.25),add=TRUE)
R> legend('topright',col=c('#0000FF4B','#FF00004B'),pch=15,legend=c("t-s=0.25","t-s=0.75"),bty = 'n')
Transitional densitie at time \(t-s = 0.25,0.75\)
bridgesde2d()
Assume that we want to describe the following \(2\)-dimensional bridge SDE’s in Stratonovich form:
\[\begin{equation}\label{eq:09} \begin{cases} dX_t = -(1+Y_{t}) X_{t} dt + 0.2 (1-Y_{t})\circ dW_{1,t},\quad X_{t_{0}}=1 \quad\text{and}\quad X_{T}=1\\ dY_t = -(1+X_{t}) Y_{t} dt + 0.1 (1-X_{t}) \circ dW_{2,t},\quad Y_{t_{0}}=-0.5 \quad\text{and}\quad Y_{T}=0.5 \end{cases} \end{equation}\]
We simulate a flow of \(1000\) trajectories, with integration step size \(\Delta t = 0.01\), and using Runge-Kutta method order 1:
R> fx <- expression(-(1+y)*x , -(1+x)*y)
R> gx <- expression(0.2*(1-y),0.1*(1-x))
R> mod2 <- bridgesde2d(drift=fx,diffusion=gx,x0=c(1,-0.5),y=c(1,0.5),Dt=0.01,M=1000,type="str",method="rk1")
R> mod2
Stratonovich Bridge Sde 2D:
| dX(t) = -(1 + Y(t)) * X(t) * dt + 0.2 * (1 - Y(t)) o dW1(t)
| dY(t) = -(1 + X(t)) * Y(t) * dt + 0.1 * (1 - X(t)) o dW2(t)
Method:
| Runge-Kutta method with order 1
Summary:
| Size of process | N = 1001.
| Crossing realized | C = 996 among 1000.
| Initial values | x0 = (1,-0.5).
| Ending values | y = (1,0.5).
| Time of process | t in [0,10].
| Discretization | Dt = 0.01.
Monte-Carlo Statistics for (X(t),Y(t)) at time t = 5
| Crossing realized 996 among 1000
X Y
Mean 0.00687 0.00304
Variance 0.02097 0.00521
Median 0.00925 0.00291
Mode 0.01899 0.00049
First quartile -0.08950 -0.04446
Third quartile 0.10620 0.05169
Minimum -0.48106 -0.26840
Maximum 0.45477 0.27567
Skewness -0.01526 -0.05365
Kurtosis 2.99882 3.31363
Coef-variation 21.08027 23.77779
3th-order moment -0.00005 -0.00002
4th-order moment 0.00132 0.00009
5th-order moment -0.00001 0.00000
6th-order moment 0.00014 0.00000
In Figure 6, we present the flow of trajectories of \(X_{t}|X_{0}=1,X_{T}=1\) and \(Y_{t}|Y_{0}=-0.5,Y_{T}=0.5\):
Bridge sde 2D
Figure 7, show approximation results for \(m_{1}(t)=\text{E}(X_{t}|X_{0}=1,X_{T}=1)\), \(m_{2}(t)=\text{E}(Y_{t}|Y_{0}=-0.5,Y_{T}=0.5)\),and \(S_{1}(t)=\text{V}(X_{t}|X_{0}=1,X_{T}=1)\), \(S_{2}(t)=\text{V}(Y_{t}|Y_{0}=-0.5,Y_{T}=0.5)\), and \(C_{12}(t)=\text{COV}(X_{t},Y_{t}|X_{0}=1,Y_{0}=-0.5,X_{T}=1,Y_{T}=0.5)\):
R> m1 <- apply(mod2$X,1,mean)
R> m2 <- apply(mod2$Y,1,mean)
R> S1 <- apply(mod2$X,1,var)
R> S2 <- apply(mod2$Y,1,var)
R> C12 <- sapply(1:dim(mod2$X)[1],function(i) cov(mod2$X[i,],mod2$Y[i,]))
R> out2 <- data.frame(m1,m2,S1,S2,C12)
R> matplot(time(mod2), out2, type = "l", xlab = "time", ylab = "", col=2:6,lwd=2,lty=2:6,las=1)
R> legend("top",c(expression(m[1](t),m[2](t),S[1](t),S[2](t),C[12](t))),col=2:6,lty=2:6,lwd=2,bty="n")
The following statistical measures (S3 method
) for class bridgesde2d()
can be approximated for the \(X_{t}|X_{0}=1,X_{T}=1\) and \(Y_{t}|Y_{0}=-0.5,Y_{T}=0.5\) process at any time \(t\), for example at=6.75
:
[1] 0.0287775 0.0091243
[1] 0.0193018 0.0045472
[1] 0.0276037 0.0094694
[1] 0.0073237 0.0145955
$x
0% 25% 50% 75% 100%
-0.483710 -0.067725 0.027604 0.122543 0.473686
$y
0% 25% 50% 75% 100%
-0.1956590 -0.0347267 0.0094694 0.0554088 0.2198906
[1] 3.0214 3.0475
[1] 0.029355 0.018179
[1] 4.8302 7.3942
[1] -0.48371 -0.19566
[1] 0.47369 0.21989
[1] 0.001127918 0.000063139
[1] 0.001233587 0.000065621
The result summaries of the \(X_{t}|X_{0}=1,X_{T}=1\) and \(Y_{t}|Y_{0}=-0.5,Y_{T}=0.5\) process at time \(t=6.75\):
Monte-Carlo Statistics for (X(t),Y(t)) at time t = 6.75
| Crossing realized 996 among 1000
X Y
Mean 0.02878 0.00912
Variance 0.01932 0.00455
Median 0.02760 0.00947
Mode 0.00732 0.01460
First quartile -0.06773 -0.03473
Third quartile 0.12254 0.05541
Minimum -0.48371 -0.19566
Maximum 0.47369 0.21989
Skewness 0.02935 0.01818
Kurtosis 3.02141 3.04746
Coef-variation 4.83019 7.39417
3th-order moment 0.00008 0.00001
4th-order moment 0.00113 0.00006
5th-order moment 0.00001 0.00000
6th-order moment 0.00011 0.00000
Hence we can just make use of the rsde2d()
function to build our random number generator for the couple \(X_{t},Y_{t}|X_{0}=1,Y_{0}=-0.5,X_{T}=1,Y_{T}=0.5\) at time \(t=6.75\):
x y
1 0.194766 -0.080807
2 -0.115444 -0.067434
3 0.061045 -0.114263
4 -0.211655 -0.073105
5 -0.179774 0.032211
6 0.042803 -0.073156
7 0.102801 -0.087403
8 0.177113 -0.065050
9 0.448498 0.021871
10 -0.084539 -0.042989
x y
Min. :-0.4837 Min. :-0.19566
1st Qu.:-0.0677 1st Qu.:-0.03473
Median : 0.0276 Median : 0.00947
Mean : 0.0288 Mean : 0.00912
3rd Qu.: 0.1225 3rd Qu.: 0.05541
Max. : 0.4737 Max. : 0.21989
Display the random number generator for the couple \(X_{t},Y_{t}|X_{0}=1,Y_{0}=-0.5,X_{T}=1,Y_{T}=0.5\), see Figure 8:
R> plot(ts.union(mod2$X[,1],mod2$Y[,1]),col=1:2,lty=3,plot.type="single",type="l",ylab= "",xlab="time",axes=F)
R> points(s,x2$x[1],pch=19,col=3,cex=0.8)
R> points(s,x2$y[1],pch=19,col=4,cex=0.8)
R> lines(c(s,s),c(-10,x2$x[1]),lty=2,col=6)
R> lines(c(0,s),c(x2$x[1],x2$x[1]),lty=2,col=3)
R> lines(c(0,s),c(x2$y[1],x2$y[1]),lty=2,col=4)
R> axis(1, s, bquote(at==.(s)),col=6,col.ticks=6)
R> axis(2, x2$x[1], bquote(X[t==.(s)]),col=3,col.ticks=3)
R> axis(2, x2$y[1], bquote(Y[t==.(s)]),col=4,col.ticks=4)
R> legend('topright',legend=bquote(c(X[t==.(s)]==.(x2$x[1]),Y[t==.(s)]==.(x2$y[1]))),bty = 'n')
R> box()
For each SDE type and for each numerical scheme, the density of \(X_{t}|X_{0}=1,X_{T}=1\) and \(Y_{t}|Y_{0}=-0.5,Y_{T}=0.5\) at time \(t=6.75\) are reported using dsde2d()
function, see e.g. Figure 9:
Marginal density of X(t-t0)|X(t0) = 1, X(T) = 1 at time t = 6.75
Data: x (996 obs.); Bandwidth 'bw' = 0.03145
x f(x)
Min. :-0.57806 Min. :0.00014
1st Qu.:-0.29153 1st Qu.:0.02891
Median :-0.00501 Median :0.32700
Mean :-0.00501 Mean :0.87168
3rd Qu.: 0.28151 3rd Qu.:1.70604
Max. : 0.56803 Max. :2.77730
Marginal density of Y(t-t0)|Y(t0) = -0.5, Y(T) = 0.5 at time t = 6.75
Data: y (996 obs.); Bandwidth 'bw' = 0.01522
y f(y)
Min. :-0.241315 Min. :0.0004
1st Qu.:-0.114600 1st Qu.:0.1648
Median : 0.012116 Median :1.0318
Mean : 0.012116 Mean :1.9710
3rd Qu.: 0.138831 3rd Qu.:3.6994
Max. : 0.265547 Max. :5.9032
Created using dsde2d()
plotted in (x, y)-space with dim = 2
. A contour
and image
plot of density obtained from a realization of the couple \(X_{t},Y_{t}|X_{0}=1,Y_{0}=-0.5,X_{T}=1,Y_{T}=0.5\) at time t=6.75
.
Joint density of (X(t-t0),Y(t-t0)|X(t0)=1,Y(t0)=-0.5,X(T)=1,Y(T)=0.5) at time t = 6.75
Data: (x,y) (2 x 996 obs.);
x y f(x,y)
Min. :-0.48371 Min. :-0.195659 Min. : 0.0000
1st Qu.:-0.24436 1st Qu.:-0.091772 1st Qu.: 0.1040
Median :-0.00501 Median : 0.012116 Median : 0.6052
Mean :-0.00501 Mean : 0.012116 Mean : 2.4535
3rd Qu.: 0.23434 3rd Qu.: 0.116003 3rd Qu.: 3.2169
Max. : 0.47369 Max. : 0.219891 Max. :15.5664
R> plot(denJ,display="contour",main="Bivariate Transition Density at time t=6.755")
R> plot(denJ,display="image",main="Bivariate Transition Density at time t=6.755")
A \(3\)D plot of the transition density at \(t=6.75\) obtained with:
We approximate the bivariate transition density over the set transition horizons \(t\in [1,9]\) with \(\Delta t = 0.005\) using the code:
bridgesde3d()
Assume that we want to describe the following bridges SDE’s (3D) in It? form:
\[\begin{equation} \begin{cases} dX_t = -4 (1+X_{t}) Y_{t} dt + 0.2 dW_{1,t},\quad X_{t_{0}}=0 \quad\text{and}\quad X_{T}=0\\ dY_t = 4 (1-Y_{t}) X_{t} dt + 0.2 dW_{2,t},\quad Y_{t_{0}}=-1 \quad\text{and}\quad Y_{T}=-2\\ dZ_t = 4 (1-Z_{t}) Y_{t} dt + 0.2 dW_{3,t},\quad Z_{t_{0}}=0.5 \quad\text{and}\quad Z_{T}=0.5 \end{cases} \end{equation}\]
We simulate a flow of \(1000\) trajectories, with integration step size \(\Delta t = 0.001\).
R> fx <- expression(-4*(1+x)*y, 4*(1-y)*x, 4*(1-z)*y)
R> gx <- rep(expression(0.2),3)
R> mod3 <- bridgesde3d(x0=c(0,-1,0.5),y=c(0,-2,0.5),drift=fx,diffusion=gx,M=1000)
R> mod3
Itô Bridge Sde 3D:
| dX(t) = -4 * (1 + X(t)) * Y(t) * dt + 0.2 * dW1(t)
| dY(t) = 4 * (1 - Y(t)) * X(t) * dt + 0.2 * dW2(t)
| dZ(t) = 4 * (1 - Z(t)) * Y(t) * dt + 0.2 * dW3(t)
Method:
| Euler scheme with order 0.5
Summary:
| Size of process | N = 1001.
| Crossing realized | C = 1000 among 1000.
| Initial values | x0 = (0,-1,0.5).
| Ending values | y = (0,-2,0.5).
| Time of process | t in [0,1].
| Discretization | Dt = 0.001.
Monte-Carlo Statistics for (X(t),Y(t),Z(t)) at time t = 0.5
| Crossing realized 1000 among 1000
X Y Z
Mean 0.69964 0.50782 0.10111
Variance 0.00888 0.00727 0.01506
Median 0.69431 0.50637 0.11076
Mode 0.66826 0.48946 0.13381
First quartile 0.63724 0.44969 0.02482
Third quartile 0.76375 0.56653 0.18193
Minimum 0.41309 0.20705 -0.36741
Maximum 0.99111 0.73060 0.45619
Skewness 0.12460 -0.03772 -0.32465
Kurtosis 3.01795 2.84608 3.41476
Coef-variation 0.13469 0.16790 1.21361
3th-order moment 0.00010 -0.00002 -0.00060
4th-order moment 0.00024 0.00015 0.00077
5th-order moment 0.00001 0.00000 -0.00010
6th-order moment 0.00001 0.00000 0.00007
For plotting (back in time) using the command plot
, and plot3D
in space the results of the simulation are shown in Figure 12:
Bridge sde 3D
Figure 13, show approximation results for \(m_{1}(t)=\text{E}(X_{t}|X_{0}=0,X_{T}=0)\), \(m_{2}(t)=\text{E}(Y_{t}|Y_{0}=-1,Y_{T}=-2)\), \(m_{3}(t)=\text{E}(Z_{t}|Z_{0}=0.5,Z_{T}=0.5)\) and \(S_{1}(t)=\text{V}(X_{t}|X_{0}=0,X_{T}=0)\), \(S_{2}(t)=\text{V}(Y_{t}|Y_{0}=-1,Y_{T}=-2)\), \(S_{3}(t)=\text{V}(Z_{t}|Z_{0}=0.5,Z_{T}=0.5)\),
R> m1 <- apply(mod3$X,1,mean)
R> m2 <- apply(mod3$Y,1,mean)
R> m3 <- apply(mod3$Z,1,mean)
R> S1 <- apply(mod3$X,1,var)
R> S2 <- apply(mod3$Y,1,var)
R> S3 <- apply(mod3$Z,1,var)
R> out3 <- data.frame(m1,m2,m3,S1,S2,S3)
R> matplot(time(mod3), out3, type = "l", xlab = "time", ylab = "", col=2:7,lwd=2,lty=2:7,las=1)
R> legend("bottom",c(expression(m[1](t),m[2](t),m[3](t),S[1](t),S[2](t),S[3](t))),col=2:7,lty=2:7,lwd=2,bty="n")
The following statistical measures (S3 method
) for class bridgesde3d()
can be approximated for the \(X_{t}|X_{0}=0,X_{T}=0\), \(Y_{t}|Y_{0}=-1,Y_{T}=-2\) and \(Z_{t}|Z_{0}=0.5,Z_{T}=0.5\) process at any time \(t\), for example at=0.75
:
[1] 1.99472 0.12727 -0.49999
[1] 0.0112535 0.0046449 0.0299859
[1] 1.99507 0.12781 -0.49998
[1] 1.98686 0.12874 -0.48712
$x
0% 25% 50% 75% 100%
1.6845 1.9229 1.9951 2.0680 2.4141
$y
0% 25% 50% 75% 100%
-0.154991 0.083464 0.127811 0.172711 0.334215
$z
0% 25% 50% 75% 100%
-1.03031 -0.61367 -0.49998 -0.37916 0.14141
[1] 2.9072 3.2388 2.9359
[1] 0.0184680 -0.1088275 0.0026912
[1] 0.053208 0.535778 -0.346506
[1] 1.68447 -0.15499 -1.03031
[1] 2.41405 0.33422 0.14141
[1] 0.000368914 0.000070017 0.002645087
[1] 16.1007584 0.0007662 0.1100921
The result summaries of the \(X_{t}|X_{0}=0,X_{T}=0\), \(Y_{t}|Y_{0}=-1,Y_{T}=-2\) and \(Z_{t}|Z_{0}=0.5,Z_{T}=0.5\) process at time \(t=0.75\):
Monte-Carlo Statistics for (X(t),Y(t),Z(t)) at time t = 0.75
| Crossing realized 1000 among 1000
X Y Z
Mean 1.99472 0.12727 -0.49999
Variance 0.01126 0.00465 0.03002
Median 1.99507 0.12781 -0.49998
Mode 1.98686 0.12874 -0.48712
First quartile 1.92294 0.08346 -0.61367
Third quartile 2.06803 0.17271 -0.37916
Minimum 1.68447 -0.15499 -1.03031
Maximum 2.41405 0.33422 0.14141
Skewness 0.01847 -0.10883 0.00269
Kurtosis 2.90722 3.23885 2.93586
Coef-variation 0.05321 0.53578 -0.34651
3th-order moment 0.00002 -0.00003 0.00001
4th-order moment 0.00037 0.00007 0.00265
5th-order moment 0.00001 0.00000 0.00006
6th-order moment 0.00002 0.00000 0.00039
Hence we can just make use of the rsde3d()
function to build our random number generator for the triplet \(X_{t},Y_{t},Z_{t}|X_{0}=0,Y_{0}=-1,Z_{0}=0.5,X_{T}=0,Y_{T}=-2,Z_{T}=0.5\) at time \(t=0.75\):
x y z
1 2.1601 0.123274 -0.38506
2 1.8655 0.219702 -0.42943
3 2.0614 0.175151 -0.53321
4 2.0773 0.239680 -0.62917
5 2.0383 0.131557 -0.50760
6 1.8922 0.014355 -0.38828
7 1.9735 0.158596 -0.46338
8 1.8926 0.100864 -0.49191
9 1.9648 0.124344 -0.46666
10 2.0839 0.165809 -0.94800
x y z
Min. :1.68 Min. :-0.1550 Min. :-1.030
1st Qu.:1.92 1st Qu.: 0.0835 1st Qu.:-0.614
Median :2.00 Median : 0.1278 Median :-0.500
Mean :1.99 Mean : 0.1273 Mean :-0.500
3rd Qu.:2.07 3rd Qu.: 0.1727 3rd Qu.:-0.379
Max. :2.41 Max. : 0.3342 Max. : 0.141
Display the random number generator for triplet \(X_{t},Y_{t},Z_{t}|X_{0}=0,Y_{0}=-1,Z_{0}=0.5,X_{T}=0,Y_{T}=-2,Z_{T}=0.5\) at time \(t=0.75\): , see Figure 14:
R> plot(ts.union(mod3$X[,1],mod3$Y[,1],mod3$Z[,1]),col=1:3,lty=3,plot.type="single",type="l",ylab= "",xlab="time",axes=F)
R> points(s,x3$x[1],pch=19,col=4,cex=0.8)
R> points(s,x3$y[1],pch=19,col=5,cex=0.8)
R> points(s,x3$z[1],pch=19,col=6,cex=0.8)
R> lines(c(s,s),c(-10,x3$x[1]),lty=2,col=7)
R> lines(c(0,s),c(x3$x[1],x3$x[1]),lty=2,col=4)
R> lines(c(0,s),c(x3$y[1],x3$y[1]),lty=2,col=5)
R> lines(c(0,s),c(x3$z[1],x3$z[1]),lty=2,col=6)
R> axis(1, s, bquote(at==.(s)),col=7,col.ticks=7)
R> axis(2, x3$x[1], bquote(X[t==.(s)]),col=4,col.ticks=4)
R> axis(2, x3$y[1], bquote(Y[t==.(s)]),col=5,col.ticks=5)
R> axis(2, x3$z[1], bquote(Z[t==.(s)]),col=6,col.ticks=6)
R> legend("bottomleft",legend=bquote(c(X[t==.(s)]==.(x3$x[1]),Y[t==.(s)]==.(x3$y[1]),Z[t==.(s)]==.(x3$z[1]))),bty = 'n',cex=0.75)
R> box()
For each SDE type and for each numerical scheme, the density of \(X_{t}|X_{0}=0,X_{T}=0\), \(Y_{t}|Y_{0}=-1,Y_{T}=-2\) and \(Z_{t}|Z_{0}=0.5,Z_{T}=0.5\) process at time \(t=0.75\) are reported using dsde3d()
function, see e.g. Figure 15:
Marginal density of X(t-t0)|X(t0) = 0, X(T) = 0 at time t = 0.75
Data: x (1000 obs.); Bandwidth 'bw' = 0.02399
x f(x)
Min. :1.6125 Min. :0.0002
1st Qu.:1.8309 1st Qu.:0.0225
Median :2.0493 Median :0.5061
Mean :2.0493 Mean :1.1436
3rd Qu.:2.2677 3rd Qu.:2.1594
Max. :2.4860 Max. :3.6310
Marginal density of Y(t-t0)|Y(t0) = -1, Y(T) = -2 at time t = 0.75
Data: y (1000 obs.); Bandwidth 'bw' = 0.01506
y f(y)
Min. :-0.20016 Min. :0.0003
1st Qu.:-0.05527 1st Qu.:0.0541
Median : 0.08961 Median :0.6216
Mean : 0.08961 Mean :1.7238
3rd Qu.: 0.23450 3rd Qu.:3.2131
Max. : 0.37939 Max. :6.0600
Marginal density of Z(t-t0)|Z(t0) = 0.5, Z(T) = 0.5 at time t = 0.75
Data: z (1000 obs.); Bandwidth 'bw' = 0.03917
z f(z)
Min. :-1.14781 Min. :0.00012
1st Qu.:-0.79613 1st Qu.:0.02155
Median :-0.44445 Median :0.34207
Mean :-0.44445 Mean :0.71017
3rd Qu.:-0.09277 3rd Qu.:1.43614
Max. : 0.25891 Max. :2.16290
For an approximate joint density for triplet \(X_{t},Y_{t},Z_{t}|X_{0}=0,Y_{0}=-1,Z_{0}=0.5,X_{T}=0,Y_{T}=-2,Z_{T}=0.5\) at time \(t=0.75\) (for more details, see package sm or ks.)
snssdekd()
& dsdekd()
& rsdekd()
- Monte-Carlo Simulation and Analysis of Stochastic Differential Equations.bridgesdekd()
& dsdekd()
& rsdekd()
- Constructs and Analysis of Bridges Stochastic Differential Equations.fptsdekd()
& dfptsdekd()
- Monte-Carlo Simulation and Kernel Density Estimation of First passage time.MCM.sde()
& MEM.sde()
- Parallel Monte-Carlo and Moment Equations for SDEs.TEX.sde()
- Converting Sim.DiffProc Objects to LaTeX.fitsde()
- Parametric Estimation of 1-D Stochastic Differential Equation.Bladt, M. and Sorensen, M. (2007). Simple simulation of diffusion bridges with application to likelihood inference for diffusions. Working Paper, University of Copenhagen.
Guidoum AC, Boukhetala K (2020). Sim.DiffProc: Simulation of Diffusion Processes. R package version 4.5, URL https://cran.r-project.org/package=Sim.DiffProc.
Department of Probabilities & Statistics, Faculty of Mathematics, University of Science and Technology Houari Boumediene, BP 32 El-Alia, U.S.T.H.B, Algeria, E-mail (acguidoum@usthb.dz)↩
Faculty of Mathematics, University of Science and Technology Houari Boumediene, BP 32 El-Alia, U.S.T.H.B, Algeria, E-mail (kboukhetala@usthb.dz)↩