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Abstract

Machine learning approaches optimize predictive performance by achieving a desirable
compromise between bias and variance. Many supervised software packages produce a strong
performing universal prediction rule independent of the testing data. In practice, one often
wants to achieve the best possible prediction performance on a specific testing data set. For
example, suppose the feature information in the testing data are a set of extrapolations away
from the mean of the training data. In this case, more aggressive shrinking may be beneficial.
One could view this contrast in terms of a sports metaphor. It is often better to prepare for
your specific opponent (semi-supervised) than to prepare for a generic opponent (supervised).
We present the R package SemiSupervised. This package efficiently implements a family of
semi-supervised techniques and can directly incorporate the feature data corresponding to
predictions of interest in training. The efficacy of this package on real arbitrary data follows
from its use of recent advances including safe enhancements, anchor graph approximations,
linear in n training, optimized tuning via cross-validation, and other heuristics.

Note: Code to generate all tables is available in the document code subdirectory for this
package.

Keywords:machine learning, fast parameter estimation, R

1 Introduction

Semi-supervised learning addresses the topic of incorporating unlabeled (testing) data into a
learning prediction framework [3]. Precisely, semi-supervised approaches differ from supervised
in that they use information in both labeled (response is observed) and unlabeled (response
is not observed) data to form better predictions than using the labeled cases only for training
(i.e., supervised learning) [13]. The literature is replete with semi-supervised learning tech-
niques including greedy graph cut approaches [31], logistic tree based approaches [7], manifold
regularization [2], co-training [33], harmonic function approaches [6], and covariate shift meth-
ods [11, 26]. The focus has been on understanding circumstances where these approaches are
expected to work [14, 6] or expected to fail [29, 18].
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Figure 1: (a) A p = 2 classification example. The 6 labeled observations are plotted as big gray
(y = 0) versus black (y = 1) dots. The additional 200 unlabeled observations uncover 2 crescent-
shaped manifolds, which are only accounted for by the classification border. (b) The feature
information for a p = 2 regression example. While the continuous response is not displayed,
white points are “labeled” and gray points are “unlabeled.” The first principal component of the
labeled data is close to ν1, and ν2 is in the direction of the unlabeled mean.

Much of this existing work is hindered by the following issues. Training often involves
inverting large matrices with dimensions equal to the full data size, so techniques don’t scale to
big data problems. Tuning parameters are rarely estimated in an efficient way and often require
direct user specification. Many techniques are for classification only and do not have a natural
extension to regression. Techniques were typically defined or tuned to perform well on some ad
hoc synthetic data sets, but performance tends to be much worse than even basic supervised
techniques in noisy/realistic prediction problems. We speculate that these shortcomings tend to
impede the practical use of semi-supervised learning, even though it is not too hard to motivate
the practical advantage of using unlabeled data in training.

To address this, the proposed SemiSupervised package features a safe semi-supervised semi-
parametric model (s4pm) and a fast anchor graph approximation to the s4pm referred to as
agraph. These methods offer the following important characteristics: (i) safeguards to make
the semi-supervised predictions competitive with (if not better than) state-of-the-art machine
learning approaches on real data sets, (ii) fitting times on both small and large data sets that
do not prevent widespread use and that scale as a linear function of the full data size, and
(iii) internal on-the-fly estimation of all tuning parameters. The approach builds off of an
established semi-supervised joint optimization criterion and generalizes several popular semi-
supervised graph-based techniques. Our overall goal in this effort is to present a software package
that implements high performing semi-supervised techniques that tend to perform as good or
better than their supervised counterparts in linear time.

The principles behind using unlabeled data in training relates to the bias and variance trade-

2



off of the prediction error rate [26]. A judicious use of the unlabeled data can boost performance
by reducing bias (variance) if there is a modest increase in variance (bias), but the component of
the trade-off to be reduced depends on the structure of the full data as illustrated by Figure 1.
In circumstances such as Figure 1(a), a high performing semi-supervised technique incorporates
unlabeled data to detect manifolds within the data to exploit the trade-off by dramatically
decreasing prediction bias while increasing variance [6]. The feature data are represented by two
moon manifolds, and the semi-supervised fit passes between them. The supervised fit is only
able to train from the 6 labeled cases and misses the pattern.

In contrast, consider Figure 1(b). It is now more desirable for a semi-supervised technique
to shrink along unlabeled data extrapolation directions in an effort to dramatically decrease
prediction variance at the expense of an increase in prediction bias [26]. The goal would be to
aggressively shrink in direction ν2 while emphasizing prediction strength in direction ν1. For
example, suppose β̂ is a linear semi-supervised estimator and that x0 is an unlabeled prediction
vector. To decrease prediction variance, the semi-supervised prediction would ideally satisfy
x>0 β̂ ≈ a1ν1. On the other hand, the performance of a supervised technique may suffer as
a need to shrink aggressively along direction ν2 would be missed because such techniques by
definition do not use the unlabeled data in training.

The semi-supervised concepts from Figure 1 were each developed to be safe in their applica-
tion. That is, s4pm and agraph use the unlabeled data based on manifold in Figure 1(a) and/or
extrapolation in Figure 1(b) requirements, and these safe techniques can also adjust back towards
a supervised prediction rule to handle real noisy data problems when semi-supervised learning
does not provide an advantage. The end-goal in-terms of performance is for the technique to
work as good or better than its supervised counterpart on real data. This is not guaranteed to
always happen (in a strict sense on a particular data set), but empirical results and theoretical
work provide evidence in favor of this safe goal [11, 19]. Nearly, all existing semi-supervised
approaches are not safe and provide no such considerations to our knowledge. Indeed, it is well-
known that many semi-supervised techniques break-down in practice often performing much
worse than even the simplest supervised approaches. In terms of implementation, the com-
bination of incorporating unlabeled data in training and employing safety enhancements does
indeed come at cost compared to supervised learning, but this package was carefully written to
substantially decrease this cost without sacrificing performance.

The entire fitting process of each technique was optimized using LAPACK/BLAS routines
in a customized manner, and all tuning parameters are optimized with custom-designed k-
fold cross-validation code. In cross-validation (CV), our goal is to determine the best tuning
parameter choices for prediction of unlabeled cases. In practice, many optimal tuning parameter
combinations tend to be on the boundary between a stable and unstable solution. This is difficult
from a computational perspective, since many grid searches will encounter unstable values which
force the underlying LAPACK routines to cycle through large matrices just to produce a terrible
error rate. In other words, the vast majority of CV time is spent rejecting bad tuning parameter
options as opposed to determining good ones. The LAPACK routines were carefully used to
optimize error processing so as to reject bad choices as fast as possible. In this effort, special
care was given to not only improve CV estimation but to also estimate all important internal
parameters in real time. The SemiSupervised package integrates these optimized routines in R
with a user-friendly front-end S4 generic structure.
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1.1 Semi-supervised software

There are some existing semi-supervised software packages in R. The Rmixmod R package pro-
vides supervised, semi-supervised, and unsupervised clustering for classification problems [15].
The upclass R package implements an EM style semi-supervised routine building off of model-
based clustering [25]. The HCsnip R package provides a semi-supervised hierarchical clustering
method [23]. The spa R package is the most similar to the proposed approach and has been
redesigned to work better with the enhancements developed for the SemiSupervised package [5].

Most semi-supervised routines are implemented as MATLAB scripts with fixed tuning settings
to reproduce the technique being proposed as part of a publication. The closest to our work is
the SemiL package which implements diffusion kernels and Gaussian harmonic fields primary in
classification [9]. Kernel-based classification software include SGTlight, SVMlight, and SVMlin
[10, 28]. The vast majority of other semi-supervised packages that we are aware of are primarily
designed for specific text/web related applications, not large scale regression or classification
applications.

The proposed software distinguishes itself from these existing packages in some key ways. The
main difference is that this package is designed for arbitrary regression or classification problems.
As a result, the package is designed to perform all necessary CV for tuning parameter estimates
in real time. In addition, the novel semi-parametric safe term provides additional robustness to
real world data problems. Final contributions include anchor graph approximations, linear in n
training, an S4-generic front end, and some heuristics fined tuned for big data problems.

2 Package metrics and highlights

Semi-supervised regression or classification on big or small data is made easy with the SemiSu-
pervised package. This section highlights the performance of the s4pm and agraph functions on
a wide range of real data sets. The benchmarks are listed in Table 1. An internal CV approach
was used to estimate all tuning parameters when calling s4pm or agraph at default settings
throughout this section, so run-times reported include CV. The inner workings of the s4pm and
agraph are deferred to Section 3.

Since agraph is an approximation to the s4pm, a comparison of these should bring into fo-
cus a familiar performance versus speed trade-off: (a) get the best performance by optimizing
a computationally intense problem (e.g., the s4pm) versus (b) get (hopefully) comparable per-
formance results faster by optimizing a problem requiring substantially less computation (e.g.,
the agraph). An additional comparison is also necessary to establish the safe component of
this software. The natural supervised comparison to this end is the efficient glmnet [8]. The
glmnet has 2 Lagrangian tuning parameters (λ, α) that were both optimized using CV for this
comparison.

Let the index set {1, 2, . . . , n} of all n observations be partitioned into the labeled L and
unlabeled U sets. For now, assume that an n× p model matrix X and a vector Y L of m = |L|
responses are available in training, whereas the vector Y U of n−m = |U | responses is missing
at the time of training and forecasting.

To simulate this commonly occurring scenario during benchmarking, the data were randomly
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Data n p Response Reference

1. Ethanol 589 1,037 Ethanol [26]

2.∗ Breast 699 9 Cancer [20]

3.∗ Image 2,310 18 Picture [20]

4.∗ Sol 5,631 72 Solubility [26]

5. Power 9,568 4 Usage [20]

6. Navy 11,933 16 GT Decay [20]

7. House 20,640 13 ln(Value) [24]

8. CASP 45,730 9 Residue Size [20]

9. Song 515,345 90 Release Year [20]

10. NYC 1,073,473 44 Property Tax [34]

Table 1: Data sets used for benchmarking. Asterisks indicate classification problems with a
binary response. The other problems are regression with a continuous response.

partitioned into labeled and unlabeled sets such that m = d0.15∗neI{n≤1000}+200I{n>1000}, and
the unlabeled responses were withheld from training. This experiment was repeated 100 times
for each data set. To assist with comparisons in the regression problems, a scaled unlabeled root
mean squared error metric

sRMSEU =

√
m

n−m

∑
i∈U (Y i − f i)

2∑
i∈L(Y i − Ȳ L)2

was used, where Ȳ L is the arithmetic sample mean of the labeled responses Y L and the length n
vector f is comprised of the predictions from some technique (supervised or semi-supervised). In
classification, the performance metric reported is the unlabeled classification error. The results
for data sets 1-10 from Table 1 are listed in Table 2. Interestingly, the results came out better
than expected for the agraph with 7 out of 10 wins in comparison to the s4pm. However, it is
important not to read too much into this with real data (as opposed to simulated data from a
probabilistic model in a more tightly controlled simulation study). In any case, the performance
of either semi-supervised approach was quite strong overall in terms of comparisons with the
glmnet, justifying the safe semi-supervised component of the software.

In terms of CPU time, the original techniques that this code is based off of involved cubic in
n inverses which would not be realistic for larger data sets. Much of our work in this software
development was to reduce the additional computational burden of training with the unlabeled
data; see Section 4.5. The log - log plot of the Average Times are provided against n in Figure
2 using the data set number from Table 1 as the plotting symbol. For either the s4pm or the
agraph, the least-squares line of the regression examples is roughly log(Time) = 0.6 log(n)− 3,
which indicates a slightly better than linear fit. It is noteworthy that the supervised glmnet was
faster than the proposed approach especially on the larger data sets. This makes senses, since
the supervised technique trains β̂ using only the labeled data and then predicts the unlabeled
case as x>0 β̂. In other words, it is always faster to ignore the unlabeled data than to use it in
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Data n p s4pm agraph glmnet

Ethanol 589 1,037 0.563 ± 0.032 0.573 ± 0.030 0.445 ± 0.034

Breast 699 9 0.054 ± 0.002 0.033 ± 0.001 0.045 ± 0.002

Image 2,310 18 0.356 ± 0.020 0.077 ± 0.005 0.102 ± 0.003

Sol 5,631 72 0.378 ± 0.002 0.301 ± 0.004 0.306 ± 0.004

Power 9,568 4 0.280 ± 0.002 0.277 ± 0.002 0.286 ± 0.004

Navy 11,933 16 0.731 ± 0.069 0.118 ± 0.033 0.456 ± 0.005

House 20,640 8 0.627 ± 0.008 0.641 ± 0.009 0.656 ± 0.011

CASP 45,730 9 0.866 ± 0.007 0.873 ± 0.007 0.895 ± 0.008

Song 515,345 90 1.002 ± 0.021 0.993 ± 0.020 1.009 ± 0.021

NYC 1,073,473 44 7.465 ± 1.263 6.926 ± 1.038 10.297 ± 1.519

Table 2: Performance results for the Table 1 benchmarks, i.e., average performance metric ± 2
standard errors.

Mac OS X Linux Ubuntu Windows

Ref. VecLib Ref. MKL Ref. MKL

agraph 34.44 15.39 36.03 9.11 54.70 15.64

s4pm 47.18 22.91 25.34 13.79 33.81 23.64

Table 3: CPU time in seconds to execute the CASP data set on different OS’s using different
BLAS libraries on each system. The median out of ten runs is reported.

training. The use of semi-supervised learning is justified by potential performance improvements
from incorporating this information in training.

The proposed software uses underlying LAPACK routines which are optimized in different
BLAS libraries. Multi-threaded libraries can be used to substantially improve the empirical
speed of all matrix operations in practice. To demonstrate that the proposed software can
take advantage of these enhancements, additional results are listed in Table 3. These results
demonstrate the substantial speed improvements due to using the freely available VecLib with
6 cores or the Microsoft Kernel Library MKL with 8-cores against the default Reference (Ref.)
libraries in R. As expected, the agraph has a greater impact over the s4pm. Each was fit on a
top-of-the-line machine available in the Department of Statistics at West Virginia University.

A final benchmark metric for consideration is the effect as m = |L| increases. Results in
Table 4 demonstrate that the agraph approach is linear in m as well, while the s4pm is cubic in
m. Performance is also provided as a function of labeled size indicating that the faster agraph

does indeed perform slightly worse than the s4pm.
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Figure 2: Plots of computation time in seconds versus n on log - log scales. The solid-black and
dashed-red lines connect the outcomes for the regression and classification examples.

m: 200 500 1,000 2,000 5,000 10,000

Time (sec.): agraph 9.12 9.50 11.34 15.99 24.33 44.04

s4pm 13.45 18.51 29.92 73.34 431.0 1,829

Performance: agraph 0.871 0.834 0.816 0.804 0.787 0.776

s4pm 0.860 0.823 0.793 0.773 0.731 0.700

Table 4: Labeled size m in terms of CPU time in seconds and performance is listed for the Casp
data. The median out of ten runs is reported.

3 The SemiSupervised package

In this Section, the focus is on the general structure of SemiSupervised. The SemiSupervised
R package implements three different semi-supervised routines: s4pm, agraph, and jtharm. In
general, these functions are different variations of the semi-supervised joint training optimization
problem. To set this up, let L and U again partition the index set {1, . . . , n} for the n obser-
vations into the sets of labeled and unlabeled observations. The technical setup requires that
the m = |L| labeled observations (yi,xi) for i ∈ L are independent and identically distributed.
An additional n −m = |U | unlabeled observations xi are also independent and identically dis-
tributed (and independent of the labeled data), but their responses yi for i ∈ U are not available
for training. The full data are represented by an n× p matrix X with row-wise partitions XL

and XU . It is important to note that the length n response vector Y partitions into the m
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observed responses Y L and n−m latent (or unobserved) variables Y U . Joint training

min
β,f ,Y U

L (Y (Y U ) ,f +Xβ) + λ1f
>Bf + λ2 ‖ β ‖22 +γ ‖Y U‖22 (1)

provides a general framework for arriving at suitable semi-supervised predictions given a loss
function L (·, ·), a tuning parameter vector (λ1, λ2, γ) ≥ 0, a stacked response vector Y (Y U )
with Y L on top of Y U , and a positive semi-definite penalty matrix B.

Briefly, the s4pm implements the solution η̂ = f̂ +Xβ̂ to this optimization problem for 2
choices of B: (i) the Laplacian matrix and (ii) the normalized Laplacian matrix. The agraph

approximates η̂ ≈ Zγ̂ +Xβ̂ using a matrix Z that is constructed via an anchor graph penalty
matrix. The jtharm optimizes (1) using a weighted loss and has no Xβ term (i.e., λ2 = ∞).
The details for these techniques are discussed in Sections 4 and 5 with examples.

The Xβ̂ term in (1) provides the safe enhancement to the semi-supervised solution. In prior
work, the connection between optimization (1) and several semi-supervised techniques proposed
in the literature including regularized Laplacians [1], manifold regularization [2], label spreading
[36], regularized anchor methods [21, 22], transductive SVM [3], S3VM [4], and ψ-learning [32]
was established [6]. Most of these techniques are simplified versions of (1) usually with γ = 0
and λ2 = ∞, i.e., Ŷ U = f̂U and β̂ = ~0. Examples on how to fit these special cases using the
s4pm are provided in Section 4.1.

3.1 S4 structure

The SemiSupervised utilizes R’s object model S4 class structure which builds off the methods
package. The virtual class SemiSupervised defines the base signature for a semi-supervised
object in R. Every object in this class has the usual dim, fit, and fitted methods. In addition,
new base methods for class SemiSupervised includes type (whether regression or classification),
xmatrix (the scaled feature data used for training), gmatrix (graphical representation), ymatrix
(the scaled response), and measures (the error information). All accessor and assignments in
slots are accessed either through the access function or directly through the slot with the @

operator.

The diagram below represents instances of this virtual class which are different versions of
optimization (1). The similar spa function in the spa package was also re-written as an instance
of virtual class SemiSupervised (refer to Section 5 for more on this connection).

Virtual class: SemiSupervised

Class: s4pm Class: agraph Class: jtharm Class: spa

Each class has a standardGeneric by the same name. The input methods for each class
include formula, NULL, matrix, vector, and data.frame. The agraph also allows for an anchor

graph object to be inputted. All input methods call a default method (i.e., s4pm.default) which
in-turn invokes low-level fit (i.e., s4pm.fit) and CV (i.e., s4pm.cv) routines. These low-level
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routines are not exported and require the ::: scope operator for access in R. In addition, each
routine offers a show method, and a predict method. This provides the standard base structures
necessary to fit an instance of SemiSupervised.

4 Demonstration of semi-supervised estimators

A demonstration of the safe semi-supervised parametric model and the anchor graph approx-
imation are given in this section. Each technique optimizes special instances of (1). This
demonstration involves a data set from the caret package [12], so it is necessary to first in-
stall both packages with the R commands install.packages("SemiSupervised") and in-

stall.packages("caret"). After loading the SemiSupervised package in an R session with the
command library("SemiSupervised"), all the R code presented in this section is conveniently
executed with the command demo("SemiSupervised"). This demonstration begins by loading
and preprocessing the Blood Brain data [12] for semi-supervised learning with the SemiSuper-
vised package. The performance metric sRMSEU for this type of regression problem with a
continuous response is also defined.

R> library("SemiSupervised")

R> library("caret")

Loading required package: lattice

Loading required package: ggplot2

R> data("BloodBrain")

R> set.seed(100)

R> n <- nrow(bbbDescr)

R> L <- sample(1:n, ceiling(0.1 * n))

R> U <- setdiff(1:n, L)

R> y.fit <- rep(NA, n)

R> y.fit[L] <- logBBB[L]

R> msy <- sqrt(mean((logBBB[L] - mean(logBBB[L]))^2))

R> sRMSEU <- function(f, y, msy = 1.0){ sqrt(mean((f - y)^2)) / msy }

By default, the SemiSupervised package fits the safe semi-supervised technique (1) with the
all-purpose formula call y ∼ ., e.g., the details for constructing B from X are hidden. Adjust-
ments to these settings are demonstrated in Sections 4.1 and 4.2, and some other possibilities
are given in Sections 4.4 and 5. Also, the R help pages complement the Blood Brain regression
example of Sections 3-4.2 with a classification example involving a Sonar data set [16]. Such
classification examples optimize (1) with a hybrid general loss function, L (Y (Y U ) ,f +Xβ), as
the logistic loss function for the labeled cases and squared error for the unlabeled observations.

4.1 s4pm: Regression with proximity graphs

The details for how to choose the penalty matrix B for the s4pm are discussed next. A dis-
tance between observations or rows of X must be specified to begin constructing this penalty
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function. The SemiSupervised package implements both Cosine Distance (as default) and Eu-
clidean Distance. The n × n distance matrix is a fully connected graph. To induce edge
sparsity, a k-NN graph is fit, i.e., the number of closest points is specified. The default
is k = 6. The package converts dissimilarity to similarities using the local kernel W ij =

exp (−Dij/h) where Dij is a dissimilarity measure between xi and xj . Let diag
(
W~1

)
de-

note the diagonal row sum matrix of W . The penalty matrix B in optimization (1) is ei-

ther the combinatorial Laplacian B = diag
(
W~1

)
−W or the normalized Laplacian B =

diag
(
W~1

)−1/2 (
diag

(
W~1

)
−W

)
diag

(
W~1

)−1/2
. The package defaults to the normalized

Laplacian.

The default call to the s4pm solves optimization (1) directly with the normalized Laplacian
used for B as shown below.

R> safe.spread <- s4pm(y ~ ., data = data.frame(y = y.fit, bbbDescr))

R> safe.spread

S4PM Fit with (n,|L|)=( 208 , 21 ) or 10 % labeled

Performance Estimates:

k-CV: 0.636 GCV: 0.036 DF: 12.572

Fit Estimates:

Graph Kernel h: 0.237 Lagrangians: 10 0.001 Safe-Lagrangian 10

R> sRMSEU(fitted(safe.spread)[U], logBBB[U], msy)

[1] 1.111641

The 3-fold CV estimates of (h, λ1, λ2, γ) = (0.237, 10.0, 10.0, 0.001) and their optimal CV value
of 0.636 are displayed. The Generalized Cross-Validation (GCV) and degrees of freedom perfor-
mance estimates corresponding to this fit are printed out as well.

The function SemiSupervised.control gives the user the flexibility to switch to the com-
binatorial Laplacian matrix.

R> ctrl<-SemiSupervised.control(normalize = FALSE)

R> safe.lap<-s4pm(y ~ ., data = data.frame(y = y.fit, bbbDescr),

R+ control = ctrl)

R> safe.lap

S4PM Fit with (n,|L|)=( 208 , 21 ) or 10 % labeled

Performance Estimates:

k-CV: 0.639 GCV: 0.036 DF: 14.102

Fit Estimates:

Graph Kernel h: 0.48 Lagrangians: 10 0.001 Safe-Lagrangian 10
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R> sRMSEU(fitted(safe.lap)[U], logBBB[U], msy)

[1] 1.10838

Notice that the scaled unlabeled RMSE improves slightly with the combinatorial Laplacian in
this particular example. In practice, allowing a large enough grid and scaling the data seems to
trivialize the difference between the two graph operators.

Next, 2 additional flexibilities of the function s4pm are demonstrated. (i) Its inputs can be
adjusted to directly fit some popular semi-supervised special cases of (1). (ii) It can be used for
variable selection where the unlabeled data influences the important variables to be selected. As
an example of (i), consider the basic Regularized Laplacian approach that solves

min
f
‖Y L − fL‖

2
2 + λ1f

>
(

diag
(
W~1

)
−W

)
f . (2)

Optimization (2) is a special case of optimization (1) with λ2 = ∞ and γ = 0. In this
case, the formula command must be modified to use a dissimilarity weighted graph with the
function dG in the formula call. In order to fit this, one should first scale the data accord-
ing to the labeled means and variances using the x.scaleL function. Note that the for-

mula y ∼ . used in the general safe case above to fit optimization (1) is equivalent to y ∼
.+dG(x.scaleL(., L),metric=“cosine”). At any rate, the s4pm function in SemiSupervised solves
(2) with the following code.

R> xscale <- x.scaleL(bbbDescr, L)

R> rlap <- s4pm(y.fit ~ dG(xscale, metric = "cosine"), gam = 0.0,

R+ control = ctrl)

R> rlap

S4PM Fit with (n,|L|)=( 208 , 21 ) or 10 % labeled

Performance Estimates:

k-CV: 0.676 GCV: 0.038 DF: 0.171

Fit Estimates:

Graph Kernel h: 0.12 Lagrangians: 0.01 0

R> sRMSEU(fitted(rlap)[U], logBBB[U], msy)

[1] 1.342094

As before, the performance estimates list the optimal 3-fold CV, corresponding GCV, and degrees
of freedom. The tuning parameter estimates are (h, λ1, γ) = (0.12, 0.01, 0.0), and parameter λ2
is not shown because the Xβ term from (1) is not fit in optimization (2).

The diffusion kernel is another popular semi-supervised optimization alternative that can be
fit with the s4pm by solving optimization

min
f
‖Y L − fL‖

2
2 + λ1f

>
(

diag
(
W~1

)−1/2 (
diag

(
W~1

)
−W

)
diag

(
W~1

)−1/2)
f
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with the following R code.

R> diffkern <- s4pm(y.fit ~ dG(xscale, metric = "cosine"), gam = 0.0)

R> sRMSEU(fitted(diffkern)[U], logBBB[U], msy)

[1] 1.32251

Lastly, label spreading is yet another alternative optimizing

min
f
‖Y ∗ − f‖22 + λ1f

>
(

diag
(
W~1

)−1/2 (
diag

(
W~1

)
−W

)
diag

(
W~1

)−1/2)
f ,

where Y ∗L = Y L and Y ∗U = ~0, and is directly fit as follows.

R> lspread <- s4pm(y.fit ~ dG(xscale, metric = "cosine"), gam = Inf)

R> sRMSEU(fitted(lspread)[U], logBBB[U], msy)

[1] 1.414956

In these Blood Brain examples, the joint optimization (1) with the safety term Xβ provides
substantially improved performance over these special cases. The joint optimization (1), e.g.,
the default settings for function s4pm, is recommended for general usage.

As mentioned previously, the s4pm can also perform variable selection. The following code
shows how the S4-generic object functions underlying this software can be easily manipulated to
determine important variables similar to R’s drop1 style command [30]. This code takes about
13 seconds to run.

R> drp1 <- (do.call("c", lapply(names(bbbDescr), function(i){

R+ form <- as.formula(paste("y ~ . - ", i, sep = ""))

R+ g1 <- s4pm(form,data = data.frame(y = y.fit, bbbDescr),

R+ hs = hparm(safe.spread), gams = gparm(safe.spread),

R+ lams = lparm(safe.spread))

R+ measures(g1)[2]

R+ })) / measures(safe.spread)[2] - 1) * 100

R> attr(drp1, "names") <- names(bbbDescr)

R> round(sort(drp1, decreasing = TRUE)[1:5], 4)

fpsa3 peoe_vsa.5 dipole_moment vsa_pol pol

2.9492 2.7100 2.5221 1.6540 1.3797

The top 5 variables using %-Degradation in GCV are given, i.e., there is approximately a 3%
degradation in GCV performance due to the exclusion of variable ‘fpsa3’. This variable selection
approach is unique compared to corresponding supervised alternatives since the bias/variance
trade-off on the unlabeled data influences the selected variables.
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4.2 agraph: Regression with anchor graphs

The agraph function implements a semi-supervised technique using an anchor point method for
graph construction. To start, a clustering algorithm is applied to X. Let M denote the a×p set
of cluster centers. The main idea is define a length a vector zi so that each data row xi is close
to ziM . Specifically, zi is the vector of probability weights used to project xi onto the convex
polytope consisting of the s closest anchor points in M (refer below for examples). Repeating
this for each row, yields a dimension reduced n × a matrix Z. The Laplacian graph is then
computed using adjacency W = Zdiag(Z>~1)−1Z> with Z~1 = ~1. Optimization (1) is now used
but with f = Zγ, i.e., f is restricted to the column-space of Z. From this, the anchor graph
implementation approximates optimization (1) with

min
β,γ,Y U

L (Y L,ZLγ +XLβ) + ‖Y U −ZUγ −XUβ‖22 + λ1γ
>B?γ + λ2 ‖ β ‖22 +γ ‖Y U‖22

where B? = Z>Z −Z>Zdiag(Z>~1)−1Z>Z is the so-called reduced Laplacian [21].

f1
f2 f3 f4c

The AnchorGraph method in SemiSupervised is used in R to get Z. The
details for the actual projection of a vector x onto the convex polytope of the
centroids from a clustering algorithm using AnchorGraph are now provided. Con-
sider the p = 2 and s = 4 example to the right. The data point x = (2, 3) denoted
by an empty circle is contained in the convex polygon with anchors labeled 1-4
having Cartesian coordinates (1, 2), (2, 5), (3, 4), (7, 2) and is fit in R below.

R> ctrl.agr <- SemiSupervised.control(cn = 50)

R> anchors <- rbind(c(1, 2), c(2, 5), c(3, 4), c(7, 2))

R> z <- AnchorGraph(c(2, 3), anchor = anchors, control = ctrl.agr)$Z

R> as.vector(z)

[1] 0.53276500 0.19673762 0.20492595 0.06557143

R> as.vector(z %*% anchors)

[1] 2.000018 3.000065

In other words, the vector z is chosen as probability weights so that(
2.000018
3.000065

)
= 0.53276500

(
1
2

)
+ 0.19673762

(
2
5

)
+ 0.20492595

(
3
4

)
+ 0.06557143

(
7
2

)
≈
(

2
3

)
= x.

The parameter cn controls the threshold for number of iterations internally in this algorithm,
and larger values approximate the point better. In practice, close approximation to row x is not
all that critical in terms of performance, so this parameter is defaulted quite low to cn = 4.
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f1
f2 f3 f4cs

Perhaps more astounding in practice are circumstances where the observation
x is outside the convex polygon of the s closest anchor points. Such a circum-
stance is depicted in the example to the right with the same anchors as above,
but now x = (2.5, 1.0). In this case, a Local Anchor Embedding algorithm [21] is
implemented in C++ to project the row back onto the convex polygon consisting
of the s closest anchor points in M . The vector z is displayed in R below and defines the row
probabilities necessary for this projection.

R> z <- AnchorGraph(c(2.5, 1), anchor = anchors, control = ctrl.agr)$Z

R > as.vector(z)

[1] 0.7500015 0.0000000 0.0000000 0.2499985

This example illustrates some important properties of the anchor graph approximation. First,
the approximation zM → (2.5, 2) for x will always miss the mark. Second, z only involves
anchors 1 and 4, but anchor 4 is the furthest away from x while the much closer anchors 2 and
3 are ignored. The aggregate reliance on anchors in this manner tends to lead to more jagged
classification borders or regression fits in practice than compared to the s4pm method. This
jaggedness tends to be more pronounced as p increases.

While the above anchor graph fitting details are hidden from the user by default, the function
agraph uses them below.

R> safe.agraph <- agraph(y ~ ., data = data.frame(y = y.fit, bbbDescr))

R> safe.agraph

Anchor Graph Laplacian (agraph) with (n,|L|)=( 208 , 21 ) or 10 % labeled

Performance Estimates:

k-CV: 0.653 GCV: 0.025 DF: 6.148

Fit Estimates:

Lagrangians: 1 0.001 Safe-Lagrangian 2

R> sRMSEU(fitted(safe.agraph)[U], logBBB[U], msy)

[1] 1.105722

The output produces estimates (λ1, λ2, γ) = (1.0, 2.0, 0.001). Notice that there is no h
parameter which makes sense, since this method does not rely on a local kernel. The agraph

approach performs slightly better than the s4pm as well. As with the s4pm, the following code
shows that one can issue this command without the safety term Xβ using the aG function.

R> agr<-agraph(y.fit ~ aG(AnchorGraph(xscale)))

R> sRMSEU(fitted(agr)[U], logBBB[U], msy)

[1] 1.298504
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4.3 Out-of-sample prediction

The SemiSupervised package offers a prediction routine for either a single observation x0 or
group of observations. The prediction rule for the agraph is trivial. Given vector x0 or a group
of predictions, it just builds the AnchorGraph with this as input and and then linearly predicts
using the trained β̂ from optimization (3). However, unlike agraph the s4pm procedure does not
lend itself to an obvious out-of-sample prediction rule, but out-of-sample prediction in its most
basic sense is always possible with continuous feature data by interpolating the predictions η̂. To
this end, recall that W is the Gram matrix of local kernel Kh(xi,xj) and let W i0 = Kh(xi,x0)
for i ∈ L ∪ U . The interpolation function

η̂ (x0) = x>0 β̂ +

∑
i aif̂ i∑
i ai

with ai =
W i0

1−W i0

is implemented for out-of-sample predictions.

The following code randomly perturbs the first 5 observations of the Blood Brain data and
then predicts them with the safe approaches above.

R> set.seed(10)

R> xnew <- as.data.frame(jitter(as.matrix(bbbDescr)[1:5, ]))

R> round(predict(safe.lap, xnew = xnew), 3)

[1] -0.937 0.759 -3.934 2.438 1.129

R> round(predict(safe.spread, xnew = xnew), 3)

[1] -0.824 0.634 -3.552 2.303 1.058

R> round(predict(safe.agraph, xnew = xnew), 3)

[1] -1.450 1.195 -4.987 3.358 1.396

Prediction with the other routines is more complicated because the graph must be constructed
from the feature data in each case. The following code presents this case for the regularized
Laplacian and the anchor graph only approaches above.

R> sxnew <- scale(xnew,center = attr(xscale, "scaled:center"),

R+ scale = attr(xscale, "scaled:scale"))

R> gnew <- kgraph.predict(cosineDist(sxnew, xscale))

R> round(predict(rlap, gnew = gnew), 3)

[1] 0.219 0.032 0.109 0.437 0.216

R> round(predict(agr,gnew = AnchorGraph(sxnew, fit.g = gmatrix(agr))), 3)

[1] 0.007 -0.116 0.075 0.553 0.077

In practice, the safe versions tend to out-perform the non-safe versions on real data and the
above stability improvement of these methods is expected.
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4.4 Observed graph example

ia ib i?
i?

ib
iaSome real data examples involve an observed graph that was not computed

from some data matrix X. Such examples can occur in classification or
regression and include protein interaction networks [35], terrorist networks
[27], and shopping networks [17]. In this case, W is an n × n adjacency
matrix defined on both the labeled and unlabeled cases. Optimization (1)
is fit with β = ~0 and B as either the Laplacian or normalized Laplacian.
The SemiSupervised package provides an internal formula function term
sG for handling such an observed similarity graph adjacency matrix as input. Consider the
observed graph to the right. The objective is to classify the nodes of the graph as “a” or “b.”
There are two unlabeled observations marked by “?.” The following code fits this observed graph
in R with the s4pm.

R> onePos <- list(1:2, 1:4, c(2:3, 6), c(2, 4, 5), c(4, 5), c(3, 6))

R> (W <- do.call("rbind", lapply(onePos,

R+ function(i){v = rep(0, 6); v[i] = 1; v})))

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 1 0 0 0 0

[2,] 1 1 1 1 0 0

[3,] 0 1 1 0 0 1

[4,] 0 1 0 1 1 0

[5,] 0 0 0 1 1 0

[6,] 0 0 1 0 0 1

R> y <- as.factor(c("a", "b", NA, NA, "a", "b"))

R> graph.ex <- s4pm(y ~ sG(W))

R> graph.ex

S4PM Fit with (n,|L|)=( 6 , 4 ) or 67 % labeled

Performance Estimates:

k-CV: 0 GCV: 0.002 DF: 0

Fit Estimates:

Lagrangians: 0.01 0

In this type of observed similarity graph example, there is no feature data matrix X or
kernel function, so the estimated Lagrangian parameters are (λ1, γ1) = (0.01, 0.0). The fit is
saturated and optimal in terms of CV. The following code outputs the node predictions and
their corresponding probabilities.

R> fitted(graph.ex)

[1] a b b a a b

Levels: a b
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R> round(fitted(graph.ex, type = "prob"), 2)

[1] 0.12 0.88 0.90 0.40 0.11 0.89

The returned probability estimates of P (y = “b”|W ) are consistent with what one might expect
given the location of the missing cases on the observed graph.

In some cases, X data from a different view is available in conjunction with an observed
similarity graph W . Possibly in the protein example mentioned earlier, W is an observed
similarity graph of protein interactions where specifically the nodes of the graph are n individual
proteins. In addition, each protein could also have an independent observation vector forming
an n × p chemistry X data view. When such data W and X arise from 2 sources (and hence
X is not used to compute W ), the function s4pm can still easily accommodate this type of data
analysis as well.

4.5 Package heuristics for big data

Much work on computational efficiency was done to fit the semi-supervised technique quickly
in memory. Since this approach is based on symmetric matrices, a Cholesky decomposition
and efficient storage of matrices in conjunction with optimized LAPACK/ATLAS C-routines
boosted speed substantially. An even larger speedup was due to the following, Stagewise Cross
Validation (SCV) scheme. For the s4pm, adjacencies in the graph

W LL +BLUB
−1
UUBUL (3)

on L were computed to quantify labeled-to-labeled connectives through labeled and unlabeled
networks in the larger graph W on L ∪ U [6] with B as either the Laplacian or normalized
Laplacian. Four parameters h, λ1, λ2, γ were then estimated with 3-fold CV from graph (3) and
data XL. (While XL played the role of X during the fitting of a given fold, the responses in the
other 2 folds were omitted and played the role of Y U .) Lastly, parameter γ was re-estimated with
respect to the full graph W with fixed, optimal values for h, λ1, λ2 to stabilize the predictions.
The agraph uses a very similar adjustment for stage-wise cross-validation where λ1, λ2, γ are
estimated on data (ZL,XL) while the semi-supervised parameter γ was then reestimated on
(Z,X) with the other parameters fixed. The cv.type=‘scv’ control parameter performs SCV by
default.

For large data sets, the semi-supervised method is adjusted to use anchor points by default.
In this adjustment, the k-means algorithm is run to obtain a centroids (anchors). Optimization
(1) is then recast as follows. All unlabeled cases are treated as the anchor points. This is
automated through the control parameters U.as.anchor and U.as.anchor.thresh. Specifically, if
the data set has n > U.as.anchor.thresh and U.as.anchor=TRUE then this substantial time
saving is employed for any model fit by the SemiSupervised package. Note U.as.anchor.thresh
is the number of centroids in k-means and defaults to 600. During development, we exhaustively
tested using the anchor points as unlabeled cases versus using the unlabeled data directly and
found no appreciable degradation in performance.
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5 Harmonic functions and the spa package

Harmonic functions in semi-supervised learning have a long history in this up and coming field.
Let S =diag(W~1)−1W . A function is harmonic if it satisfies the averaging property

fU = (I − SUU )−1 SULfL.

It is now understood that optimization (1) with γ = 0 and B as the combinatorial Laplacian
results in a harmonic function approach independent of the loss function [6]. This work also
defined the joint harmonic function

min
f ,Y U

(Y − f)>W (Y − f) + λf>
(

diag
(
W~1

)
−W

)
f + γ ‖Y U‖22 , (4)

which is a harmonic function when γ = 0. Non-zero γ does not result in a harmonic function,
but does often improve performance and stabilizes the numerical analysis. Interestingly, if W
is generated from a local kernel function with λ = 1, then the solution to optimization (4)
converges to a shrunken supervised local kernel function as γ → ∞. Specifically, it was proven
that in classification the class labels are exactly equivalent to the supervised class assignments
for kernel regression. Modifying λ has a minor effect on this convergence result. This is a safety
feature since a supervised technique results as a special case, but this connection only occurs in
classification problems. In our experience, solutions to (4) tend to perform poorly in regression
problems.

The SemiSupervised package fits the joint harmonic function approach using its jtharm

function. The observed graph from Section 4.4 is now used to fit this technique with the R code
below.

R> safe.jtharm <- jtharm(y ~ sG(W))

R> safe.jtharm

Joint Harmonic Fit with (n,|L|)=( 6 , 4 ) or 67 % labeled

Performance Estimates:

k-CV: 0 GCV: 7.589 DF: 0.824

Fit Estimates:

Lagrangian: 0.01 Safe-Lagrangian: 0.001

The Lagrangian parameter vector (λ, γ) = (0.01, 0.001) was estimated for this joint harmonic
function approach.

Another approach to fit harmonic functions was the heuristic sequential predictions algorithm
[5]. This algorithm simultaneously fits a function over the nodes of a graph and a linear term
Xβ where specifically the node on the graph corresponds to a row in the X data. In some
cases, the graph can be constructed from the feature data, and a safe version would be possible
to fit. The spa package was recently rewritten to inherit the S4-generic class structure and
formula interface of the SemiSupervised package. In addition, the CV and internal fitting was
also recently rewritten in C++, so this package is quite a bit faster than its original version.
The following code gives the fit from spa to the Blood Brain data.
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R> library("spa")

R> safe.spa <- spa(y ~ ., data = data.frame(y = y.fit, bbbDescr))

R> sRMSEU(fitted(safe.spa)[U], logBBB[U], msy)

[1] 1.220487

The performance is slightly worse than the s4pm, but is still competitive. The technical differ-
ences between the original spa version 1.0 and the updated spa version 3.0 are described in its
vignette available in version 3.0.

6 Conclusions

The SemiSupervised package was presented for semi-supervised machine learning problems. The
package was noted to scale linearly in n. In this capacity, it is important to draw a distinction
between scaling issues associated with labeled (training) size m and the full data size n. Most
machine learning techniques do not scale well with m, but have real promise for scaling with
n. For example, take supervised learning; prediction of n observations is often trivial post
training and is rarely discussed as a computational challenge. Semi-supervised learning is at a
disadvantage in terms of time complexity because many techniques, especially the popular and
high performing graph-based techniques, are cubic in n due to the required inversion of n × n
matrices. The need for linear techniques has led to the recent work on anchor point methods
together with the use of linear approximations to non-parametric semi-supervised techniques
[21]. The SemiSupervised package builds on this work.

To summarize the important contributions of this work, we list the internal steps taken by
the function agraph and simply note that they are indeed linear in n.

1. Clustering step: A clustering algorithm is applied to all n observations to produce a
anchor points (i.e., centroids). The algorithm defaults to k-means clustering which has
order npa with a = 600 by default.

2. Graph construction step: A local anchor embedding gradient decent algorithm is applied
to the full n observations and a anchor points to get Z. Upon completion, the graph is
represented by an n × n adjacency matrix W , but this is never actually computed thus
circumventing a quadratic in n step (i.e., just compute B? directly from Z in the anchor
graph optimization of Section 4.2).

3. Fitting step: The agraph function is applied to compute a vector of linear regression
coefficient estimates β̂, but this only requires the inverse of an (a + p) × (a + p) matrix.
By fitting anchor points as unlabeled cases as opposed to the unlabeled cases directly, this
step is constant as n increases.

4. Prediction step: The n predictions are produced linearly using β̂.

The agraph is the linear approximation to the s4pm. Using this general algorithm and adapt-
ing the anchor points to the s4pm without approximating the non-parametric fit dramatically
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improves the scalability of this method. However, it is still not as fast as the agraph, but
theoretically should slightly out-preform the agraph method in practice.

The summary above also exposes a significant shortcoming of the SemiSupervised package
and the work in semi-supervised learning in general. As p increases, these techniques have a
terrible time scaling up. The need to address large p problems is, to our knowledge, entirely
open in this field and is worthy of future study. This is not only an issue from a computational
perspective but also from a theoretical perspective, e.g., it is not clear what effect allowing
the unlabeled data to influence variable selection will have on variable selection in practice. In
Section 4.1, we demonstrated that this is possible with the SemiSupervised package, but this is
the only result that we are aware of that even considers this issue. Understanding this effect is
an important practical problem that presents a fruitful future study.

In addition to having linear in n time complexity, the SemiSupervised package also offers
internal CV routines and underlying fitting in C++, S4 generic consistency in R, and several
practical heuristics to make this work on real arbitrary data. These advances provide an easy-
to-use tool for real data problems.
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