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Summary:
The objective of this paper is to present an R package, SCGLR, implementing

a new PLS regression approach in the multivariate generalized linear framework.
The method allows the joint modeling of random variables from different expo-
nential family distributions, searching for common PLS-type components. We
discuss several of the functions in the package focusing in particular on the two
main ones: scglr and scglrCrossVal. The former constructs the components
and performs the parameter estimation, while the latter selects the approriate
number of components by cross-validation. The package is illustrated on an ap-
propriate ecological dataset through which we aim at predicting the abundance
of multiple tree genera given a large number of geo-referenced environmental
variables.
Key words: Multivariate generalized linear model, partial least squares, Fisher
Scoring, R

1 Introduction

The classical generalized linear model (GLM), used for modeling random vari-
ables from exponential family distributions, suffer from different limitations: (i)
it does not allow modeling of more than one outcome at a time; (ii) for want
of regularization, it cannot deal with many correlated regressors - whatever rel-
evant causal factors they may represent - and thus requires some preliminary
selection of regressors; (iii) the degree of explanatory realism of the model and
the robustness of the prediction may be highly influenced by this selection.
We developed the supervised component generalized linear regression (SCGLR)
method to overcome these limitations [1, 2]. SCGLR is a multivariate extension
of partial least squares (PLS) regression to the generalized linear framework.
It allows the relevant information contained in the data to be summarized in a
few common components that can predict, as best as possible, the multivariate
outcomes. The method was motivated by ecological applications where there is
interest in understanding how communities of tree species are structured based
on environmental traits. Because species data can be collected through different
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measurement processes, the outcomes arise from several types of distributions.
For example, some species may just be measured through presence/absence
and others through count data (e.g., binomial or Poisson distributions). The
originality of the SCGLR approach is to allow the simultaneous modeling of dis-
tributions from exponential family; Bernoulli, binomial, Gaussian and Poisson
distributions can currently be handled in the SCGLR package. SCGLR is based
on a multivariate GLM and performs a PLS regression on each step of the GLM
estimation algorithm. It uses both the responses (e.g., species abundances) and
the regressors to calculate common components. Components are constructed
sequentially: the first one maximizes some trade-off between its variance and
the goodness of fit of the GLM that takes it as sole regressor (cf below for more
details), the second one is its complement in the space orthogonal to the first
component, etc, until we get a set of K complementary and mutually indepen-
dent components, just as in principal component analysis (PCA). Ultimately,
these components are used in a GLM as covariates, allowing them to have spe-
cific effects on each response. The optimal number of components on which to
base the linear predictors is the one that allows the best prediction in cross-
validation. The quality of prediction is assessed through various well-known
criteria. In this paper, we introduce an R-package [4] that performs SCGLR.
We first briefly review the mathematical basis of the method, then describe the
program’s features and usage. We illustrate SCGLR on a dataset built from the
CoForChange database (http://www.coforchange.eu). It gives the abundance
of 27 common tree genera in the tropical moistforest of the Congo-Basin and
measurements on 40 geo-referenced environmental variables for one thousand 8
by 8 km plots (observations). Each plot’s data were obtained by aggregating
data measured on a variable number of previously sampled 0.5 ha sub-plots.
Geo-referenced environmental variables were used to describe the physical fac-
tors as well as vegetation characteristics.

2 Description of the SCGLR statistical approach

Let X = (X1, . . . , Xp) be a matrix whose column-vectors code p regressors
(possibly including indicator variables coding for nominal covariates), and Y =
(Y1, . . . , Yq) be a matrix whose column-vectors code q responses. Let finally A be
a matrix whose column-vectors code additional covariates. SCGLR assumes that
the q responses are dependent on an unknown number of mutually orthogonal
components (linear combinations of the covariates X), along with covariates
A. The components are assumed common to all the responses in that they
play some role in the GLM fit of each response. Moreover, the components are
designed to stay rather close to the principal directions of the covariates, that
is, stray from the noise contained in the group of regressors. The algorithm is
detailed using pseudo-code in Algorithm

Let u be a p-coefficient vector. Just as in PCA, the structural strength of
a component f = Xu is measured through its variance under a unit-norm con-
straint on u. The components are determined sequentially. The first component
f1 = Xu1 optimizes a trade-off between the goodness-of-fit of a multivariate
GLM using f1 as common explanatory variable, and the variance of f1. To
be precise, the Fisher scoring algorithm (FSA) used to estimate the GLM of Y
on f1 = Xu1 has been altered replacing, in the estimation step of its current
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linearized model, the Generalized Least Squares (GLS) estimation procedure
with an extended Partial Least Squares procedure. The latter, taking f1’s vari-
ance into account, regularizes coefficient vector u1, which the standard GLS
procedure does not. Covariates in A are considered in the regression step, but
not taken into account in component f1. Then, X is deflated on f1, that is,
projected onto its orthogonal space, yielding residual predictor matrix X1, and
the second component f2 is sought in X1 (f2 = X1u2) according to the same
trade-off optimization, but taking f1 as extra covariate (i.e., f1 is from there
on appended to A). And so forth for higher rank components. So, current com-
ponent fr = Xr−1ur is based on the matrix of residuals obtained by projecting
the original variables X onto the space orthogonal to all previous components
{f1, ..., fr−1}, and the estimation procedure of the linearized model within the
modified FSA step takes into account covariates A ∪ {f1, ..., fr−1}.

Finally, given some integer R, a multivariate GLM of the responses is per-
formed on the set FR = {f1, ..., fR} of the first R components, along with
covariates A, yielding a coefficient vector for each response yk, with correspond-
ing linear predictor ηk = FRγk + Aδk (k = 1, . . . , q). Now, each component fr

can be expressed as a linear combination of the original predictors: fr = Xvr.
Hence, in matrix form, we have: FR = XV R. Thus, we can express each lin-
ear predictor as a linear combination of the regressors: ηk = Xβk + Aδk with
βk = V Rγk.

The coefficients βk and δk can be used in cross-validation to determine the
optimal number R of components in order to avoid overfitting. Given the num-
ber of components R under trial, the observations are repeatedly partitioned
into 2 sub-samples: C (for calibration) and T (for testing). On each partition,
C is used to calculate the R components, and hence the β’s and δ’s, which in
turn are used to predict the expectation of the responses on T . An appropriate
criterion of predictive power is then calculated (depending on the distribution
of the responses) and averaged over all (C, T ) partitions considered. Eventually,
we considered and we select the number yielding the best performance.

Full details on this method can be found, more formally expressed, in [2].

3 Program description and usage

3.1 Main description

SCGLR is developed using R ≥ 3.0 version [5]. SCGLR is a set of R functions
illustrated on a floristic data set, genus. scglr() and scglrCrossval() are
the two main high level functions, which are respectively dedicated to fitting
the model and selecting the number of components. print(), summary() and
plot() methods are also available for the scglr() function.

R> library("SCGLR")

The call to scglr() has the following structure:

R> results.scglr <- scglr(formula,data,family,K,size,offset,subset,na.action,crit)

The formula, data, family and K arguments are required and size must be spec-
ified if binomial variables are used. The formula object of the Formula class
[7] is composed of two or three terms. The first term describes the dependent
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Algorithm 1: SCGLR algorithm - kComponents

Input: Y = array of dependent variables.
Input: X = array of covariates grounding the components.
Input: A = array of additional covariates.
Input: R = number of components to find.
Result: F = array of the R components.

q ←− number of columns Yk of Y
Initialization of the working tables:
X0 ←− X
X̃0 ←− X
F 0 ←− empty set
Incrementally find components:
for r = 1 to R do

begin oneComponent
for k = 1 to q do

Initialization of the working variable Zk using mean value of
variable Yk.
Initialization of the weighting matrices Wk.

end

Convergence is defined by the stability of the sought component
fr.
while convergence is not reached do

for k = 1 to q do

Calculate the current working table X̃k as the
Wk-orthogonal projection of Xr−1 on the orthogonal of the
space spanned by {A,F r−1}.
Calculate the PLS1 matrix of Zk on X̃k as
Dk = X̃k′

WkZkZ
′
kWkX̃

k.
end

Calculate D as the sum over k of the PLS1 matrices Dk.
Extract the first eigenvector of D and calculate fr with it.

for k = 1 to q do
Update Zk and Wk using GLS regression on previous
components F r−1.

end

end

end
Add newly found component to previous ones:
F r ←− [F r−1, fr]
Calculate Xr as the regression residuals of Xr−1 on F r.

end
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variables whereas the second term describes the regressors used to construct
components, and the third term describes additional covariates to be included
in the model but not used in the linear combination giving the components. The
first two terms should be separated by a ∼ symbol as classical R formula objects,
whereas the second and third terms, if any, should be separated by a | symbol.
All the elements in each term are separated by a + sign. The formula can be
written out explicitly or provided using the multivariateFormula() function.
For example, if ny = (“y1”, “y2”) contains the names of the dependent vari-
ables, nx = (“x1”, . . . , “x5”) the names of the regressors used to construct the
component, and nz = (“z1”, “z2”, “z3”) the names of the additional regressors

R> myformula <- multivariateFormula(ny,nx,nz)

R> myformula

y1 + y2 ~ x1 + x2 + x3 + x4 + x5 | z1 + z2 + z3

The data argument is an object of the data.frame class. The family is a vec-
tor of characters describing the family of each dependent variable. In SCGLR,
“bernoulli”, “binomial”, “poisson” or “gaussian” are allowed. For Poisson out-
comes, the offset argument is either a vector or a matrix of size: number of
observations × number of Poisson dependent variables, allowing a different off-
set for each dependent variable. If binomial dependent variables are included in
the model, size must be specified as a matrix describing the number of trials.

The output of the scglr function is an object of class SCGLR made of:

� u: matrix of size: number of regressors × number of components, contains
the component-loadings, i.e., the coefficients of the regressors in the linear
combination giving each component.

� comp: matrix of size : number of statistical units × number of compo-
nents, having the components as column vectors.

� compr: matrix of size : number of statistical units × number of compo-
nents, having the standardized components as column vectors.

� gamma: list of length number of dependant variables. Each element is a
matrix of coefficients, standard errors, z-values and p-values.

� beta: matrix of size: number of regressors + 1 (intercept) × number
of dependent variables, contains the coefficients of the regression on the
original regressors X.

� lin.pred: data.frame of size: number of statistical units × number of de-
pendent variables, the fitted linear predictor.

� xFactors: data.frame containing the nominal regressors.

� xNumeric: data.frame containing the quantitative regressors.

� inertia: matrix of size: number of components× 2, contains the percentage
and cumulative percentage of the overall regressors’ variance, captured by
each component.

� deviance: vector of length: number of dependent variables, gives the de-
viance of each yk’s GLM on the components.
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The print() method gives the values of inertia and deviance. summary()

gives inertia, deviance, and three additional tables. The first one contains the
square correlations between X’s and the components, along with two columns
highlighting the plane on which the regressors are best projected and their as-
sociated square correlations. The second table presents the square correlations
between fitted linear predictors and components, with two more columns corre-
sponding to the plane on which the regressors are best projected and their asso-
ciated square correlations. These two tables summarize how well the regressors
and the dependent variables, through their linear predictors, are represented on
the planes. The third table presents the γ values obtained from the GLM; only
γ’s with p-values lower than a given cutoff (default 0.05) are printed.

3.2 Plots

Several specialized plot commands are available to show the results of scglr().
They are all based on the ggplot2 package developed by Wickham, H. [6] and
as such can be further customized (i.e., one can add more layers or labels for
example).

� plot(): general function to produce various plots from the scglr() out-
put by selecting elements to draw. This selection is specified by the style
argument as a character vector with parameters chosen in Table˜1: (nb:
style elements can be abbreviated)

Style elements descriptions
covariates regressors drawn as black arrows.

observations standardized observations drawn as points.
predictors linear predictors drawn as red arrows.

circle correlation circle.
threshold dashed threshold circle with radius equal to thresh-

old value. Co-variates and linear predictors will be
filtered accordingly. Default value of threshold (0.8)
can be overridden by using the threshold parameter.

factor centre of observations grouped by factor levels. Fac-
tor name must be provided by using factor param-
eter.

Table 1: Table presenting the style parameters available.

� barplot(): takes an SCGLR object as input and produces a barplot of
the inertia per component.

� pairs(): takes an SCGLR object and produces an array plot for pairwise
combinations of components (all components or a selected subset).

3.3 Selecting the number of components

Most of the time, the appropriate number of components to best predict de-
pendent variables remains unknown and must be selected. We propose a cross-
validation approach using different criteria to determine the number of compo-
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nents. The call to the scglrCrossVal() function shares the same arguments as
the scglr() function with two additional arguments nfolds and type:

R> scglrCrossVal(formula,data,family,K,nfolds,types,size,

+ offset,subset,na.action,crit)

nfolds is the number of subsamples to be used in the cross-validation - default is
5. Although nfolds can be as large as the sample size (leave-one-out CV), this
is not recommended for large datasets.
type is the criterion to use for cross-validation. Currently five options are avail-
able in a general setting: “mspe” (Mean Squared Prediction Error), “likelihood”,
“aic”, “bic” and “aicc”. When all dependent variables are Bernoulli, the option
“auc” (area under ROC curve) enables to measure the prediction performance.
The output of the procedure is a (q × (K + 1)) matrix containing the criterion
values for each response variable and each model. The first column corresponds
to the model without any component.

4 Examples

4.1 Floristic data set

We illustrate SCGLR using the data genus. This example highlights the use of
the multivariate Poisson count distribution with an offset.

4.2 Count data

genus is a dataset built from the CoForChange database. It gives the abundance
of 27 common tree genera in the tropical moistforest of the Congo-Basin and
measurments on 40 geo-referenced environmental variables for one thousand 8
by 8 km plots (observations). Data on each plot were obtained by aggregating
the data measured on a variable number of previously sampled 0.5 ha sub-plots.
The geo-referenced environmental variables were used to describe 16 physical
factors pertaining to the description of topography, geology and rainfall and the
remaining variables give the vegetation characteristics defined through 16-days
enhanced vegetation index (EVI).

R> library("SCGLR")

R> data("genus")

R> dim(genus)

[1] 1000 69

R> names(genus)

[1] "gen1" "gen2" "gen3" "gen4"

[5] "gen5" "gen6" "gen7" "gen8"

[9] "gen9" "gen10" "gen11" "gen12"

[13] "gen13" "gen14" "gen15" "gen16"

[17] "gen17" "gen18" "gen19" "gen20"

[21] "gen21" "gen22" "gen23" "gen24"

[25] "gen25" "gen26" "gen27" "altitude"
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[29] "pluvio_yr" "forest" "pluvio_1" "pluvio_2"

[33] "pluvio_3" "pluvio_4" "pluvio_5" "pluvio_6"

[37] "pluvio_7" "pluvio_8" "pluvio_9" "pluvio_10"

[41] "pluvio_11" "pluvio_12" "geology" "evi_1"

[45] "evi_2" "evi_3" "evi_4" "evi_5"

[49] "evi_6" "evi_7" "evi_8" "evi_9"

[53] "evi_10" "evi_11" "evi_12" "evi_13"

[57] "evi_14" "evi_15" "evi_16" "evi_17"

[61] "evi_18" "evi_19" "evi_20" "evi_21"

[65] "evi_22" "evi_23" "lon" "lat"

[69] "surface"

We chose to use the covariate “geology” as an additional factor not directly used
in the component construction because of the demonstrated importance of the
geological substrates on the spatial distribution of tree species in the Congo
Basin [3]. We also used the covariate “surface” as an offset and we added the
product I(lon ∗ lat) as a new covariate.

R> ny <- names(genus)[1:27]

R> sx <- which(names(genus) %in% c("geology","surface"))

R> nx <- names(genus)[-c(1:27,sx)]

R> family <- rep("poisson",length(ny))

R> formula <- multivariateFormula(ny,c(nx,"I(lon*lat)"),"geology")

R> formula

gen1 + gen2 + gen3 + gen4 + gen5 + gen6 + gen7 + gen8 + gen9 +

gen10 + gen11 + gen12 + gen13 + gen14 + gen15 + gen16 + gen17 +

gen18 + gen19 + gen20 + gen21 + gen22 + gen23 + gen24 + gen25 +

gen26 + gen27 ~ altitude + pluvio_yr + forest + pluvio_1 +

pluvio_2 + pluvio_3 + pluvio_4 + pluvio_5 + pluvio_6 + pluvio_7 +

pluvio_8 + pluvio_9 + pluvio_10 + pluvio_11 + pluvio_12 +

evi_1 + evi_2 + evi_3 + evi_4 + evi_5 + evi_6 + evi_7 + evi_8 +

evi_9 + evi_10 + evi_11 + evi_12 + evi_13 + evi_14 + evi_15 +

evi_16 + evi_17 + evi_18 + evi_19 + evi_20 + evi_21 + evi_22 +

evi_23 + lon + lat + I(lon * lat) | geology

R> offset <- genus$surface

R> K <- 10

R> genus.cv <- scglrCrossVal(formula=formula,data=genus,family=family,

+ K=K,nfolds=5,type="mspe",offset=offset)

mc.cores is an optional argument to launch parallel runs of the cross-validation
procedure (default is equal to one).

Concerning the selection procedure, in order to produce comparable values
for possibly very different response variables, we used the following heuristic.
For each response and each of the K+1 models (one model for each number K of
components and one for no component), divide the criterion value by its median
over all the models. Then calculate for each number of components the mean
of the standardized values over the different response variables. Alternatively,
the mean can be used to normalize instead of the median.
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R> criterion <- t(apply(genus.cv,1,function(x) x/median(x)))

R> criterion <- apply(criterion,2,mean)

R> K.cv <- which.min(criterion)-1

In the expression of K.cv, the minus 1 enables to relable the output such that
it matches the actual number of components used. Plotting criterion values
(see Figure˜1) displays the change in the selection criterion as the number of
components increases. Here, the criterion is minimized for 8 components The
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Figure 1: Mean Squared Prediction Error (MSPE) as a function of the number
of components.

number of components that minimizes the criterion 8 . We can therefore call
scglr() with K = 8.

R> genus.scglr<-scglr(formula=formula,data=genus,family=family,

+ K=K.cv,size=NULL,offset=offset)

Printing genus.scglr :

R> print(genus.scglr)

Call: scglr(formula = formula, data = genus, family = family, K = K.cv,

size = NULL, offset = offset)

Inertia:

cr1 cr2 cr3 cr4 cr5

0.22677183 0.31465078 0.09737181 0.04449536 0.07549732

cr6 cr7 cr8

0.02552999 0.03509469 0.02029163

Deviance:

gen1 gen2 gen3 gen4 gen5
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2034.403 2438.178 1316.709 1258.037 1411.318

gen6 gen7 gen8 gen9 gen10

1758.677 2292.380 15159.303 1507.668 14610.577

gen11 gen12 gen13 gen14 gen15

4726.183 6567.454 7577.443 8234.611 2243.921

gen16 gen17 gen18 gen19 gen20

2066.180 2639.012 1222.103 25234.683 2061.224

gen21 gen22 gen23 gen24 gen25

3231.061 1345.524 3258.163 8126.111 10182.539

gen26 gen27

9333.937 9976.224

Inertia of the 8 components (see Figure˜2):

R> barplot(genus.scglr)

0.0

0.1

0.2

0.3

cr1 cr2 cr3 cr4 cr5 cr6 cr7 cr8
Components

In
er

tia

Inertia per component

Figure 2: Barplot of inertia per component

The following two commands create the plots in Figure˜3. The first one
gives a simple correlation plot (see Figure˜3a)

R> plot(genus.scglr)

The second correlation plot (see Figure˜3b) displays only the linear predictors
and covariates whose norms in the selected plane exceed the threshold specified
by the ”thr” styles element.

R> plot(genus.scglr, style=c("simple","predictor","thr"), thr=0.8)

Finally, we present the pairs plot on the planes spanned by components 1,3,
and 5 (see Figure˜4):

R> pairs(genus.scglr,components=c(1,3,5),ncol=2,label.size=0.5)
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Figure 3: Two sample plots
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Figure 4: Correlation plots on planes spanned by components 1, 3, and 5

5 Conclusion

The main features of the R package SCGLR have been explained and illustrated
in this paper using the data set genus provided with the package. Contrary to
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q
n

100 1000 10000

10 0.075 1.11 17.10
100 2.942 5.644 31.60

Table 2: Mean user times (in seconds) to calculate one SCGLR component for
10 or 100 dependent variables and 100, 1000 or 10,000 observations

existing PLS-dedicated packages that can only handle Gaussian data, SCGLR
provides a unified framework to deal with multivariate outcomes arising from
any exponential family distribution. The computational time required to run
scglr depends on the dimension of the problem. Table˜2 provides the mean
user times required to run 100 simulations of the scglr() algorithm using one
component with p = 100 covariates and a varying number of dependent variables
(q = 10 and 100) and varying sample sizes (n = 100, 1000 and 10, 000). These
results highlight the efficiency of the SCGLR package.
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