
RcppOctave: Seamless Interface to Octave – and Matlab

Renaud Gaujoux

RcppOctave package – Version 0.9.1 [May 5, 2013]∗

Abstract

The RcppOctave package provides a direct interface to Octave from R. It allows
octave functions to be called from an R session, in a similar way C/C++ or Fortran func-
tions are called using the base function .Call. Since Octave uses a language that is mostly
compatible with Matlabr, RcppOctave may also be used to run Matlab m-files. This package
was originally developed to facilitate the port and comparison of R and Matlab code. In par-
ticular, it provides Octave modules that redefine Octave default random number generator
functions, so that they call R own dedicated functions. This enables to also reproduce and
compare stochastic computations.

Contents

1 Introduction 1

2 Objectives & Features 2

3 Accessing Octave from R 2
3.1 Core interface: .CallOctave . . 3

3.1.1 Overview 3
3.1.2 Controlling output values 3
3.1.3 Examples 4

3.2 Direct interface: the .O object . . 7
3.2.1 Manipulating variables . . 8
3.2.2 Calling functions 8
3.2.3 Auto-completion 9

3.3 Utility functions 9
3.3.1 Assign/get variables . . . 9

3.3.2 Evaluate single statements 10
3.3.3 Source m-files 11
3.3.4 List objects 13
3.3.5 Browse documentation . . 13

3.4 Low-level C/C++ interface . . . 13

4 Calling R functions from Octave 14

5 Examples 14
5.1 Comparing implementations . . . 14
5.2 Random computations 14

6 Known issues 15

References 16

1 Introduction

In many research fields, source code of algorithms and statistical methods are published as
Matlab files (the so called m-files). While such code is generally released under public Open
Source licenses like the GNU Public Licenses (GPLs) [3], effectively running or using it require
either to have Matlabr, which is a nice but expensive proprietary software1, or to be/get – at
least – a bit familiar with Octave [1], which is free and open source, and is able to read and
execute m-files, as long as they do not require Matlab-specific functions. However, R users may

∗This vignette was built using Octave 3.6.4
1http://www.mathworks.com

1

http://www.mathworks.com

have neither Matlab license, nor the time/will to become Octave-skilled, and yet want to use
algorithms written in Matlab/Octave for their analyses and research.

Being able to run m-files or selectively use Octave functionalities directly from R can greatly
alleviate a process that otherwise typically implies exporting/importing data between the two
environments via files on disk, as well as dealing with a variety of issues including rounding errors,
format compatibility or subtle implementation differences, that all may lead to intricate hard-to-
debug situations. Even if one eventually wants to rewrite or optimise a given algorithm in plain
R or in C/C++, and therefore remove any dependency to Octave, it is important to test the
correctness of the port by comparing its results with the original implementation. Also, a direct
interface allows users to stick to their preferred computing environment, in which they are more
comfortable and productive.

An R package called ROctave 2 do exist, and intends to provide an interface between R and
Octave, but appears to be outdated (2002), and does not work out of the box with recent version of
Octave. A more recent forum post3 brought back some interest on binding these two environments,
but apparently without any following.

The RcppOctave package4 [4] described in this vignette aims at filling the gap and facilitating
the usage of Octave/Matlab code from R, by providing a lean interface that enables direct and easy
interaction with an embedded Octave session. The package’s name was chosen both to differentiate
it from the existing ROctave package, and to reflect its use and integration of the C++ framework
defined by the Rcpp package5 [2].

2 Objectives & Features

The ultimate objective of RcppOctave is to provide a two-way interface between R and Octave,
i.e. that allows calling Octave from R and vice-versa. The interface intends to be lean and as
transparent as possible, as well as providing convenient utilities to perform commonly needed tasks
(e.g. source files, browse documentation).

Currently, the package focuses on accessing Octave functionalities from R with:

� An out-of-the-box-working embedded Octave session;

� Ability to run/source m-files from R;

� Ability to evaluate Octave statements and function calls from R;

� Ability to call R functions in Octave code6;

� Transparent passage of variables between R and Octave;

� Reproducibility of computations, including stochastic computations, in both environment;

Future development should provide similar reverse capabilities, i.e. an out of the box embedded
R session, typically via the RInside package7.

3 Accessing Octave from R

The RcppOctave package defines the function .CallOctave, which acts as a single entry point
for calling Octave functions from R. In order to make common function calls easier (e.g. eval),
other utility functions are defined, which essentially wraps a call to .CallOctave, but enhance
argument handling and result formating.

2http://www.omegahat.org/ROctave
3http://octave.1599824.n4.nabble.com/ROctave-bindings-for-2-1-73-2-9-x-td1602060.html
4http://cran.r-project.org/package=RcppOctave
5http://cran.r-project.org/package=Rcpp
6Currently only when run from R through RcppOctave.
7http://cran.r-project.org/package=RInside

2

http://cran.r-project.org/package=RcppOctave
http://cran.r-project.org/package=Rcpp
http://cran.r-project.org/package=RInside
http://www.omegahat.org/ROctave
http://octave.1599824.n4.nabble.com/ROctave-bindings-for-2-1-73-2-9-x-td1602060.html
http://cran.r-project.org/package=RcppOctave
http://cran.r-project.org/package=Rcpp
http://cran.r-project.org/package=RInside

3.1 Core interface: .CallOctave

The function .CallOctave calls an Octave function from R, mimicking the way native C/C++
functions are called with .Call.

3.1.1 Overview

The function .CallOctave takes the name of an Octave function (in its first argument .NAME)
and pass the remaining arguments directly to the Octave function – except for the two special
arguments argout (see next section) and unlist. Note that Octave function arguments are not
named and positional, meaning that they must be passed in the correct order. Input names are
simply ignored by .CallOctave. Calling any Octave function is then as simple as:

.CallOctave("version")

[1] "3.6.4"

.CallOctave("sqrt", 10)

[1] 3.162

.CallOctave("eye", 3)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

.CallOctave("eye", 3, 2)

[,1] [,2]

[1,] 1 0

[2,] 0 1

[3,] 0 0

3.1.2 Controlling output values

Octave functions have the interesting feature of being able to compute and return a variable
number of output values, depending on the number of output variables specified in the statement.
Hence, a call to an Octave function requires passing both its parameters and the number of desired
output values.

The following sample code illustrates this concept using the function svd8:

% single output variable: eigen values only

S = svd(A);

% 3 output variables: complete SVD decomposition

[U, S, V] = svd(A);

The default behaviour of .CallOctave .CallOctave is to try to detect the maximum number
of output variables, as well as their names, and return them all. This should be suitable for most
common cases, especially for functions defined by the user in plain m-files, but does not work for
functions defined in compiled modules (see examples with in the next section). Hence the default
is to return the maximum number of output values if it can be detected, or only the first one.

8The sample code is extracted from the manpage for svd. See o help(svd) for more details.

3

For some functions, however, this behaviour may not be ideal, and complete control on the
return values is possible via the special argument argout. The next section illustrates different
situations and use case scenarios.

3.1.3 Examples

A sample m-file (i.e. a function definition file) is shipped with any RcppOctave installation in
the “scripts/” sub-directory and provides some examples of different types of Octave functions:

%%

% Example file for the R package RcppOctave

%%

function [a] = fun1()

a = rand(1,4);

end

function [a,b,c] = fun2()

a = rand(1,4);

b = rand(2,3);

c = "some text";

end

function fun_noargout(x)

% no effect outside the function

y = 1;

printf("%% Printed from Octave: x="), disp(x);

end

function [s] = fun_varargin(varargin)

if (nargin==0)

s = 0;

else

s = varargin{1} + varargin{2} + varargin{3};

endif

end

function [u, s, v] = fun_varargout()

if (nargout == 1) u = 1;

elseif (nargout == 3)

u = 10; s = 20; v = 30;

else usage("Expecting 1 or 3 output variables.");

endif;

end

These definitions can be loaded in the Octave session via the function sourceExamples.

source example function definitions from RcppOctave installation

sourceExamples("ex_functions.m")

several functions are now defined

4

o_ls()

[1] "fun1" "fun2" "fun_noargout" "fun_varargin"

[5] "fun_varargout"

The functions fun1, fun2, fun noargout, and fun varargin perform the same computations
independently of the number of output. For these a default call to .CallOctave is enough to get
their full functionalities:

single output value

.CallOctave("fun1")

[1] 0.7807 0.5124 0.4977 0.7154

3 output values

.CallOctave("fun2")

$a

[1] 0.2827 0.9817 0.1443 0.9320

##

$b

[,1] [,2] [,3]

[1,] 0.03616 0.5263455 0.6719

[2,] 0.38453 0.0007331 0.2394

##

$c

[1] "some text"

no output value

.CallOctave("fun_noargout", 1)

.CallOctave("fun_noargout", "abc")

variable number of arguments

.CallOctave("fun_varargin")

[1] 0

.CallOctave("fun_varargin", 1, 2, 3)

[1] 6

The function fun varargout however, behaves differently when called with 1, 2 or 3 output
variables, performing different computations. Since it is defined in a m-file, the maximum set
of output variables is detectable and the default behaviour is then to call it asking for 3 output
variables. The other types of computations can be obtained using argument argout:

.CallOctave("fun_varargout")

$u

[1] 10

##

$s

[1] 20

##

5

$v

[1] 30

.CallOctave("fun_varargout", argout = 1)

[1] 1

this should throw an error

.CallOctave("fun_varargout", argout = 2)

Error: RcppOctave - error in Octave function ‘fun varargout‘.

Argument argout may also be used to specify names for the output values. This is useful for
functions defined in compiled modules (e.g. svd) for which expected outputs are not detectable
(output names in particular), or when limiting the number of output variables in functions defined
in m-files. Indeed, in this latter case, it is not safe to infer the names based on those defined for
the complete output, as these may not be relevant anymore:

single output variable: result is S

.CallOctave("svd", matrix(1:4, 2))

[,1]

[1,] 5.465

[2,] 0.366

3 output variables: results is [U,S,V]

.CallOctave("svd", matrix(1:4, 2), argout = 3)

[[1]]

[,1] [,2]

[1,] -0.5760 -0.8174

[2,] -0.8174 0.5760

##

[[2]]

[,1] [,2]

[1,] 5.465 0.000

[2,] 0.000 0.366

##

[[3]]

[,1] [,2]

[1,] -0.4046 0.9145

[2,] -0.9145 -0.4046

specify output names (and therefore number of output variables)

.CallOctave("svd", matrix(1:4, 2), argout = c("U", "S", "V"))

$U

[,1] [,2]

[1,] -0.5760 -0.8174

[2,] -0.8174 0.5760

##

$S

[,1] [,2]

[1,] 5.465 0.000

[2,] 0.000 0.366

6

##

$V

[,1] [,2]

[1,] -0.4046 0.9145

[2,] -0.9145 -0.4046

Note that it is quite possible for a compiled function to only accept calls with at least 2 output
variables. In such cases, .CallOctave calls must always specify argument argout.

3.2 Direct interface: the .O object

An alternative and convenient shortcut interface is defined by the S4-class Octave. At load
time, an instance of this class, an object named .O, is initialised and exported from RcppOctave’s
namespace. Using the .O object, calls to Octave functions are more compact:

.O

<Octave Interface>

- Use `$x` to call Octave function or get variable x.

- Use `$x <- val` to assign a value val to the Octave variable x.

.O$version()

[1] "3.6.4"

.O$eye(3)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

.O$svd(matrix(1:4, 2))

[,1]

[1,] 5.465

[2,] 0.366

argout can still be specified

.O$svd(matrix(1:4, 2), argout = 3)

[[1]]

[,1] [,2]

[1,] -0.5760 -0.8174

[2,] -0.8174 0.5760

##

[[2]]

[,1] [,2]

[1,] 5.465 0.000

[2,] 0.000 0.366

##

[[3]]

[,1] [,2]

[1,] -0.4046 0.9145

[2,] -0.9145 -0.4046

7

3.2.1 Manipulating variables

The .O object facilitates manipulating single Octave variables, as it emulates an R environment-
like object whose elements would be the objects available in the current Octave embedded session:

define a variable

.O$myvar <- 1:5

retrieve value

.O$myvar

[1] 1 2 3 4 5

assign and retrieve new value

.O$myvar <- 10

.O$myvar

[1] 10

remove

.O$myvar <- NULL

this should now throw an error since 'myvar' does not exist anymore

.O$myvar

Error: RcppOctave::o get - Could not find an Octave object named ’myvar’.

3.2.2 Calling functions

As illustrated above, Octave functions can be called through the .O object, by passing speci-
fying its arguments as a function call:

density of x=5 for Poisson(2)

.O$poisspdf(5, 2)

[1] 0.03609

E.g. compare with R own function

dpois(5, 2)

[1] 0.03609

They may also be retrieved as R functions in a similar way as variables, and called in subsequent
statements:

retrieve Octave function

f <- .O$poisspdf

f

<OctaveFunction::`poisspdf`>

call (in Octave)

f(5, 2)

[1] 0.03609

8

3.2.3 Auto-completion

An advantage of using the .O object is that it has auto-completion capabilities similar to the
R console. This greatly helps and speeds up the interaction with the current embedded Octave
session. For example, typing .O$std + TAB + TAB will show all functions or variables available in
the current session, that start with “std”.

3.3 Utility functions

The RcppOctave package defines some utilities to enhance the interaction with Octave, and
alleviate calls to a set of commonly used Octave functions. All these functions start with the prefix
“o ” (e.g. o source), so that they can be listed by typing o + TAB + TAB in the R console. Their
names have been chosen to reflect the corresponding Octave function, and, in some cases, aliases
matching standard R names are also provided, so that users not familiar with Octave can find
their way quickly (e.g. o rm is an alias to o clear).

3.3.1 Assign/get variables

The functions o assign and o get facilitates assigning variables and retrieving objects (vari-
ables or functions). Variables may be assigned or retrieved individually in separate calls to
o assign or o get9, or simultaneously in a variety of ways (see ?o get for more details and
examples):

ASSIGN

o_assign(a = 1)

o_assign(a = 10, b = 20)

o_assign(list(a = 5, b = 6, aaa = 7, aab = list(1, 2, 3)))

GET get all variables

str(o_get())

List of 4

$ a : num 5

$ aaa: num 7

$ aab:List of 3

..$: num 1

..$: num 2

..$: num 3

$ b : num 6

selected variables

o_get("a")

[1] 5

o_get("a", "b")

$a

[1] 5

##

$b

[1] 6

rename on the fly

o_get(c = "a", d = "b")

9This would be similar to using the .O object as described above

9

$c

[1] 5

##

$d

[1] 6

o_get throw an error for objects that do not exist

o_get("xxxxx")

Error: RcppOctave::o get - Could not find an Octave object named ’xxxxx’.

but suggests potential matches

o_get("aa")

Error: RcppOctave::o get - Could not find an Octave object named ’aa’.

Match(es): aaa aab

get a function

f <- o_get("svd")

f

<OctaveFunction::`svd`>

3.3.2 Evaluate single statements

To evaluate a single statement, one can use the o eval function, that can also evaluate a list
of statements sequentially:

assign variable 'a'

o_eval("a=1")

[1] 1

o_eval("a") # or .O$a

[1] 1

o_eval("a=svd(rand(3))")

[,1]

[1,] 1.2561

[2,] 0.4789

[3,] 0.0674

.O$a

[,1]

[1,] 1.2561

[2,] 0.4789

[3,] 0.0674

eval a list of statements

l <- o_eval("a=rand(1, 2)", "b=randn(1, 2)", "rand(1, 3)")

l

10

[[1]]

[1] 0.8449 0.8425

##

[[2]]

[1] 1.636 -1.150

##

[[3]]

[1] 0.738854 0.001305 0.746149

variables 'a' and 'b' were assigned the new values

identical(list(.O$a, .O$b), l[1:2])

[1] TRUE

multiple statements are not supported by o_eval

o_eval("a=1; b=2")

Error: RcppOctave - error in Octave function ‘eval‘.

.O$a

[1] 0.8449 0.8425

argument CATCH allows for recovering from errors in statement

o_eval("a=usage('ERROR: stop here')", CATCH = "c=3")

[1] 3

.O$a

[1] 0.8449 0.8425

.O$c

[1] 3

More details and examples are provided in the manual page ?o eval. If more than one state-
ment is to be evaluated, then one should use the function o source, with argument text as
described in Section 3.3.3 below.

3.3.3 Source m-files

Octave/Matlab code generally are generally provided as so called m-files, which are plain text
files that contain function definitions and/or sequences of multiple commands that perform a given
task. This is the form most public third party algorithms are published.

The function o source allows to load these files in the current Octave session, so that the
object they define are available, or the commands they contain are executed. RcppOctave ships
an example m-file in the “scripts/” sub-directory of its installation:

clear all session

o_clear(all = TRUE)

o_ls()

character(0)

11

source example file from RcppOctave installation

mfile <- system.file("scripts/ex_source.m", package = "RcppOctave")

cat(readLines(mfile), sep = "\n")

% Example m-file to illustrate the usage of the function o_source

%

% This file defines 3 dummy variables ('a','b' and 'c')

% and a dummy function 'abc', that adds up its three arguments.

%

##

a = 1;

b = 2;

c = 3;

##

function [res] = abc(x, y, z)

res = x + y + z;

end

o_source(mfile)

Now objects 'a', 'b', and 'c' as well as the function 'abc' should be

defined:

o_ls(long = TRUE)

<Octave session: 4 object(s)>

name size bytes class global sparse complex nesting persistent

a 1x1 8 double FALSE FALSE FALSE 1 FALSE

b 1x1 8 double FALSE FALSE FALSE 1 FALSE

c 1x1 8 double FALSE FALSE FALSE 1 FALSE

abc NA NA function TRUE NA NA 1 NA

#

o_eval("abc(2, 4, 6)")

[1] 12

o_eval("abc(a, b, c)")

[1] 6

This function can also conveniently be used to evaluate multiple statements directly passed
from the R console as character strings via its argument text:

o_source(text = "clear a b c; a=100; a*sin(123)")

last statement is stored in automatic variable 'ans'

o_get("a", "ans")

$a

[1] 100

##

$ans

[1] -45.99

12

3.3.4 List objects

The function o ls (as used above) lists the objects (variables and functions) that are defined
in the current Octave embedded session. It is an enhanced version over Octave standard listing
functions such as who (see ?o who), which only lists variables, and not user-defined functions. With
argument long it returns details about each variable and function, in a similar way whos does (see
?o who).

o_ls()

[1] "a" "abc"

o_ls(long = TRUE)

<Octave session: 2 object(s)>

name size bytes class global sparse complex nesting persistent

a 1x1 8 double FALSE FALSE FALSE 1 FALSE

abc NA NA function TRUE NA NA 1 NA

clear all (variables + functions)

o_clear(all = TRUE)

o_ls()

character(0)

See ?o ls for more details as well as Section 6 for a known issue in Octave versions older than
3.6.1.

3.3.5 Browse documentation

Octave has offers two ways of browsing documentation, via the functions help and doc, which
display a manual page for a given function and lookup the whole documentation for a given topic
respectively.

The RcppOctave package provides wrapper for these two functions to enable browsing Octave
help pages in the way R users are used to. Hence, to access the manpage for a given function one
types for example the following, which displays using the R function file.show:

o_help(std)

To display all documentation about a topic one types for example the following, opens the
documentation using the GNU Info browser10:

o_doc(poisson)

Once the GNU Info browser is running, help for using it is available using the command ‘Ctrl
+ h’ – as stated in the Octave documentation for doc (see o help(doc)).

3.4 Low-level C/C++ interface

RcppOctave builds upon the Rcpp package, and defines specialisation for the Rcpp template
functions Rcpp::as and Rcpp::wrap, for converting R types to Octave types and vice versa.
Currently these templates are not exported, but will probably be in the future.

10At least on Linux machines.

13

4 Calling R functions from Octave

This is currently not implemented but is on the TODO list for future developments.

5 Examples

5.1 Comparing implementations

Comparing equivalent R and Octave functions is as easy as comparing two R functions. For
example, one can compare the respective functions svd with the following code, which defines a
wrapper functions to format the output of Octave svd function as R (see ?svd and o help(svd)):

o_svd <- function(x) {
ask for the complete decomposition

res <- .O$svd(x, argout = c("u", "d", "v"))

reformat/reorder result

res$d <- diag(res$d)

res[c(2, 1, 3)]

}

define random data

X <- matrix(runif(25), 5)

run SVD in R

svd.R <- svd(X)

run SVD in Octave

svd.O <- o_svd(X)

str(svd.O)

List of 3

$ d: num [1:5] 2.8861 0.6957 0.4471 0.3277 0.0185

$ u: num [1:5, 1:5] -0.379 -0.447 -0.529 -0.373 -0.488 ...

$ v: num [1:5, 1:5] -0.31 -0.485 -0.369 -0.668 -0.294 ...

check results

all.equal(svd.R, svd.O)

[1] TRUE

but not exactly identical

all.equal(svd.R, svd.O, tol = 10^-16)

[1] "Component 1: Mean relative difference: 2.141e-16"

[2] "Component 2: Mean relative difference: 7.406e-16"

[3] "Component 3: Mean relative difference: 7.816e-16"

5.2 Random computations

In order to ensure reproducibility of results and facilitate the comparability of implementations
between R and Octave, RcppOctave ships a custom Octave module that redefine Octave standard
random number generator functions rand, randn, rande and randg, so that they call R corre-
sponding functions runif, rnorm, rexp and rgamma. This module is loaded when the RcppOctave
package is itself loaded. As a result, random computation – that use these functions – can be

14

seeded in both Octave and R, using R standard function set.seed. This facilitates, in particular,
the validation of ports of stochastic algorithms (e.g. simulations, MCMC-based estimations):

Rf <- function(){
x <- matrix(runif(100), 10)

y <- matrix(rnorm(100), 10)

(x * y) %*% (x / y)

}

Of <- {
define Octave function

o_source(text="

function [res] = test()

x = rand(10);

y = randn(10);

res = (x .* y) * (x ./ y);

end

")

return the function

.O$test

}

run both computations with a common seed

set.seed(1234); res.R <- Rf()

set.seed(1234); res.O <- Of()

compare results

identical(res.R, res.O)

[1] TRUE

not seeding the second computation would give different results

set.seed(1234);

identical(Rf(), Of())

[1] FALSE

6 Known issues

� In Octave versions older than 3.6.1, the function o ls may not list user-defined functions.
This is due to the built-in Octave function completion matches that does not return them.
The issue seems to have been fixed by Octave team at least in 3.6.1.

� The detection of output names by .CallOctave in Octave versions older than 3.4.1 does not
work, meaning that Octave functions are always called with a single output variable. For
obtaining more outputs, the user must specify argument argout accordingly.

� Errors and warnings thrown by Octave do not show up in Sweave documents processed using
the knitr package11 [5] – like this vignette. The issue needs further investigation.

11http://cran.r-project.org/package=knitr

15

http://cran.r-project.org/package=knitr
http://cran.r-project.org/package=knitr

Session information

R version 3.0.0 (2013-04-03)

Platform: i686-pc-linux-gnu (32-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] methods stats graphics grDevices utils datasets base

other attached packages:

[1] RcppOctave_0.9.1 pkgmaker_0.16 registry_0.2 Rcpp_0.10.3

[5] knitr_1.2

loaded via a namespace (and not attached):

[1] codetools_0.2-8 digest_0.6.3 evaluate_0.4.3 formatR_0.7

[5] stringr_0.6.2 tools_3.0.0 xtable_1.7-1

References

[1] John W Eaton. GNU Octave Manual. Network Theory Limited, 2002. isbn: 0-9541617-2-6.
url: http://www.octave.org/.

[2] Dirk Eddelbuettel and Romain François. “Rcpp: Seamless R and C++ Integration”. In: Jour-
nal of Statistical Software 40.8 (2011), pp. 1–18. url: http://www.jstatsoft.org/v40/
i08/.

[3] Free Software Foundation. GNU General Public License. 2011. url: http://www.gnu.org/
licenses/gpl.html.

[4] Renaud Gaujoux. RcppOctave: Seamless Interface to Octave – and Matlab. R package version
0.9.1. 2011. url: http://r-forge.r-project.org/projects/rcppoctave/.

[5] Yihui Xie. knitr: A general-purpose package for dynamic report generation in R. R package
version 1.2. 2013. url: http://yihui.name/knitr/.

16

http://www.octave.org/
http://www.jstatsoft.org/v40/i08/
http://www.jstatsoft.org/v40/i08/
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://r-forge.r-project.org/projects/rcppoctave/
http://yihui.name/knitr/

	Introduction
	Objectives & Features
	Accessing Octave from R
	Core interface: .CallOctave
	Overview
	Controlling output values
	Examples

	Direct interface: the .O object
	Manipulating variables
	Calling functions
	Auto-completion

	Utility functions
	Assign/get variables
	Evaluate single statements
	Source m-files
	List objects
	Browse documentation

	Low-level C/C++ interface

	Calling R functions from Octave
	Examples
	Comparing implementations
	Random computations

	Known issues
	References

