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Abstract

Many real-world systems are profitably described as complex networks that grow over
time. Preferential attachment and node fitness are two ubiquitous growth mechanisms
that not only explain certain structural properties commonly observed in real-world sys-
tems, but are also tied to a number of applications in modeling and inference. While there
are standard statistical packages for estimating the structural properties of complex net-
works, there is no corresponding package when it comes to the estimation of growth mech-
anisms. This paper introduces the R package PAFit, which implements well-established
statistical methods for estimating preferential attachment and node fitness, as well as a
number of functions for generating complex networks from these two mechanisms. The
main computational part of the package is implemented in C++ with OpenMP to ensure
good performance for large-scale networks. In this paper, we first introduce the main
functionalities of PAFit using simulated examples, and then use the package to analyze a
collaboration network between scientists in the field of complex networks.

Keywords: temporal networks, dynamic networks, preferential attachment, fitness, rich-get-
richer, fit-get-richer, R, C++, Rcpp, OpenMP.

1. Introduction

Since the end of the last century, complex networks have been increasingly used in modeling
many temporal relations found in diverse fields (Dorogovtsev and Mendes 2003; Caldarelli
2007; Newman 2010). Some notable examples include collaboration networks between au-
thors in a scientific field (Newman 2001), connection networks between computers on the
Internet (Barabási et al. 2000), and sexual relation networks between members of a commu-
nity (Liljeros et al. 2001). One driver of the popularity of this modeling paradigm is that
complex networks let us abstract away domain-dependent details and focus on modeling im-
portant structural properties observed in real-world systems, in the hope that we will be able
to predict or control the future behavior of such systems.

Among the most important real-world network structural properties is degree distribution.
Degree distribution lets us understand the proportion of highly and lowly connected nodes in
a network. Since most dynamical network processes must travel frequently through highly-
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connected nodes, this understanding in turns sheds light on the answers of important practical
questions, including how to prevent the spreading of rumors (Nekovee et al. 2007), how to stop
a virus outbreak (Pastor-Satorras and Vespignani 2001), and how to guard against cybernetic
attacks (Albert et al. 2000).

The degree distributions of many real-world networks have been found to be heavy-tailed (Al-
bert and Barabási 1999). The best-known heavy-tailed distribution in network science is the
power-law, which is a distribution where the number of nodes in a network with degree k
is proportional to k−γ for 2 < γ ≤ 3. Besides the power-law, there is emerging evidence
that real-world network degree distributions have other heavy-tailed forms, including the log-
normal (Redner 2005), exponential (Dunne et al. 2002), stretched exponential (Newman et al.
2002), and power-law with exponential cut-off (Clauset et al. 2009). All of these heavy-tailed
distributions differ from the light-tailed binomial degree distribution, which is characteristic
of networks produced by the classical Erdös-Rényi (ER) random graph model (Erdös and
Rényi 1959). This prompted the network scientists to search for new modeling ingredients
capable of explaining heavy-tailed degree distributions. It turns out that temporal complex
network models that incorporate growth mechanisms offer a powerful modeling framework
for achieving this end.

Temporal complex network models, or temporal network models for short, are probabilistic
generative models of a real-world networks that change with time. In its most common form, a
temporal network model assumes that a network grows gradually from some initial state by the
addition of new nodes and edges over a large number of discrete time-steps. Some well-known
basic models in the field of complex networks are the Barabási-Albert (BA) model (Albert
and Barabási 1999) and the Bianconi-Barabási (BB) model (Bianconni and Barabási 2001).
Growth mechanisms, which governs how a node acquires new edges in the growth process,
are the most important elements that distinguishes different temporal network models.

This paper focuses on estimating two interpretable and ubiquitous growth mechanisms: pref-
erential attachment (PA) and node fitness. While they are based on simple concepts that
are shared in diverse fields, they are also flexible enough to produce a wide range of different
networks. In the PA mechanism, the probability Pi a node vi gets a new edge in the future
is proportional to some positive function Aki of its current degree ki. This function is called
the attachment function.

The name ‘preferential attachment’ stems from the motivation for the mechanism: if Ak is an
increasing function on average, a highly connected node will acquire more edges than a lowly-
connected node, which is an appealing property in many real-world situations. From now,
we will say that preferential attachment exists if Ak is an increasing function on average. We
recover the BA model in the special case when Ak = k. This functional form in fact has been
long known in other fields with various under names such as ‘rich-get-richer’ (Simon 1955)
and ‘cummulative advantages’ (Price 1976). When Ak assumes the log-linear form of kα, with
α > 0 called the attachment exponent, we have the generalized BA model (Krapivsky et al.
2001).

While Pi depends on the degree of vi in the PA mechanism, in the fitness mechanism Pi
depends only on a positive quantity ηi called the fitness of node vi. We can interpret ηi as
the intrinsic attractiveness of vi. The fitness mechanism offers a simple way to express the
variance in edge-acquiring abilities between nodes with the same degree. For example, two
early-career scientists with roughly the same number of collaborators at some point in time
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may acquire different numbers of collaborators in the future based on intrinsic fitnesses.

The PA and node fitness mechanisms combine to produce a wide range of degree distributions.
In their combined form, probability Pi is proportional to the product of Aki and ηi:

Pi ∝ Aki × ηi. (1)

As we will show in Section 2, (1) encompasses many well-known temporal network models.
Based on the functional form of Ak and the distribution of ηi, the model depicted in (1) can
produce networks with various degree distributions (Bianconni and Barabási 2001; Caldarelli
et al. 2002; Borgs et al. 2007; Kong et al. 2008).

There are implementations of standard statistical methodologies for estimating complex net-
work degree distribution, for example the R packages igraph (Csardi and Nepusz 2006) and
poweRlaw (Gillespie 2015), but the corresponding standard methods for estimating the un-
derlying growth mechanisms are not implemented anywhere. This is unsatisfactory because
PA (and other growth mechanisms) and degree distribution are a package deal in so far as
temporal complex networks are concerned.

A growing number of interesting applications also call for an implementation of PA and
node fitness estimation methods. Based on the functional forms of Ak and ηi, we can check
whether two important social phenomena called ‘rich-get-richer’ or ‘fit-get-richer’ exist in a
temporal network (Pham et al. 2016). The two mechanisms have also been proposed to be the
underlying mechanisms of another important phenomenon called the ‘generalized friendship
paradox’ (Feld 1991; Eom and Jo 2014; Momeni and Rabbat 2015). They are also used in
inference problems in biological networks (Sheridan et al. 2010; Guetz and Holmes 2011),
World Wide Web (Kong et al. 2008), Internet topology graphs (Bezáková et al. 2006), and
citation networks (Wang et al. 2013; Sinatra et al. 2016). Finally, we can classify real-world
temporal network data based on the estimated attachment exponent of Ak (Kunegis et al.
2013).

This paper introduces the R package PAFit (Pham et al. 2017), which fills the gap with an
implementation of the standard PA and node fitness estimation procedures. In particular,
we implement Jeong’s method (Jeong et al. 2003), Newman’s method (Newman 2001) and
the PAFit method (Pham et al. 2015, 2016) in the package. The first two are heuristic
methods that are widely used in estimating the attachment function Ak in isolation, while
the last one is a principled statistical method that can either estimate Ak (or ηi) in isolation
or simultaneously estimate the two mechanisms. Although using PAFit is advisable in almost
every circumstance, Jeong’s method and Newman’s method are still widely used and might
still be appropriate in certain situations. Therefore, the inclusion of the two heuristic methods
in the package is warranted. We discuss their strengths and shortcomings in Section 2 when
we provide an overview of the methodology.

The package also implements a variety of functions to simulate temporal networks from the PA
and node fitness mechanisms, as well as functions to plot the estimated results and underlying
uncertainties. We review PAFit’s main functions in Section 3. Before demonstrating their
usages on three simulated examples in Section 5, we will discuss how PAFit relates with
exisiting network analysis packages in Section 4.

In Section 6, the package is showcased with a complete end-to-end work-flow analyzing a
collaboration network of scientists from the field of complex networks. Finally, concluding
remarks are given in Section 7.
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2. Mathematical background

Here we review the standard methods for estimating the attachment function Ak and node
fitnesses ηi in a temporal network. First we review the estimation of Ak in isolation in
Section 2.1, then the estimation of ηi in isolation in Section 2.2, and finally the joint estimation
of Ak and ηi in Section 2.3. In the course of doing so, we also review the underlying temporal
network models assumed in each case.

2.1. Attachment function estimation

The methods for estimating the attachment function Ak in isolation assume a simplified
version of (1), in which the ηi are assumed to be 1. Thus the probability Pi in (1) only
depends on Ak. Perhaps the most frequently-encountered parametric version of this model
is the log-linear for Ak = kα with attachment exponent α > 0. Network scientists are
particularly interested in estimating α, since the asymptotic degree distribution of the network
corresponds to simple regions of α. If α is less than unity (the sub-linear case), then the degree
distribution is a stretched exponential, while in the super-linear case of α > 1, one node will
eventually get all the incoming new edges (Krapivsky et al. 2001). It is only the linear case
of α = 1 gives rise to a power-law distribution.

Concerning this model, there are three main estimation methods forAk: Jeong’s method (Jeong
et al. 2003), Newman’s method (Newman 2001), and PAFit (Pham et al. 2015). Jeong’s
method basically makes a histogram of the number of new edges nk connected to a node
with degree k, then divides nk by the number of nodes with degree k in the system to get
Ak (Jeong et al. 2003). Jeong’s method has the merit of being simple, but estimates obtained
using the method are subject to high variance and low accuracy (Pham et al. 2015). By
contrast, Newman’s method combines a series of histograms for lower variance and higher
accuracy (Newman 2001). Note that in PAFit we implemented a corrected version of New-
man’s original method (Pham et al. 2015). The main drawback of Newman’s method is that
the mathematical assumption behind its derivation only holds when α = 1, thus the method
at best is heuristic when α 6= 1 (Pham et al. 2015).

The final method is PAFit (Pham et al. 2015). It iteratively maximizes an objective function
that is a combination of the log-likelihood of the model with a regularization term for Ak by
a Minorize-Maximization algorithm (Hunter and Lange 2000). We defer the details of this
term to Section 2.3. There is a hyper-parameter, called r, in the method that controls the
strength of the regularization. PAFit chooses r automatically by cross-validation (Pham et al.
2016). The method is not only able to recover Ak accurately, but also can estimate confidence
intervals of the estimated Ak for each k. It mains drawback is that it might be slow, since it
is an iterative algorithm.

2.2. Node fitness estimation

When we consider only node fitnesses, there are two generative models in the literature with
different assumptions on the functional form of Ak in (1). While the Caldarelli model (Cal-
darelli et al. 2002) assumes that Ak is 1 for all k, the BB model (Bianconni and Barabási
2001) assumes that Ak = k. Both models have been shown to generate networks with various
heavy-tailed distributions (Borgs et al. 2007; Kong et al. 2008).

Node fitnesses in both models can be estimated by variants of the PAFit method proposed



Thong Pham, Paul Sheridan, Hidetoshi Shimodaira 5

in Pham et al. (2016), by either setting Ak = k for the BB model or Ak = 1 for the Cal-
darelli model. These estimation methods use Minorize-Maximization algorithms that max-
imize the corresponding log-likelihood functions with a regularization term that regularizes
the distribution of ηi. Specifically, the inverse variance of this distribution is controlled by
a hyper-parameter, called s, which is chosen automatically by cross-validation. We defer a
more detail discussion of the regularization to the next section. We note that node fitnesses
in the BB model can also be estimated by the method in Kong et al. (2008). But since PAFit
has been shown to outperform this method (Pham et al. 2016), we do not bother to include
it in the package.

2.3. Joint estimation of the attachment function and node fitnesses

Finally, by using the full model in (1) the method PAFit in Pham et al. (2016) can jointly esti-
mate Ak and ηi. We note this full model includes all the temporal network models mentioned
as shown in Table 1. For a more complete table, see Table 1 in Pham et al. (2016).

Temporal network model Attachment function Node fitness

Growing ER model (Callaway et al. 2001) Ak = 1 ηi = 1
BA model Ak = k ηi = 1
Caldarelli model Ak = 1 Free
BB model Ak = k Free

Table 1: Some well-known temporal network models that are special cases of model defined
by (1).

The objective function of PAFit is a combination of the log-likelihood of the full model defined
by (1) and two regularization terms: one for Ak and one for ηi. While we refer readers to
Pham et al. (2016) for details on the log-likelihood function, we will discuss the regularization
terms here.

The regularization term for Ak is defined by

−r
K−1∑
k=1

wk (logAk+1 + logAk−1 − 2 logAk)
2 , (2)

with wk =
∑T

t=1mk(t) and mk(t) is the number of edges that connect to a degree k node at
time-step t. This term controls the shape of Ak. When r is large, Ak becomes more linear in
log-scale. In the limit case when r is very large, we effectively assume that Ak = kα. Thus
this covers the case of α = 1 in the BA or the BB models and the case of α = 0 in the growing
ER or the Caldarelli model.

The regularization term for node fitnesses is defined by∑
i

((s− 1) log ηi − sηi). (3)

This term controls the variance of the distribution of node fitnesses. The larger the value
of s, the more tightly concentrated the values of ηi become. If s is infinitely large, then all ηi
will take the same value. This is effectively equivalent to estimate the attachment function
in isolation.
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To conclude: joint estimation with the above regularization terms also compasses the two
cases of estimating either Ak or ηi in isolation. As mentioned in the two previous sections,
the values of r and s are automatically selected by cross-validation; see Table 2 in Pham et al.
(2016) for a summary of the relation of r and s with well-known temporal network models.

3. Package overview

The PAFit package provides functions to simulate various temporal network models, gather
essential network statistics from raw input data, and use these summarized statistics in the
estimation of Ak and ηi. The heavy computational parts of the package are implemented
in C++ through the use of the Rcpp package (Eddelbuettel and François 2011; Eddelbuettel
2013). Furthermore, users with a multi-core machine can enjoy a hassle-free speed up through
OpenMP parallelization mechanisms implemented in the code. Apart from the main functions,
the package also includes a real-world collaboration network dataset between scientists in the
field of complex networks. Table 2 summarizes the main objects in the package. In what
follows, we will review the main package functionalities one by one.

Name Description

generate_BA generates networks from the directed BA model
generate_ER generates networks from the growing ER model
generate_BB generates networks from the BB model
generate_fit_only generate networks from the Caldarelli model
generate_net generate networks with customizable PA function and node fitnesses
get_statistics collects various statistics required in subsequent estimations
only_A_estimate estimates the PA function in isolation
only_F_estimate estimates node fitnesses in isolation with either Ak = 1 or Ak = k
joint_estimate estimates the PA function and node fitnesses jointly
coauthor contains the collaboration network dataset
to_networkDynamic converts a PAFit_net object to a networkDynamic object
from_networkDynamic converts a networkDynamic object to a PAFit_net object
to_igraph converts a PAFit_net object to an igraph object
from_igraph converts an igraph object to a PAFit_net object
graph_to_file writes the graph in an PAFit_net object to file
graph_from_file reads a graph from file into a PAFit_net object
as.PAFit_net converts an edgelist matrix into a PAFit_net object

Table 2: Summary of the main objects in the PAFit package.

Firstly, most well-known temporal network models based on the PA and node fitness mech-
anisms can be easily simulated using the package. PAFit implements generate_BA for the
BA model, generate_ER for the growing ER model, generate_BB for the BB model and
generate_fit_only for the Caldarelli model. These functions have many customizable op-
tions, for example the number of new edges at each time-step are tunable stochastic variables.
They are actually wrappers of the more powerful generate_net function, which simulates net-
works with more flexible attachment function and node fitness settings. Given a PA function
and a vector of node fitnesses, one can also use the function simulate_true_net to generate
a network based on a true network as closely as possible. All statistics that are not relevant
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to the PA and fitness mechanisms, e.g., the numbers of new nodes and new edges at each
time-step, are kept the same as in the true network.

In any case, the output of these functions is a PAFit_net object, which is a list with four
fields: type, fitness, PA, and graph. The type field is a string indicates the type of network:
"directed" or "undirected". This field is "directed" for the networks generated by the
simulation functions. The fitness and PA fields contain the true node fitnesses and PA
function respectively. The graph field contains the generated temporal network in a three-
column matrix format. Each row of this matrix is of the form (id_1 id_2 time_stamp).
While id_1 and id_2 are IDs of the source node and the destination node respectively,
time_stamp is the birth time of the edge. This is the so-called edgelist format in which raw
temporal networks are stored in many online repositories (Kunegis 2013; Leskovec and Krevl
2014). We will discuss how to use functions provided by PAFit to convert this edgelist format
to formats used in other network softwares in the next section. One can apply the function
plot directly to a PAFit_net object to visualize its content.

The second functionality of PAFit is implemented in get_statistics. With its core part
implemented in C++, this function efficiently collects all temporal network summary statistics
that are needed in subsequent estimation of PA and node fitnesses. The input network is
assumed to be stored in a PAFit_net object. One can use the function graph_from_file to
read an edgelist graph from a text file into a PAFit_net object, or convert an edgelist matrix
to this class by the function as.PAFit_net.

The edgelist matrix is assumed to be in the same format as simulated graphs from PAFit, i.e.,
each row is of the form (id_1 id_2 time_stamp). The node IDs are required to be integers
bigger than −1, but need not to be contiguous. Note that (id -1 t) describes a node id that
appeared at time t without any edge. There is no assumptions on the values or data types
of time_stamp, other than that their chronological order is the same as what the R function
order returns. Examples of time-stamps that satisfy this requirement are the integer vector
1:T, the format ‘yyyy-mm-dd’, and the POSIX time.

The get_statistics function automatically handles both directed and undirected networks.
It returns a list containing many statistics that can be used to characterize the network
growth process. Notable fields are m_tk containing the number of new edges that connect
to a degree-k node at time-step t, and node_degree containing the degree sequence, i.e., the
degree of each node at each time-step.

The most important functionality of PAFit is estimating the attachment function and node
fitnesses of a temporal network. This is implemented through various methods. There are
three usages: estimation of the attachment function in isolation, estimation of the node
fitnesses in isolation, and the joint estimation of the attachment function and node fitnesses.
The functions for estimating the attachment function in isolation are: Jeong for Jeong’s
method, Newman for Newman’s method, and only_A_estimate for the PAFit method in Pham
et al. (2015). For estimation of node fitnesses in isolation, only_F_estimate implements a
variant of the PAFit method in Pham et al. (2016). For the joint estimation of the attachment
function and node fitnesses, we implement the full version of the PAFit method (Pham et al.
2016) in joint_estimate. The input of these functions is the output object of the function
get_statistics. The output object of these functions contains the estimation results as
well as some additional information pertaining to the estimation process. The estimated
attachment function and/or node fitnesses can be plotted by using the plot command directly
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on this output object. This will visualize not only the estimated results but also the remaining
uncertainties when possible.

4. Related network analysis software

Since network analysis has been an important field for a long time, various aspects of it have
been implemented in a very large number of software packages. To our best effort, we have
confirmed that the estimations of PA and fitness mechanisms in a growing network are not
implemented elsewhere. Restricting the discussion to packages in R, the main packages that
deal with temporal networks are igraph (Csardi and Nepusz 2006), statnet (Handcock et al.
2008, 2016), and RSiena (Ripley et al. 2013).

The igraph package contains the functions sample_pa and sample_growing which are the
equivalents of generate_BA and generate_ER in PAFit, respectively. Although igraph also
generates networks from many other mechanisms, it does not contain any function for esti-
mating the PA function and/or node fitnesses.

The statnet package is an extensive metapackage that contains many network-related R pack-
ages. Among them, packages that deal with temporal networks are: networkDynamic (Butts
et al. 2016), tsna (Bender-deMoll and Morris 2016), and tergm (Krivitsky and Handcock
2016). The networkDynamic package provides the networkDynamic class to store dynamic
networks, and various functions to manipulate them. The tsna package calculates many
temporal statistics of a dynamic network stored in a networkDynamic object.

The tergm package fits an exponential random graph model to a networkDynamic object.
It allows very flexible modelling based on customizable network statistics. Although it the-
oretically allows the modelling of the PA function and node fitnesses as in our setting, pre-
implemented functions in the package only allow for a simple parametric functional form of
Ak. It also does not have regularization terms specifically designed for non-parametric Ak
and ηi as in our package PAFit, which are essential for the joint estimation of the PA function
and node fitnesses (Pham et al. 2016).

The RSiena package allows for versatile modeling of temporal networks using continuous-
time exponential random graphs. It can accomodate discreate-time temporal networks, too.
The package can model the probability of a new edge based on an extensive list of network
statistics. It also implements various estimation methods, including the method of moments
and likelihood-based methods. Like the case of tergm, it is theoretically possible to use
RSiena to model the PA and fitness mechanisms. However, the pre-implemented functions
in the package, as well as all the related usages of the package that we could find in the
literature, have focused on estimating the simple parametric forms of the PA function Ak = k
and Ak =

√
k. Furthermore, like tergm, RSiena does not implement regularization terms

that are crucial in joint estimation of the non-parametric PA function and fitnesses. Lastly,
RSiena assumes that the node set is fixed in time, and thus cannot handle the addition of
new nodes without introducing some approximations.

PAFit provides functionalities to communicate with these extensive network analysis packages.
Using to_networkDynamic and from_networkDynamic, one can convert a PAFit_net object
to a networkDynamic’s networkDynamic object and vice versa. The functions to_igraph and
from_igraph do the same for igraph’s igraph objects. The extensive functions of statnet and
igraph packages can then be used. One can also output the graph stored in a PAFit_net object
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to the universal gml format by the function graph_to_file, or read from a gml file by the
function graph_from_file.

5. Package usage

Here we show three usages of PAFit: the estimation of the attachment function Ak in isolation
in Section 5.1, the estimation of node fitnesses ηi in isolation in Section 5.2, and the joint
estimation of Ak and the ηi values in Section 5.3.

5.1. Attachment function estimation

First we generate a network from the directed version of the BA model, called Price’s
model (Price 1976). The network consists of N = 1000 nodes with m = 5 new edges added
at each time-step.

R> set.seed(1)

R> library(PAFit)

R> sim_net_1 <- generate_BA(N = 1000, m = 5)

Recall that Ak is linear in the BA model, i.e., the attachment exponent α is equal to 1, and
the node fitnesses are uniform.

One can observe the emergence of hubs in this network by visualize the generated graph at
various time-steps by the function plot. The following script plots the network snapshot at
time t = 10 in Figure 1a and its corresponding degree distribution in Figure 1d:

R> plot(sim_net_1, slice = 1)

R> plot(sim_net_1, slice = 1, plot = "degree")

Note that if the network is directed, as it is in this example, the option plot = "degree"

will plot the in-degree distribution. We can plot in the same way the network snapshots at
time t = 10 and t = 100 in Figures 1b and 1c and their corresponding degree distributions in
Figures 1e and 1f.

The next step is to use the function get_statistics to get summary statistics of the temporal
network:

R> stats_1 <- get_statistics(sim_net_1)

With stats_1 containing all the needed summary statistics, we then apply the three methods
of estimating the attachment function in isolation:

R> result_Jeong <- Jeong(sim_net_1, stats_1)

R> result_Newman <- Newman(sim_net_1, stats_1)

R> result_PA_only <- only_A_estimate(sim_net_1, stats_1)

Let us explain result_PA_only in more detail. Information on the estimated results as well
as the estimation process can be viewed by invoking summary:

R> summary(result_PA_only)
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(f) Degree distribution at t = 100

Figure 1: Network snapshots and their corresponding in-degree distributions at time-steps
t = 1, 10 and 100.

Estimation results by the PAFit method.

Mode: Only the attachment function was estimated.

Estimated r parameter: 0.1

Estimated attachment exponent: 1.001139

95% confidence interval of the attachment exponent: ( 0.9908913 , 1.011387 )

-------------------------------------------

Additional information:

Number of bins: 50

Number of iterations: 63

Stopping condition: 1e-08

As stated in Section 2, PAFit method first finds the r parameter, which regularizes the PA
function, by cross-validation, and then estimate Ak using the chosen r. The estimated func-
tion can be assessed via $estimate_result$k and $estimate_result$A of result_PA_only.
From this estimated function, the attachment exponent α (when we assume Ak = kα) and its
two-sigma confidence interval are also estimated. Here α̂ is 1.001 ± 0.01 as we can see from
the output of summary.

The output also reveals that in default PAFit applies binning with 50 bins. In this procedure,
we divide the range of k into bins consist of consecutive degrees, and assume that all k in
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(a) PAFit
(α̂ = 1.001± 0.01)
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(b) Jeong’s method
(α̂ = 0.96± 0.07)
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(c) Newman’s method
(α̂ = 1.01± 0.02)

Figure 2: Estimating the attachment function in isolation. The true attachment function is
Ak = kα with attachment exponent α = 1.

a bin have the same value of Ak. Binning is an important regularization that significantly
stabilizes the estimation of the attachment function (Pham et al. 2015). In this example, the
center of each bin is stored in the field $center_k of stats_1.

Since the center of a bin is also the PA value corresponding to that bin in the linear PA case,
we can plot the estimated attachment function together with the true attachment function
using the following script, which produces Figure 2a.

R> plot(result_PA_only, stats_1)

R> lines(stats_1$center_k, stats_1$center_k, col = "red")

The estimation results of Jeong’s method and Newman’s method can be plotted in a similar
way, and are shown in Figures 2b and 2c, respectively.

Overall, Newman’s method and PAFit estimate the attachment function Ak about equally
well, while Jeong’s method is found to underestimate the function and also exhibits high vari-
ance. This can also be observed in the estimated attachment exponent of the three methods:
Newman’s method and PAFit recover the true α, while Jeong’s method underestimates it.
Note that in PAFit we also have the confidence intervals (lightblue region in Figure 2a) of the
estimated Ak, which are unavailable in the other two methods. This is a significant advantage
of PAFit over the two since it allows the user to quantify uncertainties in the result.

5.2. Node fitnesses estimation

Here we estimate node fitnesses from a BB model generated network with the assumption
that Ak = k. To demonstrate the functionality of the package, we generate a BB network
with a nonstandard setting:

R> sim_net_2 <- generate_BB(N = 1000, num_seed = 100, multiple_node = 100, m =

15, s = 10)

This network grows from a seed network with N0 = 100 nodes where the nodes form a line
graph. The value of N0 can be specified by num_seed. At each time-step we add n = 100
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new nodes where each node has m = 15 new edges. The values of n and m can be specified
via multiple_node and m, respectively. The total number of nodes in the final network is
N = 1000. Finally, the distribution from which we generate node fitnesses is the Gamma
distribution with mean 1 and inverse variance s = 10.

Next we get the network summary statistics and then apply the estimation function:

R> stats_2 <- get_statistics(sim_net_2)

R> result_fit_only <- only_F_estimate(sim_net_2, stats_2)

R> plot(result_fit_only, stats_2, plot = "f")

The final line of the snippet generates the distribution of estimated node fitnesses in Figure 3a.

In its default setting, the function only_F_estimate estimates node fitnesses under the as-
sumption that Ak = k. But one also can estimate node fitnesses in the Caldarelli model,
i.e., assuming Ak = 1 for all k, with the option model_A = "Constant". The function
only_F_estimate works by first find the estimated value ŝ of s by cross-validation, and
then uses ŝ in the subsequent estimation of node fitnesses. The summary information of the
estimation result can be viewed by invoking summary:

R> summary(result_fit_only)

Estimation results by the PAFit method.

Mode: Only node fitnesses were estimated.

Estimated s parameter: 8

-------------------------------------------

Additional information:

Number of bins: 50

Number of iterations: 19

Stopping condition: 1e-08

We can see that s is slightly underestimated, which means the variance of node fitnesses is
overestimated. We can check whether the node fitnesses were estimated well by plotting the
estimated fitnesses versus the true fitness by the following script:

R> plot(result_fit_only, stats_2, true_f = sim_net_2$fitness, plot = "true_f")

This will produce the plot of Figure 3b. It turns out that the estimated node fitnesses
agree pretty well with the true node fitnesses. We note that the light blue band around
each η̂i depicts the confidence intervals of that estimated values. The upper and lower
values can be accessed via $estimate_result$upper_f and $estimate_result$lower_f of
result_fit_only, respectively.

5.3. Joint estimation of the attachment function and node fitnesses

Here we show how to estimate the attachment function and node fitnesses simultaneously.
We need to assume in Section 5.1 the equality of all ηi for estimation of Ak in isolation,
and in Section 5.2 a specific functional form of Ak for estimation of ηi in isolation. Such
assumptions becomes unnecessary when we perform joint estimation, since the appropriate
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Figure 3: Estimating node fitnesses in isolation. The attachment function is fixed at Ak = k.
In panel b, we only plot nodes for which the number of acquired new edges is at least 5.

functional forms will be automatically enforced through regularization parameters r and s,
which will be chosen by cross-validation. We recommend the joint estimation procedure as
the standard estimation procedure in this package, unless there is a specific reason to justify
the one or the other of these assumptions.

Using the same simulated network in Section 5.2, we apply joint_estimation:

R> result_PAFit <- joint_estimate(sim_net_2, stats_2)

R> summary(result_PAFit)

Estimation results by the PAFit method.

Mode: Both the attachment function and node fitness were estimated.

Estimated r parameter: 1.071875

Estimated s parameter: 7.5

Estimated attachment exponent: 0.9942476

95% confidence interval of the attachment exponent: ( 0.9836717 , 1.004824 )

-------------------------------------------

Additional information:

Number of bins: 50

Number of iterations: 399

Stopping condition: 1e-08

We can plot the estimated attachment function as in Figure 4a, and the distribution of η̂i as
in Figure 4b with the following code:

R> plot(result_PAFit, stats_2)
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Figure 4: Joint estimation of the attachment function and node fitnesses. The red line in the
first panel is the true attachment function Ak = k.

R> lines(stats_2$center_k, stats_2$center_k, col = "red")

R> plot(result_PAFit, stats_2, true_f = sim_net_2$fitness, plot = "true_f")

Recalling that true α is 1, we can see that α̂ = 0.99± 0.01 is a good estimated. We can also
plot the estimated fitnesses versus the true fitnesses as in Figure 4c with the following code:

R> plot(result_PAFit, stats_2, true_f = sim_net_2$fitness, plot = "true_f")

Although s is underestimated (ŝ = 7.5), the estimated fitnesses agree well with the true
fitnesses.

6. Analysis of a collaboration network between scientists

In this section, we demonstrate the complete workflow for the joint estimation of Ak and ηi on
a collaboration network between scientists from the field of complex networks. In this network,
nodes are scientists and an undirected edge exists between them if and only if they have jointly
written a paper. Since it contains no duplicated edges between two scientists, the degree of a
node represents the number of collaborators of that scientist. The temporal network is stored
in coauthor.net, and the names of the scientists are stored in coauthor.author_id. The
network without timestamps was compiled by Mark Newman from the bibliographies of two
review articles on complex networks (Newman 2006). The second author of the present work
augmented the dataset with timestamps. More information on the dataset can be found in
the package reference manual.

The first step in the analysis is to convert the edgelist matrix coauthor.net to a PAFit_net

object, and get the summarized statistics using the function get_statistics.

R> set.seed(1)

R> true_net <- as.PAFit_net(coauthor.net, type = "undirected")

R> net_stats <- get_statistics(true_net)

R> summary(net_stats)



Thong Pham, Paul Sheridan, Hidetoshi Shimodaira 15

Contains summary statistics of the temporal network

Type of network: undirected

Number of nodes in the final network: 1498

Number of edges in the final network: 5698

Number of new nodes: 1358

Number of new edges: 1255

Number of time-steps: 145

Maximum degree: 37

Number of bins: 38

The temporal network grew in 145 time-steps from an initial network at September 2000, to
a final state at September 2007. The resolution of those time-steps is monthly. The final
network has 1498 scientists with 5698 collaborations among them.

The next step is to use joint_estimate for joint estimation:

R> full_result <- joint_estimate(true_net, net_stats)

R> summary(full_result)

Estimation results by the PAFit method.

Mode: Both the attachment function and node fitness were estimated.

Estimated r parameter: 10

Estimated s parameter: 15

Estimated attachment exponent: 0.8803906

95% confidence interval of the attachment exponent: ( 0.8583292 , 0.902452 )

-------------------------------------------

Additional information:

Number of bins: 38

Number of iterations: 1200

Stopping condition: 1e-08

We can visualize the estimated attachment function and the distribution of estimated node
fitnesses by:

R> plot(full_result, net_stats, plot = "A")

R> plot(full_result, net_stats, plot = "f")

This snippet will sequentially generate Figures 5a and 5b.

The best fit model when we performed joint estimation is close to the BB model. In Figure 5a,
the estimated Ak is an increasing function on average with α̂ = 0.88±0.02, which is close to 1.
We can conclude that preferential attachment roughly exists in this collaboration network.
Let us look at the region of small k, where the estimated attachment function is linear,
for a concrete example: a network scientist with four collaborators has roughly twice the
chance to get a new collaborator, compared with someone who only has two collaborators,
assuming they have the same fitness. For comparison, we also plot the estimation results of
Ak in isolation using Jeong’s method, Newman’s method and Pham et al. (2015)’s method in
Figures 5c, 5d, and 5e, respectively:
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(e) Pham et al. (2015)’s method
(α̂ = 1.05± 0.07)

Figure 5: Joint estimation of the attachment function and node fitnesses.

R> result_Jeong <- Jeong(true_net, net_stats)

R> result_Newman <- Newman(true_net, net_stats)

R> result_onlyA <- only_A_estimate(true_net, net_stats)

R> plot(result_Jeong, net_stats, plot = "A")

R> plot(result_Newman, net_stats, plot = "A")

R> plot(result_onlyA, net_stats, plot = "A")

We notice that the estimated Ak of the joint estimation resembles that of Figure 5e, when we
estimate it in isolation. The reason is that estimated node fitnesses in Figure 5b are highly
concentrate around the mean. Thus their distribution is not very far from the case when all
the fitnesses are 1. Nevertheless, we observe that the estimated Ak from the joint estimation
is reduced compared with that of Figure 5e. This is expected since in joint estimation, a
portion of the connection probability in (1) is explained by node fitnesses.
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Although the distribution in Figure 5b is concentrate around its mean, we notice that its
right tail is rather long, which is a sign that this tail contains interesting information. We
can extract the information from this region by finding the ‘fittest’ network scientists. This
can be done as follows:

R> sorted_fit <- sort(full_result$estimate_result$f, decreasing = TRUE)

R> top_scientist <- coauthor.author_id[names(sorted_fit),]

R> print(cbind(sorted_fit[1:10],top_scientist[1:10,2]))

This snippet will produce the results show in Table 3. The table shows the top ten scientists
that have the highest ability to attract new collaborators in the field of complex networks. If

Rank Estimated fitness Name

1 2.15 BARABASI, A
2 1.95 NEWMAN, M
3 1.73 JEONG, H
4 1.71 LATORA, V
5 1.66 ALON, U
6 1.66 OLTVAI, Z
7 1.63 WANG, B
8 1.61 YOUNG, M
9 1.60 SOLE, R
10 1.57 BOCCALETTI, S

Table 3: The top ten ‘fittest’ scientists in the field of complex networks.

one has some familiarity with the field, it is easy to recognize the names of many big-shots
in the list. For example, at the top of the list is none other than Barabási, who introduced
the BA model. Number two and number three are Mark Newman and Hawoong Jeong,
who respectively are the authors of the eponymously named Newman’s method and Jeong’s
method.

7. Conclusion

We introduced the R package PAFit, which provides a comprehensive framework for the
estimation of PA and node fitness mechanisms in the growth of temporal complex networks.
In summary, PAFit implements functions to simulate various temporal network models based
on these two mechanisms, gathers summarized statistics from real-world temporal network
datasets, and estimates the attachment function and node fitnesses. We provided a number
of simulated examples, as well as a complete analysis of a real-world collaboration network.
We believe that the package is useful for statistical analysis of temporal networks.
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