MLML2R package User's Guide

Samara F. Kiihl and Maria Tellez-Plaza
2018-05-16

Abstract

We present a guide to the R package MLML2R. The package provides computational efficient maximum likelihood
estimates of DNA methylation and hydroxymethylation proportions when data from the DNA processing methods
bisulfite conversion (BS), oxidative bisulfite conversion (0x-BS), and Tet-assisted bisulfite conversion (TAB) are
available. Estimates can be obtained when data from all the three methods are available or when any combination of
only two of them are available. The package does not depend on other R packages, allowing the user to read and
preprocess the data with any given software, to import the results into R in matrix format, to obtain the maximum
likelihood 5-hmC and 5-mC estimates and use them as input for other packages traditionally used in genomic data
analysis, such as minfi, sva and limma.

Package version: MLML2R
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1 Introduction

In a given CpG site from a single cell we will either have a C' or a T" after DNA processing conversion methods, with a
different interpretation for each of the available methods. This is a binary outcome and we assume a Binomial model
and use the maximum likelihood estimation method to obtain the estimates for hydroxymethylation and methylation
proportions.

T reads are referred to as converted cytosine and C' reads are referred to as unconverted cytosine. Conventionally, T’
counts are also referred to as unmethylated counts, and C counts as methylated counts. In case of Infinium Methylation
arrays, we have intensities representing the methylated (M) and unmethylated (U) channels that are proportional to the
number of unconverted and converted cytosines (C' and T, respectively). The most used summary from these experiments
is the proportion § = MLJFU commonly referred to as beta-value, which reflects the methylation level at a CpG site.
Naively using the difference between betas from BS and oxBS as an estimate of 5-hmC (hydroxymethylated cytosine), and
the difference between betas from BS and TAB as an estimate of 5-mC (methylated cytosine) can many times provide
negative proportions and instances where the sum of 5-C (unmodified cytosine), 5-mC and 5-hmC proportions is greater
than one due to measurement errors.

MLML2R package allows the user to jointly estimate hydroxymethylation and methylation consistently and efficiently.

The function MLML takes as input the data from the different methods and returns the estimated proportion of methylation,
hydroxymethylation and unmethylation for a given CpG site. Table 1 presents the arguments of the MLML and Table 2 lists
the results returned by the function.


http://cran.fhcrc.org/web/packages/MLML2R/index.html
http://bioconductor.org/packages/minfi
http://bioconductor.org/packages/sva
http://bioconductor.org/packages/limma
http://cran.fhcrc.org/web/packages/MLML2R/index.html
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The function assumes that the order of the rows and columns in the input matrices are consistent. In addition, all the
input matrices must have the same dimension. Usually, rows represent CpG loci and columns are the samples.
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Table 1: MLML function and random variable notation.

Arguments Description

G.matrix Unmethylated channel (Converted cytosines/ T counts) from TAB-conversion
(reflecting 5-C + 5-mC).

H.matrix Methylated channel (Unconverted cytosines/ C counts) from TAB-conversion
(reflecting True 5-hmC).

L.matrix Unmethylated channel (Converted cytosines/ T counts) from oxBS-conversion
(reflecting 5-C + 5-hmC).

M.matrix Methylated channel (Unconverted cytosines/ C counts) from oxBS-conversion
(reflecting True 5-mC).

T.matrix Methylated channel (Unconverted cytosines/ C counts) from standard
BS-conversion (reflecting 5-mC+5-hmC).

U.matrix Unmethylated channel (Converted cytosines/ T counts) from standard

BS-conversion (reflecting True 5-C).

Table 2: Results returned from the MLML function

Value

Description

mC

hmC

C
methods

maximum likelihood estimate for the 5-mC proportion
maximum likelihood estimate for the 5-hmC proportion
maximum likelihood estimate for the 5-mC proportion
the conversion methods used to produce the MLE

2 Worked examples

2.1 Publicly available data: oxBS and BS methods

We will use the dataset from Field (2015), which consists of eight DNA samples from the same DNA source treated with

oxBS-BS and hybridized to the Infinium 450K array.

When data is obtained through Infinium Methylation arrays, we recommend the use of the minfi package (Aryee et
al. 2014), a well-established tool for reading, preprocessing and analysing DNA methylation data from these platforms.
Although our example relies on minfi and other Bioconductor tools, MLML2R does not depend on any packages. Thus,
the user is free to read and preprocess the data using any software of preference and then import the intensities (or 7' and
C' counts) for the methylated and unmethylated channel (or converted and uncoverted cytosines) into R in matrix format.

To start this example we will need the following packages:

library (MLML2R)
library(minfi)

## Warning: package 'GenomicRanges' was built under R version 3.3.3
## Warning: package 'S4Vectors' was built under R version 3.3.3

## Warning: package 'IRanges'
## Warning: package 'XVector'

library (GEOquery)

was built under R version 3.3.3
was built under R version 3.3.3

It is usually best practice to start the analysis from the raw data, which in the case of the 450K array is a . IDAT file.

The raw files are deposited in GEO and can be downloaded by using the getGEOSuppFiles. There are two files for each
replicate, since the 450k array is a two-color array. The .IDAT files are downloaded in compressed format and need to be

uncompressed before they are read by the read.metharray.exp function.


http://bioconductor.org/packages/minfi
http://bioconductor.org/packages/minfi
http://cran.fhcrc.org/web/packages/MLML2R/index.html
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getGEOSuppFiles ("GSE63179")
untar ("GSE63179/GSE63179_RAW.tar", exdir = "GSE63179/idat")

list.files("GSE63179/idat", pattern = "idat")
files <- list.files("GSE63179/idat", pattern = "idat.gz$", full = TRUE)
sapply(files, gunzip, overwrite = TRUE)

The .IDAT files can now be read:
rgSet <- read.metharray.exp("GSE63179/idat")

To access phenotype data we use the pData function. The phenotype data is not yet available from the rgSet.

pData(rgSet)

In this example the phenotype is not really relevant, since we have only one sample: male, 25 years old. What we do
need is the information about the conversion method used in each replicate: BS or oxBS. We will access this information
automatically from GEO:

if (!file.exists("GSE63179/GSE63179_series_matrix.txt.gz"))

download.file(
"https://ftp.ncbi.nlm.nih.gov/geo/series/GSE63nnn/GSE63179/matrix/GSE63179_series_matrix.txt.gz",
"GSE63179/GSE63179_series_matrix.txt.gz")

geoMat <- getGEO(filename="GSE63179/GSE63179_series_matrix.txt.gz",getGPL=FALSE)
pD.all <- pData(geoMat)

#Another option
#geoMat <- getGEO("GSE63179")
#pD.all <- pData(geoMat[[1]])

pD <- pD.all[, c("title", "geo_accession", "characteristics_chil.1",
"characteristics_chi1.2","characteristics_ch1.3")]

pD

This phenotype data needs to be merged into the methylation data. The following commands guarantee we have the
same replicate identifier in both datasets before merging.

sampleNames (rgSet) <- sapply(sampleNames(rgSet) ,function(x)
strsplit(x,"_") [[11]1[1])

rownames (pD) <- pD$geo_accession

pD <- pD[sampleNames(rgSet),]

pData(rgSet) <- as(pD,"DataFrame")

rgSet

The rgSet object is a class called RGChannelSet used for two color data (green and a red channel). The input in the
MLML funcion is MethylSet, which contains the methylated and unmethylated signals. The most basic way to construct a
MethylSet is using the function preprocessRaw. Here we chose the function preprocessNoob (Triche et al. 2013) for
background correction and construction of the MethylSet.

MSet .noob<- preprocessNoob(rgSet)

After the preprocessed steps we can use MLML from the MLML2R package.

The BS replicates are in columns 1, 3, 5, and 6 (information from pD$title). The remaining columns are from the oxBS
treated replicates.


http://cran.fhcrc.org/web/packages/MLML2R/index.html
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Figure 1: Estimated proportions of hydroxymethylation, methylation and unmethylation for the CpGs in the dataset using
the MLML function with default options.

MethylatedBS <- getMeth(MSet.noob)[,c(1,3,5,6)]
UnMethylatedBS <- getUnmeth(MSet.noob) [,c(1,3,5,6)]
Methylated0xBS <- getMeth(MSet.noob) [,c(7,8,2,4)]
UnMethylated0xBS <- getUnmeth(MSet.noob) [,c(7,8,2,4)]

When only two methods are available, the default option of MLML function returns the exact constrained maximum
likelihood estimates using the the pool-adjacent-violators algorithm (PAVA) (Ayer et al. 1955).

MethylatedBS , U.matrix = UnMethylatedBS,
UnMethylated0xBS, M.matrix = Methylated0xBS)

results_exact <- MLML(T.matrix
L.matrix

Maximum likelihood estimate via EM-algorithm approach (Qu et al. 2013) is obtained with the option iterative=TRUE.
In this case, the default (or user specified) tol is considered in the iterative method.

results_em <- MLML(T.matrix = MethylatedBS , U.matrix = UnMethylatedBS,
L.matrix = UnMethylated0xBS, M.matrix = MethylatedOxBS,
iterative = TRUE)

The estimates are very similar for both methods:

all.equal(results_exact$hmC,results_em$hmC,scale=1)

2.2 Publicly available data: TAB and BS methods

We will use the dataset from Thienpont et al. (2016), which consists of 24 DNA samples treated with TAB-BS and
hybridized to the Infinium 450K array from newly diagnosed and untreated non-small-cell lung cancer patients (12 normoxic
and 12 hypoxic tumours). The dataset is deposited under GEO accession number GSE71398.

Obtaining the data:

getGEOSuppFiles ("GSE71398")
untar ("GSE71398/GSE71398_RAW.tar", exdir = "GSE71398/idat")

list.files("GSE71398/idat", pattern = "idat")
files <- list.files("GSE71398/idat", pattern = "idat.gz$", full = TRUE)
sapply(files, gunzip, overwrite = TRUE)


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71398
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Reading the . IDAT files:
rgSet <- read.metharray.exp("GSE71398/idat")

The phenotype data is not yet available from the rgSet.
pData(rgSet)

We need to correctly identify the 24 DNA samples: 12 normoxic and 12 hypoxic non-small-cell lung cancer. We also
need the information about the conversion method used in each replicate: BS or TAB. We will access this information
automatically from GEO:

if (!file.exists("GSE71398/GSE71398_series_matrix.txt.gz"))

download.file(
"https://ftp.ncbi.nlm.nih.gov/geo/series/GSE71nnn/GSE71398/matrix/GSE71398_series_matrix.txt.gz",
"GSE71398/GSE71398_series_matrix.txt.gz")

geoMat <- getGEO(filename="GSE71398/GSE71398_series_matrix.txt.gz",getGPL=FALSE)

pD.all <- pData(geoMat)

pD <- pD.all[, c("title", "geo_accession", "source_name_chl")]

pD$method <- sapply(pD$source_name_chl,function(x) strsplit(as.character(x),",")[[1]][3])
pD$group <- sapply(pD$source_name_chl,function(x) strsplit(as.character(x),",")[[1]1]1[2])
pD$sample <- as.numeric(substr(as.character(pD$title),start=7,stop=8))

This phenotype data needs to be merged into the methylation data. The following commands guarantee we have the
same replicate identifier in both datasets before merging.

sampleNames (rgSet) <- sapply(sampleNames(rgSet),function(x)  strsplit(x,"_")[[1]1][1])
rownames (pD) <- as.character (pD$geo_accession)

pD <- pD[sampleNames(rgSet),]

pData(rgSet) <- as(pD,"DataFrame")

rgSet

The input in the MLML funcion is MethylSet, which contains the methylated and unmethylated signals. We chose the
function preprocessNoob (Triche et al. 2013) for background correction and construction of the MethylSet.

MSet .noob<- preprocessNoob(rgSet)

We can now use MLML from the MLML2R package.

One needs to carefully check if the columns across the different input matrices represent the same replicate. In this
example, all matrices have the samples consistently represented in the columns: sample 1 in the first column, sample 2 in
the second, and so forth.

BSindex <- which(pD$method == " BS-chip")
TABindex <- which(pD$method == " TAB-chip")
MethylatedBS <- getMeth(MSet.noob) [,BSindex]
UnMethylatedBS <- getUnmeth(MSet.noob) [,BSindex]
MethylatedTAB <- getMeth(MSet.noob) [,TABindex]
UnMethylatedTAB <- getUnmeth(MSet.noob) [,TABindex]

When only two methods are available, the default option of MLML function returns the exact constrained maximum
likelihood estimates using the the pool-adjacent-violators algorithm (PAVA) (Ayer et al. 1955).

results_exact <- MLML(T.matrix = MethylatedBS , U.matrix = UnMethylatedBS,
G.matrix = UnMethylatedTAB, H.matrix = MethylatedTAB)

Maximum likelihood estimate via EM-algorithm approach (Qu et al. 2013) is obtained with the option iterative=TRUE.
In this case, the default (or user specified) tol is considered in the iterative method.


http://cran.fhcrc.org/web/packages/MLML2R/index.html
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Figure 2: Estimated proportions of hydroxymethylation, methylation and unmethylation for the CpGs in the dataset using
the MLML function with default options.

results_em <- MLML(T.matrix = MethylatedBS , U.matrix = UnMethylatedBS,
G.matrix = UnMethylatedTAB, H.matrix = MethylatedTAB,

iterative = TRUE)

The estimates for 5-hmC proportions are very similar for both methods:

all.equal(results_exact$hmC,results_em$hmC,scale=1)

The estimates for 5-mC proportions are very similar for both methods:

all.equal(results_exact$mC,results_em$mC,scale=1)

2.3 Simulated data
To illustrate the package when all the three methods are available or when any combination of only two of them are

available, we will simulate a dataset.

We will use a sample of the estimates of 5-mC, 5-hmC and 5-C of the previous oxBS+BS example as the true proportions,
as shown in Figure 3.

Two replicate samples with 1000 CpGs will be simulated. For CpG i in sample j:

T;,; ~ Binomial(n = ¢; j,p = Dm + Dn)
M, j ~ Binomial(n = ¢; j,p = DPm)
H; ; ~ Binomial(n = ¢; j,p = pn)
Uij=cij—Ti,
L;j=cj— M,
Gij=cij—Hij
where the random variables are defined in Table 1, and ¢; ; represents the coverage for CpG ¢ in sample j.

The following code produce the simulated data:
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set.seed(112017)
index <- sample(l:dim(results_exact$mC) [1],1000,replace=FALSE) # 1000 CpGs
Coverage <- round(MethylatedBS+UnMethylatedBS) [index,1:2] # considering 2 samples

templ <- data.frame(n=as.vector(Coverage),
p_m=c(results_exact$mC[index,1] ,results_exact$mC[index,1]),
p_h=c(results_exact$hmC[index,1] ,results_exact$hmC[index,1]))

MethylatedBS_temp <- c()
for (i in 1:dim(temp1l) [1])
{
MethylatedBS_temp[i] <- rbinom(n=1, size=templ$n[i], prob=(templ$p_m[i]+templ$p_h[i]))
}

UnMethylatedBS_sim2 <- matrix(Coverage - MethylatedBS_temp,ncol=2)
MethylatedBS_sim2 <- matrix(MethylatedBS_temp,ncol=2)

Methylated0xBS_temp <- c()
for (i in 1:dim(templ) [1])
{
MethylatedOxBS_temp[i] <- rbinom(n=1, size=templ$n[i], prob=templ$p_m[i])
}

UnMethylated0xBS_sim2 <- matrix(Coverage - Methylated0xBS_temp,ncol=2)
Methylated0xBS_sim2 <- matrix(MethylatedOxBS_temp,ncol=2)

MethylatedTAB_temp <- c()
for (i in 1:dim(templ) [1])
{
MethylatedTAB_temp[i] <- rbinom(n=1, size=templ$n[i], prob=templ$p_h[i])
}

UnMethylatedTAB_sim2 <- matrix(Coverage - MethylatedTAB_temp,ncol=2)
MethylatedTAB_sim2 <- matrix(MethylatedTAB_temp,ncol=2)

true_parameters_sim2 <- data.frame(p_m=results_exact$mC[index,1],p_h=results_exact$hmC[index,1])
true_parameters_sim2$p_u <- 1-true_parameters_sim2$p_m-true_parameters_sim2$p_h

2.3.1 BS and oxBS methods

When only two methods are available, the default option returns the exact constrained maximum likelihood estimates
using the the pool-adjacent-violators algorithm (PAVA) (Ayer et al. 1955).

library (MLML2R)
results_exactBOl <- MLML(T.matrix = MethylatedBS_sim2 , U.matrix = UnMethylatedBS_sim2,
L.matrix = UnMethylated0xBS_sim2, M.matrix = Methylated0xBS_sim2)
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Figure 3: True proportions of hydroxymethylation, methylation and unmethylation for the CpGs used to generate the
datasets.

Maximum likelihood estimate via EM-algorithm approach (Qu et al. 2013) is obtained with the option iterative=TRUE.
In this case, the default (or user specified) tol is considered in the iterative method.

results_emBO1 <- MLML(T.matrix = MethylatedBS_sim2 , U.matrix = UnMethylatedBS_sim?2,
L.matrix = UnMethylatedO0xBS_sim2, M.matrix = Methylated0xBS_sim2,iterative=TRUE)

When only two methods are available, we highly recommend the default option iterative=FALSE since the difference in
the estimates obtained via EM and exact constrained is very small, but the former requires more computational effort:

all.equal(results_emBO1$hmC,results_exactB01$hmC,scale=1)
## [1] "Mean absolute difference: 9.581949e-05"

library(microbenchmark)
mbmB01 = microbenchmark(
EXACT = MLML(T.matrix = MethylatedBS_sim2 , U.matrix = UnMethylatedBS_sim2,
L.matrix = UnMethylated0xBS_sim2, M.matrix = MethylatedOxBS_sim2),
EM = MLML(T.matrix = MethylatedBS_sim2, U.matrix = UnMethylatedBS_sim2,
L.matrix = UnMethylatedO0xBS_sim2, M.matrix = MethylatedOxBS_sim2,
iterative=TRUE),

times=10)

mbmB01

## Unit: microseconds

##  expr min 1q mean median uq max neval
## EXACT 557.001 588.011 943.3079 651.1895 1019.18 2866.982 10
## EM 16573.236 17872.148 18566.2652 18839.3445 19344.45 20122.348 10
## cld

## a

#i# b

Comparison between approximate exact constrained and true hydroxymethylation proportion used in simulation:
all.equal (true_parameters_sim2$p_h,results_exactB01$hmC[,1],scale=1)

## [1] "Mean absolute difference: 0.01165593"

Comparison between EM-algorithm and true hydroxymethylation proportion used in simulation:

all.equal(true_parameters_sim2$p_h,results_emBO1$hmC[,1],scale=1)
## [1] "Mean absolute difference: 0.01011952"
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2.3.2 BS and TAB methods

Using PAVA:

results_exactBT1 <- MLML(T.matrix = MethylatedBS_sim2 , U.matrix = UnMethylatedBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2)

Using EM-algorithm:

results_emBT1 <- MLML(T.matrix = MethylatedBS_sim2 , U.matrix = UnMethylatedBS_sim?2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2,iterative=TRUE)

Comparison between PAVA and EM:

all.equal(results_emBT1$hmC,results_exactBT1$hmC,scale=1)
## [1] "Mean absolute difference: 7.675267e-07"

mbmBT1 = microbenchmark(
EXACT = MLML(T.matrix = MethylatedBS_sim2, U.matrix = UnMethylatedBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2),
EM = MLML(T.matrix = MethylatedBS_sim2, U.matrix = UnMethylatedBS_sim2,

G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2,
iterative=TRUE),
times=10)
mbmBT1
## Unit: microseconds
##  expr min 1q mean median uq max neval
## EXACT 450.216  459.185 519.5418 492.41  527.612 774.361 10
## EM 16032.102 17114.401 54801.9136 18420.10 19465.222 384796.990 10
# cld
## a
#H# a

Comparison between approximate exact constrained and true hydroxymethylation proportion used in simulation:
all.equal(true_parameters_sim2$p_h,results_exactBT1$hmC[,1],scale=1)

## [1] "Mean absolute difference: 0.00644861"

Comparison between EM-algorithm and true hydroxymethylation proportion used in simulation:

all.equal(true_parameters_sim2$p_h,results_emBT1$hmC[,1],scale=1)
## [1] "Mean absolute difference: 0.004719911"

2.3.3 oxBS and TAB methods

Using PAVA:

results_exact0T1 <- MLML(L.matrix = UnMethylated0xBS_sim2, M.matrix = Methylated0xBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2)

Using EM-algorithm:

results_em0T1 <- MLML(L.matrix = UnMethylated0xBS_sim2, M.matrix = Methylated0xBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2,iterative=TRUE)

Comparison between PAVA and EM:

all.equal(results_em0T1$hmC,results_exact0T1$hmC,scale=1)
## [1] "Mean absolute difference: 2.019638e-07"
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mbm0T1 = microbenchmark(
EXACT = MLML(L.matrix = UnMethylated0xBS_sim2, M.matrix = Methylated0xBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2),
EM = MLML(L.matrix = UnMethylatedOxBS_sim2, M.matrix = MethylatedOxBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2,
iterative=TRUE),

times=10)
mbm0OT1
## Unit: microseconds
##  expr min 1q mean median uq max neval cld
## EXACT 420.224 460.652 1219.874 718.39 2622.592 2713.364 10 a
## EM 4946.912 5352.074 6849.189 7181.70 7742.440 8402.259 10 b

Comparison between approximate exact constrained and true 5-hmC proportion used in simulation:

all.equal(true_parameters_sim2$p_h,results_exact0T1$hmC[,1] ,scale=1)
## [1] "Mean absolute difference: 0.006451817"

Comparison between EM-algorithm and true 5-hmC proportion used in simulation:

all.equal (true_parameters_sim2$p_h,results_em0T1$hmC[,1],scale=1)
## [1] "Mean absolute difference: 0.00645154"

2.3.4 BS, oxBS and TAB methods

When data from the three methods are available, the default otion in the MLML function returns the constrained maximum
likelihood estimates using an approximated solution for Lagrange multipliers method.

results_exactBOT1 <- MLML(T.matrix = MethylatedBS_sim2 , U.matrix = UnMethylatedBS_sim2,
L.matrix = UnMethylatedO0xBS_sim2, M.matrix = MethylatedOxBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2)

Maximum likelihood estimate via EM-algorithm approach (Qu et al. 2013) is obtained with the option iterative=TRUE.
In this case, the default (or user specified) tol is considered in the iterative method.

results_emBOT1 <- MLML(T.matrix = MethylatedBS_sim2 , U.matrix = UnMethylatedBS_sim2,
L.matrix = UnMethylatedOxBS_sim2, M.matrix = MethylatedOxBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2,iterative=TRUE)

We recommend the default option iterative=FALSE since the difference in the estimates obtained via EM and the
approximate exact constrained is very small, but the former requires more computational effort:

all.equal(results_emBOT1$hmC,results_exactBOT1$hmC,scale=1)
## [1] "Mean absolute difference: 1.627884e-06"

mbmBOT1 = microbenchmark(
EXACT = MLML(T.matrix = MethylatedBS_sim2, U.matrix = UnMethylatedBS_sim2,
L.matrix = UnMethylatedOxBS_sim2, M.matrix = MethylatedOxBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2),

EM = MLML(T.matrix = MethylatedBS_sim2, U.matrix = UnMethylatedBS_sim2,
L.matrix = UnMethylatedO0xBS_sim2, M.matrix = Methylated0xBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2,
iterative=TRUE),
times=10)
mbmBOT1

## Unit: milliseconds
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##  expr min 1q mean median uq max neval cld
## EXACT 1.244414 1.265674 1.329783 1.312158 1.322188 1.504171 10 a
## EM 2.362101 2.380585 3.602897 4.354667 4.376102 4.565958 10 b

Comparison between approximate exact constrained and true hydroxymethylation proportion used in simulation:

all.equal (true_parameters_sim2$p_h,results_exactBOT1$hmC[,1],scale=1)
## [1] "Mean absolute difference: 0.005664222"

Comparison between EM-algorithm and true hydroxymethylation proportion used in simulation:

all.equal(true_parameters_sim2$p_h,results_emBOT1$hmC[,1],scale=1)
## [1] "Mean absolute difference: 0.004146021"
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