MLML2R package User's Guide

Samara F. Kiihl and Maria Tellez-Plaza
2018-02-21

Abstract

We present a guide to the R package MLML2R. The package provides computational efficient maximum likelihood
estimates of DNA methylation and hydroxymethylation proportions when data from the DNA processing methods
bisulfite conversion (BS), oxidative bisulfite conversion (0x-BS), and Tet-assisted bisulfite conversion (TAB) are
available. Estimates can be obtained when data from all the three methods are available or when any combination of
only two of them are available. The package does not depend on other R packages, allowing the user to read and
preprocess the data with any given software, to import the results into R in matrix format, to obtain the maximum
likelihood 5-hmC and 5-mC estimates and use them as input for other packages traditionally used in genomic data
analysis, such as minfi, sva and limma.

Package version: MLML2R

Contents

1 Introduction 1

2 Worked examples 2
2.1 Publicly available data: GSE63179 . . . . . . . . . . 2
2.2 Simulated data . . . . L 4

References 9

1 Introduction

In a given CpG site from a single cell we will either have a C' or a T' after DNA processing conversion methods, with a
different interpretation for each of the available methods. This is a binary outcome and we assume a Binomial model
and use the maximum likelihood estimation method to obtain the estimates for hydroxymethylation and methylation
proportions.

T reads are referred to as converted cytosine and C' reads are referred to as unconverted cytosine. Conventionally, T'
counts are also referred to as unmethylated counts, and C' counts as methylated counts. In case of Infinium Methylation
arrays, we have intensities representing the methylated (M) and unmethylated (U) channels that are proportional to the
number of unconverted and converted cytosines (C' and T, respectively). The most used summary from these experiments
is the proportion § = % commonly referred to as beta-value, which reflects the methylation level at a CpG site.
Naively using the difference between betas from BS and oxBS as an estimate of 5-hmC (hydroxymethylated cytosine), and
the difference between betas from BS and TAB as an estimate of 5-mC (methylated cytosine) can many times provide
negative proportions and instances where the sum of 5-C (unmodified cytosine), 5-mC and 5-hmC proportions is greater
than one due to measurement errors.

MLML2R package allows the user to jointly estimate hydroxymethylation and methylation consistently and efficiently.

The function MLML takes as input the data from the different methods and returns the estimated proportion of methylation,
hydroxymethylation and unmethylation for a given CpG site. Table 1 presents the arguments of the MLML and Table 2 lists
the results returned by the function.

The function assumes that the order of the rows and columns in the input matrices are consistent. In addition, all the
input matrices must have the same dimension. Usually, rows represent CpG loci and columns are the samples.


https://CRAN.R-project.org/package=MLML2R
http://bioconductor.org/packages/minfi
http://bioconductor.org/packages/sva
http://bioconductor.org/packages/limma
https://CRAN.R-project.org/package=MLML2R
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Table 1: MLML function and random variable notation.

Arguments Description

G.matrix Unmethylated channel (Converted cytosines/ T counts) from TAB-conversion
(reflecting 5-C + 5-mC).

H.matrix Methylated channel (Unconverted cytosines/ C counts) from TAB-conversion
(reflecting True 5-hmC).

L.matrix Unmethylated channel (Converted cytosines/ T counts) from oxBS-conversion
(reflecting 5-C + 5-hmC).

M.matrix Methylated channel (Unconverted cytosines/ C counts) from oxBS-conversion
(reflecting True 5-mC).

T.matrix Methylated channel (Unconverted cytosines/ C counts) from standard
BS-conversion (reflecting 5-mC+5-hmC).

U.matrix Unmethylated channel (Converted cytosines/ T counts) from standard

BS-conversion (reflecting True 5-C).

Table 2: Results returned from the MLML function

Value Description

mC maximum likelihood estimate for the 5-mC proportion
hmC maximum likelihood estimate for the 5-hmC proportion
C maximum likelihood estimate for the 5-mC proportion

methods the conversion methods used to produce the MLE

2 Worked examples

2.1 Publicly available data: GSE63179

We will use the dataset from Field (2015), which consists of eight DNA samples from the same DNA source treated with
oxBS-BS and hybridized to the Infinium 450K array.

When data is obtained through Infinium Methylation arrays, we recommend the use of the minfi package (Aryee et
al. 2014), a well-established tool for reading, preprocessing and analysing DNA methylation data from these platforms.
Although our example relies on minfi and other Bioconductor tools, MLML2R does not depend on any packages. Thus,
the user is free to read and preprocess the data using any software of preference and then import the intensities (or 7' and
C' counts) for the methylated and unmethylated channel (or converted and uncoverted cytosines) into R in matrix format.

To start this example we will need the following packages:

library (MLML2R)
library(minfi)
library (GEOquery)

It is usually best practice to start the analysis from the raw data, which in the case of the 450K array is a . IDAT file.

The raw files are deposited in GEO and can be downloaded by using the getGEOSuppFiles. There are two files for each
replicate, since the 450k array is a two-color array. The .IDAT files are downloaded in compressed format and need to be
uncompressed before they are read by the read.metharray.exp function.

getGEOSuppFiles ("GSE63179")
untar ("GSE63179/GSE63179_RAW.tar", exdir = "GSE63179/idat")


http://bioconductor.org/packages/minfi
http://bioconductor.org/packages/minfi
https://CRAN.R-project.org/package=MLML2R
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list.files("GSE63179/idat", pattern = "idat")
files <- list.files("GSE63179/idat", pattern = "idat.gz$", full = TRUE)
sapply(files, gunzip, overwrite = TRUE)

The .IDAT files can now be read:
rgSet <- read.metharray.exp("GSE63179/idat")

To access phenotype data we use the pData function. The phenotype data is not yet available from the rgSet.
pData(rgSet)

In this example the phenotype is not really relevant, since we have only one sample: male, 25 years old. What we do
need is the information about the conversion method used in each replicate: BS or oxBS. We will access this information
automatically from GEO:

geoMat <- getGEO("GSE63179")

pD.all <- pData(geoMat[[1]])

pD <- pD.all[, c("title", "geo_accession", "characteristics_chl.1",
"characteristics_ch1.2","characteristics_ch1.3")]

pD

This phenotype data needs to be merged into the methylation data. The following commands guarantee we have the
same replicate identifier in both datasets before merging.

sampleNames (rgSet) <- sapply(sampleNames(rgSet) ,function(x)
strsplit(x,"_") [[1]1]1[11)

rownames (pD) <- pD$geo_accession

pD <- pD[sampleNames(rgSet),]

pData(rgSet) <- as(pD,"DataFrame")

rgSet

The rgSet object is a class called RGChannelSet used for two color data (green and a red channel). The input in the
MLML funcion is MethylSet, which contains the methylated and unmethylated signals. The most basic way to construct a
MethylSet is using the function preprocessRaw. Here we chose the function preprocessNoob (Triche et al. 2013) for
background correction and construction of the MethylSet.

MSet .noob<- preprocessNoob(rgSet)

After the preprocessed steps we can use MLML from the MLML2R package.

The BS replicates are in columns 1, 3, 5, and 6 (information from pD$title). The remaining columns are from the oxBS
treated replicates.

MethylatedBS <- getMeth(MSet.noob) [,c(1,3,5,6)]
UnMethylatedBS <- getUnmeth(MSet.noob) [,c(1,3,5,6)]
Methylated0xBS <- getMeth(MSet.noob) [,c(7,8,2,4)]
UnMethylated0xBS <- getUnmeth(MSet.noob) [,c(7,8,2,4)]

When only two methods are available, the default option of MLML function returns the exact constrained maximum
likelihood estimates using the the pool-adjacent-violators algorithm (PAVA) (Ayer et al. 1955).

results_exact <- MLML(T.matrix = MethylatedBS , U.matrix = UnMethylatedBS,
L.matrix = UnMethylated0xBS, M.matrix = MethylatedOxBS)

Maximum likelihood estimate via EM-algorithm approach (Qu et al. 2013) is obtained with the option iterative=TRUE.
In this case, the default (or user specified) tol is considered in the iterative method.

MethylatedBS , U.matrix = UnMethylatedBS,
UnMethylated0xBS, M.matrix = MethylatedOxBS,

results_em <- MLML(T.matrix
L.matrix


https://CRAN.R-project.org/package=MLML2R
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Figure 1: Estimated proportions of hydroxymethylation, methylation and unmethylation for the CpGs in the dataset using
the MLML function with default options.

iterative = TRUE)

The estimates are very similar for both methods:

all.equal(results_exact$hmC,results_em$hmC,scale=1)

2.2 Simulated data

To illustrate the package when all the three methods are available or when any combination of only two of them are
available, we will simulate a dataset.

We will use a sample of the estimates of 5-mC, 5-hmC and 5-C of the previous example as the true proportions, as shown
in Figure 2.

Two replicate samples with 1000 CpGs will be simulated. For CpG i in sample j:

T; ; ~ Binomial(n = ¢; j,p = Pm + Dn)
M, j ~ Binomial(n = ¢; j,p = DPm)
H; ; ~ Binomial(n = ¢; j,p = pn)
Uij=cij—Ti,
L;j=cj— M,
Gij=cij—Hij
where the random variables are defined in Table 1, and ¢; ; represents the coverage for CpG ¢ in sample j.

The following code produce the simulated data:

set.seed(112017)
index <- sample(l:dim(results_exact$mC) [1],1000,replace=FALSE) # 1000 CpGs
Coverage <- round(MethylatedBS+UnMethylatedBS) [index,1:2] # considering 2 samples

templ <- data.frame(n=as.vector(Coverage),
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Figure 2: True proportions of hydroxymethylation, methylation and unmethylation for the CpGs used to generate the
datasets

p_m=c(results_exact$mC[index,1] ,results_exact$mC[index,1]),
p_h=c(results_exact$hmC[index,1] ,results_exact$hmC[index,1]))

MethylatedBS_temp <- c()
for (i in 1:dim(templ) [1])
{
MethylatedBS_temp[i] <- rbinom(n=1, size=templ$n[i], prob=(templ$p_m[i]+templ$p_h[i]))
}

UnMethylatedBS_sim2 <- matrix(Coverage - MethylatedBS_temp,ncol=2)
MethylatedBS_sim2 <- matrix(MethylatedBS_temp,ncol=2)

Methylated0xBS_temp <- c()
for (i in 1:dim(templ) [1])
{
Methylated0xBS_temp[i] <- rbinom(n=1, size=templ$n[i], prob=templ$p_m[i])
}

UnMethylated0xBS_sim2 <- matrix(Coverage - Methylated0xBS_temp,ncol=2)
Methylated0xBS_sim2 <- matrix(Methylated0xBS_temp,ncol=2)

MethylatedTAB_temp <- c()
for (i in 1:dim(templ) [1])
{
MethylatedTAB_temp[i] <- rbinom(n=1, size=templ$n[i], prob=templ$p_h[i])
}

UnMethylatedTAB_sim2 <- matrix(Coverage - MethylatedTAB_temp,ncol=2)
MethylatedTAB_sim2 <- matrix(MethylatedTAB_temp,ncol=2)

true_parameters_sim2 <- data.frame(p_m=results_exact$mC[index,1],p_h=results_exact$hmC[index,1])
true_parameters_sim2$p_u <- 1-true_parameters_sim2$p_m-true_parameters_sim2$p_h
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2.2.1 BS and oxBS methods

When only two methods are available, the default option returns the exact constrained maximum likelihood estimates
using the the pool-adjacent-violators algorithm (PAVA) (Ayer et al. 1955).

library (MLML2R)
results_exactB01l <- MLML(T.matrix = MethylatedBS_sim2 , U.matrix = UnMethylatedBS_sim2,
L.matrix = UnMethylated0xBS_sim2, M.matrix = Methylated0xBS_sim2)

Maximum likelihood estimate via EM-algorithm approach (Qu et al. 2013) is obtained with the option iterative=TRUE.
In this case, the default (or user specified) tol is considered in the iterative method.

results_emBO1 <- MLML(T.matrix = MethylatedBS_sim2 , U.matrix = UnMethylatedBS_sim2,
L.matrix = UnMethylatedO0xBS_sim2, M.matrix = Methylated0xBS_sim2,iterative=TRUE)

When only two methods are available, we highly recommend the default option iterative=FALSE since the difference in
the estimates obtained via EM and exact constrained is very small, but the former requires more computational effort:

all.equal(results_emB01$hmC,results_exactB01$hmC,scale=1)
## [1] "Mean absolute difference: 9.581949e-05"

library (microbenchmark)
mbmBO1 = microbenchmark(
EXACT = MLML(T.matrix = MethylatedBS_sim2 , U.matrix = UnMethylatedBS_sim2,
L.matrix = UnMethylated0xBS_sim2, M.matrix = Methylated0xBS_sim2),
EM = MLML(T.matrix = MethylatedBS_sim2, U.matrix = UnMethylatedBS_sim2,
L.matrix = UnMethylated0xBS_sim2, M.matrix = Methylated0xBS_sim2,
iterative=TRUE),

times=10)
mbmB01
## Unit: microseconds
##  expr min 1q mean median uq max neval
## EXACT 364.081 369.246 685.0832 413.0855 419.94 1963.115 10
## EM 13386.102 15000.356 19854.0737 16206.4055 17478.70 54161.686 10

Comparison between approximate exact constrained and true hydroxymethylation proportion used in simulation:
all.equal(true_parameters_sim2$p_h,results_exactB01$hmC[,1] ,scale=1)

## [1] "Mean absolute difference: 0.01165593"

Comparison between EM-algorithm and true hydroxymethylation proportion used in simulation:

all.equal (true_parameters_sim2$p_h,results_emBO1$hmC[,1],scale=1)
## [1] "Mean absolute difference: 0.01011952"

2.2.2 BS and TAB methods

Using PAVA:

results_exactBT1 <- MLML(T.matrix = MethylatedBS_sim2 , U.matrix = UnMethylatedBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim?2)

Using EM-algorithm:

results_emBT1 <- MLML(T.matrix = MethylatedBS_sim2 , U.matrix = UnMethylatedBS_sim?2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2,iterative=TRUE)

Comparison between PAVA and EM:
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all.equal(results_emBT1$hmC,results_exactBT1$hmC,scale=1)
## [1] "Mean absolute difference: 7.675267e-07"

mbmBT1 = microbenchmark(
EXACT = MLML(T.matrix = MethylatedBS_sim2, U.matrix = UnMethylatedBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2),
EM = MLML(T.matrix = MethylatedBS_sim2, U.matrix = UnMethylatedBS_sim2,
G.matrix UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2,
iterative=TRUE),

times=10)
mbmBT1
## Unit: microseconds
##  expr min 1q mean median uq max neval
## EXACT 335.845 373.036 491.6498 386.8215 415.581 1188.552 10
## EM 14376.247 14581.158 15420.6476 15216.6280 16009.418 17211.354 10

Comparison between approximate exact constrained and true hydroxymethylation proportion used in simulation:

all.equal(true_parameters_sim2$p_h,results_exactBT1$hmC[,1],scale=1)
## [1] "Mean absolute difference: 0.00644861"

Comparison between EM-algorithm and true hydroxymethylation proportion used in simulation:

all.equal (true_parameters_sim2$p_h,results_emBT1$hmC[,1],scale=1)
## [1] "Mean absolute difference: 0.004719911"

2.2.3 oxBS and TAB methods

Using PAVA:

results_exact0T1 <- MLML(L.matrix = UnMethylated0xBS_sim2, M.matrix = Methylated0xBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2)

Using EM-algorithm:

results_em0T1 <- MLML(L.matrix = UnMethylated0xBS_sim2, M.matrix = Methylated0xBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2,iterative=TRUE)

Comparison between PAVA and EM:

all.equal(results_em0T1$hmC,results_exact0T1$hmC,scale=1)
## [1] "Mean absolute difference: 2.019638e-07"

mbm0T1 = microbenchmark(
EXACT = MLML(L.matrix = UnMethylated0xBS_sim2, M.matrix = Methylated0xBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2),
EM = MLML(L.matrix = UnMethylated0xBS_sim2, M.matrix = Methylated0xBS_sim2,

G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2,
iterative=TRUE),
times=10)

mbm0OT1

## Unit: microseconds

#i#t expr min 1q mean median uq max neval

## EXACT 281.385 287.219 388.7614 297.3005 313.585 1212.235 10

## EM 5407.036 6013.146 6005.1827 6059.8590 6076.385 6209.908 10

Comparison between approximate exact constrained and true hydroxymethylation proportion used in simulation:
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all.equal (true_parameters_sim2$p_h,results_exact0T1$hmC[,1],scale=1)
## [1] "Mean absolute difference: 0.006451817"

Comparison between EM-algorithm and true hydroxymethylation proportion used in simulation:

all.equal(true_parameters_sim2$p_h,results_em0T1$hmC[,1],scale=1)
## [1] "Mean absolute difference: 0.00645154"

2.2.4 BS, oxBS and TAB methods

When data from the three methods are available, the default otion in the MLML function returns the constrained maximum
likelihood estimates using an approximated solution for Lagrange multipliers method.

results_exactBOT1 <- MLML(T.matrix = MethylatedBS_sim2 , U.matrix = UnMethylatedBS_sim2,
L.matrix = UnMethylated0xBS_sim2, M.matrix = Methylated0xBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2)

Maximum likelihood estimate via EM-algorithm approach (Qu et al. 2013) is obtained with the option iterative=TRUE.
In this case, the default (or user specified) tol is considered in the iterative method.

results_emBOT1 <- MLML(T.matrix = MethylatedBS_sim2 , U.matrix = UnMethylatedBS_sim2,
L.matrix = UnMethylated0xBS_sim2, M.matrix = MethylatedOxBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2,iterative=TRUE)

We recommend the default option iterative=FALSE since the difference in the estimates obtained via EM and the
approximate exact constrained is very small, but the former requires more computational effort:

all.equal(results_emBOT1$hmC,results_exactBOT1$hmC,scale=1)
## [1] "Mean absolute difference: 1.627884e-06"

mbmBOT1 = microbenchmark(

EXACT = MLML(T.matrix = MethylatedBS_sim2, U.matrix = UnMethylatedBS_sim2,
L.matrix = UnMethylated0xBS_sim2, M.matrix = Methylated0xBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2),

EM = MLML(T.matrix = MethylatedBS_sim2, U.matrix = UnMethylatedBS_sim2,
L.matrix = UnMethylatedO0xBS_sim2, M.matrix = Methylated0xBS_sim2,
G.matrix = UnMethylatedTAB_sim2, H.matrix = MethylatedTAB_sim2,
iterative=TRUE),

times=10)
mbmBOT1
## Unit: microseconds
##  expr min 1q mean median uq max neval
## EXACT 861.023 877.852 1110.329 916.691 1045.546 1952.98 10
## EM 1965.518 2730.089 7056.278 2924.055 3657.908 44019.26 10

Comparison between approximate exact constrained and true hydroxymethylation proportion used in simulation:
all.equal(true_parameters_sim2$p_h,results_exactBOT1$hmC[,1],scale=1)

## [1] "Mean absolute difference: 0.005664222"

Comparison between EM-algorithm and true hydroxymethylation proportion used in simulation:

all.equal (true_parameters_sim2$p_h,results_emBOT1$hmC[,1],scale=1)
## [1] "Mean absolute difference: 0.004146021"
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