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This report discusses the computation of the variance of the conditional model (and state) residuals for
MARSS models of the form:

xxxt = Btxxxt−1 + ut + wt, where Wt ∼ MVN(0,Qt)

yyyt = Ztxxxt + at + vt, where Vt ∼ MVN(0,Rt)

XXX0 ∼ MVN(ξ,Λ)

(1)

Given a set of observed data yyyt and states xxxt, the model residuals are yyyt − (Ztxxxt + at) = vt. The model
residual is a random variable since yyyt and xxxt are drawn from the joint multivariate distribution of YYY t and XXXt

defined by the MARSS equation. The unconditional1 variance of the model residuals is

var(YYY t − (ZtXXXt + at)) = var(Vt) = Rt (2)

based on the definition of Vt.
Once we have data, Rt is not the variance of our model residuals because our residuals are now conditioned

on a set of observed data. There are two types of conditional model residuals used in MARSS analyses:
innovations and smoothations. Innovations are the model residuals at time t using the expected value of XXXt

conditioned on the data from 1 to t − 1. Smoothations are the model residuals using the expected value
of xxxt conditioned on all the data, t = 1 to T . Smoothations are used in computing standardized residuals
for outlier and structural break detection (Harvey et al., 1998; de Jong and Penzer, 1998; Commandeur and
Koopman, 2007).

1 Distribution of the MARSS conditional residuals

This report discusses computation of the variance of the model and state residuals conditioned on all the
data from t = 1 to T . MARSS residuals are often used for outlier detection and shock detection, and in this
case you only need the distribution of the model residuals for the observed values. However if you wanted to
do a leave-one-out cross-validation, you would need to know the distribution of the residuals for data points
you left out (treated as unobserved). The equations in this report give you the former and the later, while
the algorithm by Harvey et al. (1998) gives only the former.

Throughout, I follow the convention that capital letters are random variables and small letters are a
realization from the random variable. This only applies to random variables; parameters are not random
variables2.

1.1 Model residuals conditioned on all the data

Define the smoothations v̂t as:
v̂t = yyyt − Ztx̃t − at, (3)

where x̃t is E[XXXt|yyy(1)] and is output by the Kalman smoother. yyy(1) means all the observed data from t = 1

to T ; the unobserved yyy will be termed yyy(2). v̂t is sample from the random variable V̂t since YYY (1) is a random
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1meaning not conditioning on any particular set of observed data but rather taking the expectation across all possible values
of yyyt and xxxt.

2in a frequentist framework
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variable and the data we have collected yyy(1) is a sample from that. We want to compute the unconditional
mean and variance of this random variable V̂t; unconditional here means we take the expectations over all
possibles values that yyy, both yyy(1) and yyy(1), might take. The mean is 0 and we are concerned only with
computing the variance:

var[V̂t] = varY [YYY t − Zt E[XXXt|yyy(1)]− at] (4)

Notice we have an unconditional variance over YYY on the outside and a conditional variance over a specific
value of yyy(1) on the inside.

To compute this, I will use the “law of total variance”:

var[A] = varB [ EA|b[A|b]] + EB [ varA|b[A|b]] (5)

The subscripts on the inner expectations make it explicit that the expectations are being taken over the
conditional distributions. However, going forward, I will write this more succinctly as

var[A] = varB [ E[A|b]] + EB [ var[A|b]] (6)

It is understood that E[A|b] is the conditional expectation conditioned on B = b and var(A|b) is the condi-
tional variance.

From the law of total variance , we can write

var[V̂t] = varY [ E[V̂t|yyy(1)]] + EY [ var[V̂t|yyy(1)]] (7)

varY and EY are expectations over both YYY (1) and YYY (2), so all possible values of YYY .

1.1.1 First term in Equation 7

Notice that E[V̂t|yyy(1)] = E[YYY t|yyy(1)]−Zt E[XXXt|yyy(1)]− at = E[Vt|yyy(1)]. So the first term is varY [ E[Vt|yyy(1)]].
From the law of total variance, we can write

var[Vt] = varY [ E[Vt|yyy(1)]] + EY [ var[Vt|yyy(1)]] (8)

From Equation 8, we can solve for varY [ E[Vt|yyy(1)]]:

varY [ E[Vt|yyy(1)]] = var[Vt]− EY [ var[Vt|yyy(1)]] (9)

From Equation 2, var[Vt] = Rt. The second term to the right of the =, var[Vt|yyy(1)], is the variance of Vt

holding yyy(1) fixed but allowing XXXt (and the rest of the XXX) to be random variables:

var[Vt|yyy(1)] = var[YYY t − ZtXXXt − at|yyy(1)]. (10)

where at is a fixed value and can be dropped. Equation 10 can then be written as

var[Vt|yyy(1)] = var[YYY t − ZtXXXt|yyy(1)]
= var[−ZtXXXt|yyy(1)] + var[YYY t|yyy(1)] + cov[YYY t,−ZtXXXt|yyy(1)] + cov[−ZtXXXt,YYY t|yyy(1)]

= ZtṼtZ
>
t + Ũt − S̃tZ

>
t − ZtS̃

>
t

(11)

Ṽt = var[XXXt|yyy(1)] and is output by the Kalman smoother. Ũt = var[YYY t|yyy(1)] and S̃t = cov[YYY t,XXXt|yyy(1)]. The
equations for these are given in Holmes (2012) and are output by the MARSShatyt function in the MARSS R
package.

Ṽt, Ũt and S̃t do not depend on the actual values of yyy; the conditional is merely indicating that we are
concerned with the variances of the conditional values. They depend instead on the parameters values, Q,
B, R, etc., in the MARSS equation. Thus EY [ var[Vt|yyy(1)]] = var[Vt|yyy(1)] and

var[V̂t] = var[Vt]− var[Vt|yyy(1)] = Rt − ZtṼtZ
>
t − Ũt + S̃tZ

>
t + ZtS̃

>
t (12)
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1.1.2 Second term in Equation 7

Consider the second term in Equation 7. This term is

EY [ var[YYY t − Zt E[XXXt|yyy(1)]− at|yyy(1)]]

E[XXXt|yyy(1)] is a fixed value; it is notXXXt but its expected value. Thus the second term reduces to EY [ var[YYY |yyy(1)]] =

EY [Ũt]. = Ũt is not a function of yyy is is only a function of the MARSS parameters. Thus the second term

in Equation 7 is simply Ũt.

1.1.3 Putting together the two terms

var[V̂t] = Rt − ZtṼtZ
>
t − Ũt + S̃tZ

>
t + ZtS̃

>
t + Ũt

= Rt − ZtṼtZ
>
t + S̃tZ

>
t + ZtS̃

>
t

(13)

This will reduce to Rt −ZtṼtZ
>
t if yyyt has no missing values and to Rt + ZtṼtZ

>
t if yyyt is all missing values.

1.2 State residuals conditioned on the data

The state residuals are xxxt − (Btxxxt−1 + ut) = wt. The unconditional expected value of the state residuals is
E(XXXt − (BtXXXt−1 + ut)) = E(Wt) = 0 and the unconditional variance of the state residuals is

var[XXXt − (BtXXXt−1 + ut)] = var[Wt] = Qt (14)

based on the definition of Wt. The conditional state residuals (conditioned on the full data) are defined as

ŵt = x̃t −Btx̃t−1 − ut. (15)

It is a sample from the random variable Ŵt; random over different possible data sets. The expected value
of Ŵt is 0, and we can compute varY [Ŵt] from the law of total variance using the observation that ŵt =
E[Wt|yyy(1)].

var[Wt] = varY [ E[Wt|yyy(1)]] + EY [ var[Wt|yyy(1)]] (16)

Thus,
varY [ŵt] = varY [ E[Wt|yyy(1)]] = var(Wt)− EY [ var[Wt|yyy(1)]] (17)

The variance in the expectation on the far right is

var[Wt|yyy(1)] = var[XXXt −BtXXXt−1 − ut|yyy(1)]
u is not a random variable and can be dropped

= var[XXXt −BtXXXt−1|yyy(1)]
= var[XXXt|yyy(1)] + var[BtXXXt−1|yyy(1)] + cov[XXXt,−BtXXXt−1|yyy(1)] + cov[−BtXXXt−1,XXXt|yyy(1)]

= Ṽt + BtṼt−1B
>
t − Ṽt,t−1B

>
t −BtṼt−1,t

(18)

This conditional variance does not depend on the actual values of yyy. It depends only on the parameters
values, Q, B, R, etc. Using the above and var[Wt] = Qt in Equation 17, the variance of the conditional
state residuals is

varY [Ŵt] = Qt − Ṽt −BtṼt−1B
>
t + Ṽt,t−1B

>
t + BtṼt−1,t (19)

1.3 Covariance of the conditional model and state residuals

The unconditional model and state residuals, Vt and Wt, are independent (by definition), i.e. cov[Vt,Wt] =

0. However the conditional model and state residuals, cov[V̂t,Ŵt], are not independent since both depend
on yyy(1). Using the law of total covariance, we can write

cov[V̂t,Ŵt] = covY [ E[V̂t|yyy(1)], E[Ŵt|yyy(1)]] + EY [ cov[V̂t,Ŵt|yyy(1)]] (20)
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The covariance in the second term on the right can be written out as

cov[V̂t,Ŵt|yyy(1)] = EY [ cov[YYY t − Zt E[XXXt|yyy(1)]− at, E[XXXt−1|yyy(1)]−Bt E[XXXt−1|yyy(1)]− ut|yyy(1)]] (21)

The E[XXXt|yyy(1)] are fixed values for a given set of data. The covariance of a random variable with a fixed

value is 0, thus cov[V̂t,Ŵt|yyy(1)] is 0. Thus Equation 20 reduces to

cov[V̂t,Ŵt] = covY [ E[V̂t|yyy(1)], E[Ŵt|yyy(1)]] + 0 = covY [ E[Vt|yyy(1)], E[Wt|yyy(1)]] (22)

Since E[V̂t|yyy(1)] = E[Vt|yyy(1)] and E[Ŵt|yyy(1)] = E[Wt|yyy(1)]. In the same way we used the law of total
variance, we can use the law of total covariance to obtain covY [ E[Vt|yyy(1)], E[Wt|yyy(1)]]:

cov[Vt,Wt] = EY [ cov[Vt,Wt|yyy(1)]] + covY [ E[Vt|yyy(1)], E[Wt|yyy(1)]] (23)

The unconditional covariance of Vt and Wt is 0. Thus the right side of Equation 23 is 0 and combining
Equation 22 and 23,

cov[V̂t,Ŵt] = −EY [ cov[Vt,Wt|yyy(1)]] (24)

and our problem reduces to solving for the conditional covariance of the model and state residuals.
The conditional covariance cov[Vt,Wt|yyy(1)] can be written out as

cov[Vt,Wt|yyy(1)] = cov[YYY t − ZtXXXt − at,XXXt −BtXXXt−1 − ut|yyy(1)] (25)

at and ut are fixed values and can be dropped. Thus

cov[Vt,Wt|yyy(1)] = cov[YYY t − ZtXXXt,XXXt −BtXXXt−1|yyy(1)y]

= cov[YYY t,XXXt|yyy(1)] + cov[YYY t,−BtXXXt−1|yyy(1)] + cov[−ZtXXXt,XXXt] + cov[−ZtXXXt,−BtXXXt−1]

= S̃t − S̃t,t−1B
>
t − ZtṼt + ZtṼt,t−1B

>
t

(26)

where S̃t = cov[YYY t,XXXt|yyy(1)] and S̃t,t−1 = cov[YYY t,XXXt−1|yyy(1)]; the equations for S̃t and S̃t,t−1 are given in

Holmes (2012) and are output by the MARSShatyt function in the MARSS R package. Ṽt, Ṽt,t−1, S̃t and

S̃t,t−1 are only functions of the MARSS parameters not of yyy. Thus

EY [ cov[Vt,Wt|yyy(1)]] = cov[Vt,Wt|yyy(1)] = S̃t − S̃t,t−1B
>
t + ZtṼt,t−1B

>
t − ZtṼt (27)

cov[V̂t,Ŵt] is the negative of this (Equation 24), thus

cov[V̂t,Ŵt] = −S̃t + S̃t,t−1B
>
t − ZtṼt,t−1B

>
t + ZtṼt (28)

The Harvey et al. algorithm shown below gives the joint distribution of the model residuals at time t and
state residuals at time t+ 1. Using the law of total covariance as above The covariance in this case is

covY [ E[Vt|yyy(1)], E[Wt+1|yyy(1)]] = −EY [ cov[Vt,Wt+1|yyy(1)]] (29)

and

cov[Vt,Wt+1|yyy(1)] = cov[YYY t − ZtXXXt − at,XXXt+1 −Bt+1XXXt − ut+1|yyy(1)]
= cov[YYY t − ZtXXXt,XXXt+1 −Bt+1XXXt|yyy(1)]

= S̃t,t+1 − S̃tB
>
t+1 − ZtṼt,t+1 + ZtṼtB

>
t+1

(30)

Thus,

covY [ E[Vt|yyy], E[Wt+1|yyy(1)]] = −EY [ cov[Vt,Wt+1|yyy(1)]] = −S̃t,t+1 + S̃tB
>
t+1 + ZtṼt,t+1 − ZtṼtB

>
t+1.
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1.4 Joint distribution of the conditional residuals

We now the write the variance of the joint distribution of the conditional residuals. Define

ε̂t =

[
v̂t

ŵt

]
=

[
yyyt − Ztx̃t − at

x̃t −Btx̃t−1 − ut

]
. (31)

where x̃t and x̃t−1 are conditioned on yyy(1), the observed yyy. ε̂t is a sample drawn from the distribution of Êt
conditioned on observations at the (1) locations in YYY . The expected value of Êt over all possible yyy is 0 and
the variance of Êt is Rt − ZtṼtZ

>
t + S̃tZ

>
t + ZtS̃

>
t S̃t − S̃t,t−1B

>
t + ZtṼt,t−1B

>
t − ZtṼt

(S̃t − S̃t,t−1B
>
t + ZtṼt,t−1B

>
t − ZtṼt)

> Qt − Ṽt −BtṼt−1B
>
t + Ṽt,t−1B

>
t + BtṼt−1,t

 (32)

If the residuals are defined as in Harvey et al. (1998),

ε̂t =

[
v̂t

ŵt+1

]
=

[
yyyt − Ztx̃t − at

x̃xxt+1 −Bt+1x̃t − ut+1

]
(33)

and the variance of Êt is Rt − ZtṼtZ
>
t + S̃tZ

>
t + ZtS̃

>
t −S̃t,t+1 + S̃tB

>
t+1 + ZtṼt,t+1 − ZtṼtB

>
t+1

(−S̃t,t+1 + S̃tB
>
t+1 + ZtṼt,t+1 − ZtṼtB

>
t+1)> Qt+1 − Ṽt+1 −Bt+1ṼtB

>
t+1 + Ṽt+1,tB

>
t+1 + Bt+1Ṽt,t+1


(34)

The above gives the variance of both ‘observed’ model residuals (the ones associated with yyy(1)) and the

unobserved model residuals (the ones associated with yyy(2)). When there are no missing values in yyyt, the S̃t

and S̃t,t−1 terms equal 0 and drop out.

2 Harvey et al 1998 algorithm for the conditional residuals

Harvey et al. (1998, pgs 112-113) give a recursive algorithm for computing the variance of the conditional
residuals when the time-varying MARSS equation is written as:

xxxt+1 = Bt+1xxxt + ut+1 + Gt+1εt,

yyyt = Ztxxxt + at + Htεt,

where εt ∼ MVN(0, Im+n×m+n),GtG
>
t = Qt and HtH

>
t = Rt

(35)

Gt has m rows and m + n columns with the last n columns all 0; Ht has n rows and m + n columns with
the last m columns all zero. The algorithm in Harvey et al. (1998) gives the variance of the ‘normalized’
residuals, the εt. I have modified their algorithm so it returns the ‘non-normalized’ residuals:

εt =

[
Htεt

Gt+1εt

]
=

[
vt

wt+1

]
.

The Harvey et al. algorithm is a backwards recursion using output from the Kalman filter: the one-step
ahead prediction covariance Ft and the Kalman gain Kt. Starting from t = T and working backwards to
t = 1 and using rT = 0 and NT = 0, the algorithm is

Q∗t+1 =
[
Qt+1 0m×n

]
, R∗t =

[
0n×m R∗t

]
Ft = Z∗t ṼtZ

∗
t
>

+ R∗t , Kt = Bt+1Kt

Lt = Bt+1 −KtZ
∗
t , Jt = Q∗t+1 −KtR

∗
t , ut = F−1t −K>t rt

rt−1 = Z∗t
>
ut + B>t+1rt, Nt−1 = K>t NtKt + L>t NtLt

(36)

Bolded terms are the same as in Equation 35. Unbolded terms are terms used in Harvey et al. (1998). The *
on Zt and Rt, indicates that they are the missing value modified versions discussed in Shumway and Stoffer
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(2006, section 6.4): the rows of Zt corresponding to missing rows of yyyt are set to zero and the (i, j) and (j, i)
terms of Rt corresponding the missing rows of yyyt are set to zero. For the latter, this means if the i-th row
of yyyt is missing, then then all the (i, j) and (j, i) terms, including (i, i) are set to 0. It is assumed that a
missing values modified inverse of Ft is used; for example 0 on diagonal replaced with 1, inverse taken, and
1 on diagonal replaced back with 0.

The residuals are

ε̂∗t =

[
v̂t

ŵt+1

]
= (R∗t )>ut + (Q∗t+1)>rt (37)

with mean of 0 ( EY (ε̂t) = 0) and variance

Σ∗t = varY (ε̂t) = R∗t
>

F−1t R∗t + J>t NtJt (38)

The * signifies that these are the missing values modified ε̂t and Σt; see comments above.
If you compare their state equation (their equation 20) with my state equation, you will notice that my

time indexing on B matches the left xxx while in theirs, it matches the right xxx. Thus Bt+1 (and Qt+1) appears
in my implementation of their algorithm instead of Bt. Harvey et al. (1998, eqns. 19, 20) use Gt to refer to
the chol(Rt)

> (essentially) and Ht to refer to chol(Qt)
>. I’ve replaced these with R∗t and Q∗t , respectively,

which causes my variant of their algorithm to give the ‘non-normalized’ variance of the residuals. Their Tt
is my Bt+1. Kt is the Kalman gain output by the MARSS package. The Kalman gain as used in the Harvey
et al. (1998) algorithm is Kt = Bt+1Kt.

2.1 Computing the standardized residuals

The standardized residuals are computed by multiplying ε̂t by the inverse of the square root of the variance-
covariance matrix from which ε̂t is “drawn”:

(Σ∗t )−1/2ε̂∗t (39)

Notice that the missing values modified ε̂∗t and Σ∗t are used. if the i-th row of yyyt is missing, the i-th row of
ε̂t is set to 0 and the i-th row and column of Σt is set to all 0. There will be 0s on the diagonal of Σ∗t so your
code will need to deal with these.
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