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Abstract

LaplacesDemon, usually referred to as Laplace’s Demon, is a contributed R package
for Bayesian inference, and is freely available on the Comprehensive R Archive Network
(CRAN). Laplace’s Demon allows the choice of four MCMC algorithms to update a
Bayesian model according to a user-specified model function. The user-specified model
function enables Bayesian inference for any model form, provided the user specifies the
likelihood. Laplace’s Demon also attempts to assist the user by creating and offering
R code, based on a previous model update, that can be copy/pasted and executed.
Posterior predictive checks and many other features are included as well. Laplace’s
Demon seeks to be generalizable and user-friendly to Bayesians...especially Laplacians.

Keywords. Adaptive, AM, Bayesian, Delayed Rejection, DR, DRAM, DRM, LaplacesDe-
mon, Laplace’s Demon, Markov chain Monte Carlo, MCMC, Metropolis, R, Random Walk,
Random-Walk, STATISTICAT.

Disclaimer. Demonic references are used only to add flavor to the software and its use,
and in no way endorse beliefs in demons.

1 Introduction

Bayesian inference is named after Reverend Thomas Bayes (1702-1761) for developing Bayes’
theorem, which was published posthumously after his death in 1763. This was the first
instance of what would be called inverse probability1.

Unaware of Bayes, Pierre-Simon Laplace (1749-1827) independently developed Bayes’ theo-
rem and first published his version in 1774, eleven years after Bayes, in one of Laplace’s first
major works (Laplace, 1774, p.366-367). In 1812, Laplace introduced a host of new ideas and
mathematical techniques in his book, Theorie Analytique des Probabilites. Before Laplace,
probability theory was solely concerned with developing a mathematical analysis of games
of chance. Laplace applied probabilistic ideas to many scientific and practical problems.

1‘Inverse probability’ refers to assigning a probability distribution to an unobserved variable, and is in
essence, probability in the opposite direction of the usual sense. Bayes’ theorem has been referred to as
“the principle of inverse probability”. Terminology has changed, and the term ‘Bayesian probability’ has
displaced ‘inverse probability’. The adjective “Bayesian” was introduced by R. A. Fisher as a derogatory
term.

1



Although Laplace is not the father of probability, Laplace may be considered the father of
the field of probability.

In 1814, Laplace published his “Essai philosophique sur les probabilites”, which introduced
a mathematical system of inductive reasoning based on probability. In it, the Bayesian
interpretation of probability was developed independently by Laplace, much more thoroughly
than Bayes, so some “Bayesians” refer to Bayesian inference as Laplacian inference. This is
a translation of a quote in the introduction to this work:

“We may regard the present state of the universe as the effect of its past and
the cause of its future. An intellect which at a certain moment would know all
forces that set nature in motion, and all positions of all items of which nature is
composed, if this intellect were also vast enough to submit these data to analysis,
it would embrace in a single formula the movements of the greatest bodies of the
universe and those of the tiniest atom; for such an intellect nothing would be
uncertain and the future just like the past would be present before its eyes”
(Laplace, 1814).

The ‘intellect’ has been referred to by future biographers as Laplace’s Demon. In this
quote, Laplace expresses his philosophical belief in hard determinism and his wish for a
computational machine that is capable of estimating the universe.

This article is an introduction to an R package called LaplacesDemon, which was designed
without consideration for hard determinism, but instead with a lofty goal toward facilitating
high-dimensional Bayesian (or Laplacian) inference, posing as its own intellect that is capable
of impressive analysis. The LaplacesDemon R package is often referred to as Laplace’s
Demon. This article guides the user through installation, data, specifying a model, initial
values, updating Laplace’s Demon, summarizing and plotting output, posterior predictive
checks, general suggestions, discusses independence and observability, covers details of the
algorithm, software comparisons, discusses large data sets and speed, explains future goals,
and presents references.

Herein, it is assumed that the reader has basic familiarity with Bayesian inference, numerical
approximation, and R. If any part of this assumption is violated, then suggested sources
include the accompanying vignette entitled “Bayesian Inference” and Crawley (2007).

To wit, it is suspected that if Laplace’s Demon actually existed, then from time to time it
would chant:

One package to rule them all,

One package to find them,

One package to bring them all and in the darkness bind them

2 Installation

To obtain Laplace’s Demon, simply open R and install the LaplacesDemon package from a
CRAN mirror:
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> install.packages("LaplacesDemon")

A goal in developing Laplace’s Demon was to minimize reliance on other packages or software.
Therefore, the usual dep=TRUE argument does not need to be used, because LaplacesDemon

does not depend on anything other than base R. Once installed, simply use the library or
require function in R to activate the LaplacesDemon package and load its functions into
memory:

> library(LaplacesDemon)

Although Laplace’s Demon is freely available, a software license restricts it from commercial
use, except when a license is purchased from STATISTICAT, LLC 2.

3 Data

Laplace’s Demon requires data that is specified in a list. As an example, there is a data set
called demonsnacks that is provided with the LaplacesDemon package. For no good reason,
other than to provide an example, the log of Calories will be fit as an additive, linear
function of the remaining variables. Since an intercept will be included, a vector of 1’s is
inserted into design matrix X.

> data(demonsnacks)

> N <- NROW(demonsnacks)

> J <- NCOL(demonsnacks)

> y <- log(demonsnacks$Calories)

> X <- cbind(1, as.matrix(demonsnacks[, c(1, 3:10)]))

> for (j in 2:J) {

+ X[, j] <- (X[, j] - mean(X[, j]))/(2 * sd(X[, j]))

+ }

> parm.names <- rep(NA, J + 1)

> for (j in 1:J) {

+ parm.names[j] <- paste("beta[", j, "]", sep = "")

+ }

> parm.names[J + 1] <- "log.tau"

> MyData <- list(J = J, X = X, parm.names = parm.names, y = y)

There are J=10 independent variables (including the intercept), one for each column in
design matrix X. However, there are 11 parameters, since the residual precision, tau, must
be included as well. The reason why it is called log.tau will be explained later. Each
parameter must have a name specified in the vector parm.names, and parameter names
must be included with the data. Also, note that each predictor has been centered and
scaled, as per Gelman (2008). The way in which centering and scaling is performed in this
example is crude, where more elegant methods exist, but it is used here because it is easy
for the reader to see how it is done.

2To obtain a license, send an email to statisticat@gmail.com or visit http://www.statisticat.com/.
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4 Specifying a Model

To use Laplace’s Demon, the user must specify a model. Let’s consider a linear regression
model, which is often denoted as:

y ∼ N(µ, σ2)

µ = Xβ

The dependent variable, y, is normally distributed according to expectation vector µ and
scalar variance σ2, and expectation vector µ is equal to the inner product of design matrix
X and parameter vector β.

For a Bayesian model, the notation for the residual variance, σ2, is often replaced with the
residual precision, τ−1. Prior probabilities are specified for β and τ :

βj ∼ N(0, 1000), j = 1, ..., J

τ ∼ Γ(0.001, 0.001)

Each of the J β parameters is assigned a noninformative prior probability distribution that
is normally-distributed according to µ = 0 and σ2 = 1000, where the precision is τ = 0.001.
The large variance or small precision indicates a lot of uncertainty about each β, and is hence
a noninformative distribution. The residual precision τ is gamma-distributed according to
two parameters of its distribution: α = 0.001 and β = 0.001.

To specify a model, the user must create a function called Model. Here is an example for a
linear regression model:

> Model <- function(parm, Data) {

+ beta.mu <- rep(0, J)

+ beta.tau <- rep(0.001, J)

+ tau.alpha <- 0.001

+ tau.beta <- 0.001

+ beta <- rep(0, J)

+ for (j in 1:J) {

+ beta[j] <- parm[j]

+ }

+ tau <- exp(parm[J + 1])

+ beta.prior <- rep(0, J)

+ for (j in 1:J) {

+ beta.prior[j] <- dnorm(beta[j], beta.mu[j], 1/sqrt(beta.tau[j]),

+ log = TRUE)

+ }

+ tau.prior <- dgamma(tau, tau.alpha, tau.beta, log = TRUE)

+ mu <- beta %*% t(X)

+ LL <- sum(dnorm(y, mu, 1/sqrt(tau), log = TRUE))

+ LP <- LL + sum(beta.prior) + tau.prior

+ Modelout <- list(LP = LP, Dev = -2 * LL, Monitor = c(tau,
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+ mu[1]), yhat = mu)

+ return(Modelout)

+ }

Laplace’s Demon iteratively maximizes the log of the joint posterior density as specified in
this Model function. In Bayesian inference, the log of the joint posterior density is propor-
tional to the sum of the log-likelihood and log of the prior densities:

log[p(θ|y)] ∝ log[p(y|θ)] + log[p(θ)]

where θ is a set of parameters, y is the data, ∝ means ‘proportional to’3, p(θ|y) is the joint
posterior density, p(y|θ) is the likelihood, and p(θ) is the set of prior densities.

During each iteration in which Laplace’s Demon is maximizing the log of the joint posterior
density, Laplace’s Demon passes two arguments to Model: parm and Data, where parm is
short for the set of parameters, and Data is a list of data. These arguments are specified in
the beginning of the function:

Model <- function(parm, Data)

Then, the Model function is evaluated and the log of the joint posterior density is calculated
as LP, and returned to Laplace’s Demon in a list called Modelout, along with the deviance
(Dev), a vector (Monitor) of any variables desired to be monitored in addition to the param-
eters, and yrep (yhat) or replicates of y. All arguments must be returned. Even if there is
no desire to observe the deviance and any monitored variable, a scalar must be placed in the
second position of the Modelout list, and at least one element of a vector for a monitored
variable. This can be seen in the end of the function:

LP <- LL + sum(beta.prior) + tau.prior Modelout <- list(LP=LP, Dev=-2*LL, Mon-

itor=c(tau,mu[1]), yhat=mu) return(Modelout)

The rest of the function specifies the prior parameters, parameters, log of the prior densities,
and calculates the log-likelihood.

The prior parameters specify the parameters for the prior distributions. Since design matrix
X has J=10 column vectors (including the intercept), there are 10 beta parameters and a tau

parameter for residual precision, the inverse of the variance. Each of the J beta parameters
will be distributed normally according to mean beta.mu and precision beta.tau, and the
additional tau parameter will be gamma-distributed according to tau.alpha and tau.beta.
Here are the specifications for the prior parameters:

beta.mu <- rep(0,J)

beta.tau <- rep(1.0E-3,J)

tau.alpha <- 1.0E-3

tau.beta <- 1.0E-3

Since Laplace’s Demon passes a vector of parameters called parm to Model, the function needs

3For those unfamiliar with ∝, this symbol simply means that two quantities are proportional if they
vary in such a way that one is a constant multiplier of the other. This is due to an unspecified constant of
proportionality in the equation. Here, this can be treated as ‘equal to’.

5



to know which parameter is associated with which element of parm. For this, the vector
beta is declared, and then each element of beta is populated with the value associated in
the corresponding element of parm. The reason why tau is exponentiated will, again, be
explained later.

beta <- rep(0,J)

for (j in 1:J) beta[j] <- parm[j]

tau <- exp(parm[J+1])

To work with the log of the prior densities and according to the assigned names of the
parameters and prior parameters, they are specified as follows:

beta.prior <- rep(0,J)

for (j in 1:J)

beta.prior[j] <- dnorm(beta[j], beta.mu[j], 1/sqrt(beta.tau[j]), log=TRUE)

tau.prior <- dgamma(tau, tau.alpha, tau.beta, log=TRUE)

It is important to reparameterize all parameters to be real-valued. For example, a positive-
only parameter such as variance should be transformed with a log function, and a proportion
p can be transformed to the real line by a logit function, such as logit(p) = log(p/(1-

p)). Laplace’s Demon will attempt to increase or decrease the value of each parameter to
maximize LP, without consideration for the distributional form of the parameter. In the
above example, the residual precision tau receives a gamma-distributed prior of the form:

τ ∼ Γ(0.001, 0.001)

In this specification, tau cannot be negative. By reparameterizing tau as

tau <- exp(parm[J+1])

Laplace’s Demon will increase or decrease parm[J+1], which is effectively log(tau). Now it
is possible for Laplace’s Demon to decrease log(tau) below zero without causing an error
or violating its gamma-distributed specification.

Finally, everything is put together to calculate LP, the log of the joint posterior density.
The expectation vector mu is the inner product (%*%) of the vector beta and the transposed
design matrix, t(X). Expectation vector mu, vector y, and scalar tau are used to estimate
the sum of the log-likelihoods, where:

y ∼ N(µ, τ−1)

and as noted before, the log of the joint posterior density is:

log[p(θ|y)] ∝ log[p(y|θ)] + log[p(θ)]

mu <- beta %*% t(X)

LL <- sum(dnorm(y, mu, 1/sqrt(tau), log=TRUE)
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LP <- LL + sum(beta.prior) + tau.prior

Specifying the model in the Model function is the most involved aspect for the user of
Laplace’s Demon. But it has been designed so it is also incredibly flexible, allowing a wide
variety of Bayesian models to be specified.

Missing values can be estimated in Laplace’s Demon, but each missing value must be specified
as a parameter in Model so that an initial value is assigned.

5 Initial Values

Laplace’s Demon requires a vector of initial values for the parameters. Each initial value is
a user-specified starting point for a parameter. In this example, there are 11 parameters,
and with no prior knowledge, it is a good idea to set them equal to zero or use a random
function. The first 10 parameters, the beta parameters, have been set equal to zero, and the
remaining parameter, log.tau, has been set equal to log(1), which is equal to zero. This
visually reminds me that I am working with the log of tau, rather than tau, and is merely
a personal preference. The order of the elements of the vector of initial values must match
the order of the parameters associated with each element of parm passed to Model.

> Initial.Values <- c(rep(0, J), log(1))

6 Laplace’s Demon

Compared to specifying the model in the Model function, the actual use of Laplace’s Demon
is very easy. Since Laplace’s Demon is stochastic, or involves pseudo-random numbers, it’s a
good idea to set a ‘seed’ for pseudo-random number generation, so results can be reproduced.
Pick any number you like, but there’s only one number appropriate for a demon:

> set.seed(666)

As with any R package, the user can learn about a function by using the help function
and including the name of the desired function. To learn the details of the LaplacesDemon

function, enter:

> help(LaplacesDemon)

Here is one of many possible ways to begin:

> Fit <- LaplacesDemon(Model, Data = MyData, Adaptive = 900,

+ Covar = NULL, DR = 1, Initial.Values, Iterations = 10000,

+ Periodicity = 10, Status = 1000, Thinning = 10)

In this example, an output object called Fit will be created as a result of using the Laplaces-
Demon function. Fit is an object of class demonoid, which means that since it has been
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assigned a customized class, other functions have been custom-designed to work with it.
Laplace’s Demon offers four MCMC algorithms (which are explained in the Details section).
The above example declares the Delayed Rejection Adaptive Metropolis (DRAM) algorithm.

This example tells the LaplacesDemon function to maximize the user-specified Model func-
tion, given a data set called MyData, and according to several settings.

� The Adaptive=900 argument indicates that a non-adaptive MCMC algorithm will
begin, and that it will become adaptive at the 900th iteration. Beginning with the
900th iteration, the MCMC algorithm will estimate the proposal variance or covariance
based on the history of the chains.

� The Covar=NULL argument indicates that a user-specified variance vector or covariance
matrix has not been supplied, so the algorithm will begin with its own estimate.

� The DR=1 argument indicates that delayed rejection will occur, such that when a
proposal is rejected, an additional proposal will be attempted, thus potentially delaying
rejection of proposals.

� The Initial.Values argument requires a vector of initial values for the parameters.

� The Iterations=10000 argument indicates that LaplacesDemon will update 10,000
times before completion.

� The Periodicity=10 argument indicates that once adaptation begins, the algorithm
will adapt every 10 iterations.

� The Status=1000 argument indicates that a status message will be printed to the R

console every 1,000 iterations.

� Finally, the Thinning=10 argument indicates that only every nth iteration will be
retained in the output, and in this case, every 10th iteration will be retained.

By running the LaplacesDemon function, the following output was obtained:

> Fit <- LaplacesDemon(Model, Data = MyData, Adaptive = 900,

+ Covar = NULL, DR = 1, Initial.Values, Iterations = 10000,

+ Periodicity = 10, Status = 1000, Thinning = 10)

Laplace's Demon was called on Thu Jan 13 20:33:43 2011

Performing initial checks...

Algorithm: Delayed Rejection Adaptive Metropolis

Laplace's Demon is beginning to update...

Iteration: 1000, Proposal: Multivariate

Iteration: 2000, Proposal: Multivariate

Iteration: 3000, Proposal: Multivariate

Iteration: 4000, Proposal: Multivariate

Iteration: 5000, Proposal: Multivariate

Iteration: 6000, Proposal: Multivariate
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Iteration: 7000, Proposal: Multivariate

Iteration: 8000, Proposal: Multivariate

Iteration: 9000, Proposal: Multivariate

Assessing Stationarity

Assessing Thinning and ESS

Creating Summaries

Creating Output

Laplace's Demon has finished.

Laplace’s Demon finished quickly, though it had a small data set (N=39), few parameters
(K=11), and the model was very simple. At each status of 1000 iterations, the proposal was
multivariate, so it did not have to resort to independent proposals. The output object, Fit,
was created as a list. As with any R object, use str() to examine its structure:

> str(Fit)

To access any of these values in the output object Fit, simply append a dollar sign and the
name of the component. For example, here is how to access the observed acceptance rate:

> Fit$Acceptance.Rate

[1] 0.191

7 Summarizing Output

The output object, Fit, has many components. The (copious) contents of Fit can be printed
to the screen with the usual R functions:

> Fit

> print(Fit)

Both return the same output, which is:

> Fit

Call:

LaplacesDemon(Model = Model, Data = MyData, Adaptive = 900, Covar = NULL,

DR = 1, Initial.Values = Initial.Values, Iterations = 10000,

Periodicity = 10, Status = 1000, Thinning = 10)

Acceptance Rate: 0.191

Adaptive: 900
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Algorithm: Delayed Rejection Adaptive Metropolis

Covar: (NOT SHOWN HERE)

DIC of all samples (Dbar): 86.907

DIC of all samples (pD): 719.76

DIC of all samples (DIC): 806.67

DIC of stationary samples (Dbar): 85.158

DIC of stationary samples (pD): 53.232

DIC of stationary samples (DIC): 138.39

DR: 1

Iterations: 10000

Minutes of run-time: 0.42

Model: (NOT SHOWN HERE)

Monitor: (NOT SHOWN HERE)

Parameters (Number of): 11

Periodicity: 10

Posterior1: (NOT SHOWN HERE)

Posterior2: (NOT SHOWN HERE)

Recommended Burn-In of Thinned Samples: 301

Recommended Burn-In of Un-thinned Samples: 3010

Recommended Thinning: 270

Status is displayed every 1000 iterations

Summary1: (SHOWN BELOW)

Summary2: (SHOWN BELOW)

Thinned Samples: 1000

Thinning: 10

Summary of All Samples

Mean SD MCSE ESS LB Median UB

beta[1] 5.022744 0.29788 0.017538 288.49 4.7825736 5.04047 5.25693

beta[2] -0.449700 0.40129 0.025770 242.48 -1.2192368 -0.45520 0.36491

beta[3] -0.354680 0.96424 0.078525 150.78 -2.2047573 -0.31601 1.47275

beta[4] -0.092932 0.69866 0.051057 187.25 -1.4984657 -0.10772 1.27766

beta[5] -0.403650 0.55309 0.039374 197.32 -1.4227603 -0.45082 0.74765

beta[6] -0.472748 0.31433 0.019925 248.87 -1.0715801 -0.45303 0.14696

beta[7] 2.221839 0.63308 0.053801 138.47 0.8041232 2.24437 3.38278

beta[8] 0.603436 0.46815 0.030160 240.94 -0.4162341 0.61453 1.48273

beta[9] -0.180499 0.56446 0.035346 255.03 -1.3330820 -0.16966 0.84930

beta[10] 1.555348 0.82088 0.063613 166.52 -0.1322433 1.58307 3.06140

log.tau 0.620962 0.30480 0.023012 175.43 0.0068253 0.65190 1.12403

Deviance 86.907163 37.94114 2.026465 350.54 74.3851161 83.12989 113.01651

Monitor 1.955169 0.59055 0.038829 231.31 0.9898689 1.92412 3.23246

Monitor 4.157063 0.30662 0.015166 408.75 3.7150806 4.17152 4.63016

Summary of Stationary Samples

Mean SD MCSE ESS LB Median

beta[1] 5.039152 0.12158 0.0055652 477.26 4.784144 5.040819

beta[2] -0.494324 0.39615 0.0274562 208.18 -1.269493 -0.496514

beta[3] -0.454290 0.97750 0.0652184 224.64 -2.524612 -0.407956

10



beta[4] -0.082261 0.69068 0.0497506 192.73 -1.503985 -0.051364

beta[5] -0.421718 0.53882 0.0343869 245.53 -1.445971 -0.441650

beta[6] -0.490788 0.31037 0.0220482 198.16 -1.112198 -0.463762

beta[7] 2.294935 0.55973 0.0332093 284.08 1.135636 2.263510

beta[8] 0.635673 0.47593 0.0330957 206.79 -0.336534 0.633569

beta[9] -0.168345 0.55218 0.0340447 263.07 -1.307631 -0.169823

beta[10] 1.631995 0.78472 0.0526515 222.13 0.130607 1.631624

log.tau 0.635934 0.27423 0.0208941 172.26 0.084972 0.652988

Deviance 85.158210 10.31812 0.6065567 289.37 74.385690 83.157250

Monitor 1.979997 0.60232 0.0424282 201.53 1.005590 1.922430

Monitor 4.154517 0.21805 0.0113182 371.16 3.738744 4.164022

UB

beta[1] 5.273698

beta[2] 0.311042

beta[3] 1.319463

beta[4] 1.257107

beta[5] 0.733734

beta[6] 0.094813

beta[7] 3.468211

beta[8] 1.578397

beta[9] 0.913065

beta[10] 3.199257

log.tau 1.167378

Deviance 110.720403

Monitor 3.331427

Monitor 4.584599

Several components are labeled as NOT SHOWN HERE, due to their size, such as the covariance
matrix Covar or the stationary posterior samples Posterior2. As usual, these can be printed
to the screen by appending a dollar sign, followed by the desired component, such as:

> Fit$Posterior2

Although a lot can be learned from the above output, notice that it completed 10000 it-
erations of 11 variables in 0.42 minutes. Of course this was fast, since there were only 39
records, and the form of the specified model was simple. As discussed later, Laplace’s De-
mon does better than most other MCMC software with large numbers of records, such as
100,000 (see the Large Data Sets and Speed section).

In R, there is usually a summary function associated with each class of output object. The
summary function usually summarizes the output. For example, with frequentist models, the
summary function usually creates a table of parameter estimates, complete with p-values.

Since this is not a frequentist package, p-values are not part of any table with the Laplaces-
Demon function, and the marginal posterior distributions of the parameters and other vari-
ables have already been summarized in Fit, there is no point to have an associated summary

function. Going one more step toward useability, LaplacesDemon has a Consort function,
where the user consorts with Laplace’s Demon about the output object. For example:

> Consort(Fit)
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This produces two kinds of output. The first section is identical to print(Fit), but by
consorting with Laplace’s Demon, it also produces a second section called Demonic Sug-

gestion.

> Consort(Fit)

#############################################################

# Consort with Laplace's Demon #

#############################################################

Call:

LaplacesDemon(Model = Model, Data = MyData, Adaptive = 900, Covar = NULL,

DR = 1, Initial.Values = Initial.Values, Iterations = 10000,

Periodicity = 10, Status = 1000, Thinning = 10)

Acceptance Rate: 0.191

Adaptive: 900

Algorithm: Delayed Rejection Adaptive Metropolis

Covar: (NOT SHOWN HERE)

DIC of all samples (Dbar): 86.907

DIC of all samples (pD): 719.76

DIC of all samples (DIC): 806.67

DIC of stationary samples (Dbar): 85.158

DIC of stationary samples (pD): 53.232

DIC of stationary samples (DIC): 138.39

DR: 1

Iterations: 10000

Minutes of run-time: 0.42

Model: (NOT SHOWN HERE)

Monitor: (NOT SHOWN HERE)

Parameters (Number of): 11

Periodicity: 10

Posterior1: (NOT SHOWN HERE)

Posterior2: (NOT SHOWN HERE)

Recommended Burn-In of Thinned Samples: 301

Recommended Burn-In of Un-thinned Samples: 3010

Recommended Thinning: 270

Status is displayed every 1000 iterations

Summary1: (SHOWN BELOW)

Summary2: (SHOWN BELOW)

Thinned Samples: 1000

Thinning: 10

Summary of All Samples

Mean SD MCSE ESS LB Median UB

beta[1] 5.022744 0.29788 0.017538 288.49 4.7825736 5.04047 5.25693

beta[2] -0.449700 0.40129 0.025770 242.48 -1.2192368 -0.45520 0.36491

beta[3] -0.354680 0.96424 0.078525 150.78 -2.2047573 -0.31601 1.47275

beta[4] -0.092932 0.69866 0.051057 187.25 -1.4984657 -0.10772 1.27766
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beta[5] -0.403650 0.55309 0.039374 197.32 -1.4227603 -0.45082 0.74765

beta[6] -0.472748 0.31433 0.019925 248.87 -1.0715801 -0.45303 0.14696

beta[7] 2.221839 0.63308 0.053801 138.47 0.8041232 2.24437 3.38278

beta[8] 0.603436 0.46815 0.030160 240.94 -0.4162341 0.61453 1.48273

beta[9] -0.180499 0.56446 0.035346 255.03 -1.3330820 -0.16966 0.84930

beta[10] 1.555348 0.82088 0.063613 166.52 -0.1322433 1.58307 3.06140

log.tau 0.620962 0.30480 0.023012 175.43 0.0068253 0.65190 1.12403

Deviance 86.907163 37.94114 2.026465 350.54 74.3851161 83.12989 113.01651

Monitor 1.955169 0.59055 0.038829 231.31 0.9898689 1.92412 3.23246

Monitor 4.157063 0.30662 0.015166 408.75 3.7150806 4.17152 4.63016

Summary of Stationary Samples

Mean SD MCSE ESS LB Median

beta[1] 5.039152 0.12158 0.0055652 477.26 4.784144 5.040819

beta[2] -0.494324 0.39615 0.0274562 208.18 -1.269493 -0.496514

beta[3] -0.454290 0.97750 0.0652184 224.64 -2.524612 -0.407956

beta[4] -0.082261 0.69068 0.0497506 192.73 -1.503985 -0.051364

beta[5] -0.421718 0.53882 0.0343869 245.53 -1.445971 -0.441650

beta[6] -0.490788 0.31037 0.0220482 198.16 -1.112198 -0.463762

beta[7] 2.294935 0.55973 0.0332093 284.08 1.135636 2.263510

beta[8] 0.635673 0.47593 0.0330957 206.79 -0.336534 0.633569

beta[9] -0.168345 0.55218 0.0340447 263.07 -1.307631 -0.169823

beta[10] 1.631995 0.78472 0.0526515 222.13 0.130607 1.631624

log.tau 0.635934 0.27423 0.0208941 172.26 0.084972 0.652988

Deviance 85.158210 10.31812 0.6065567 289.37 74.385690 83.157250

Monitor 1.979997 0.60232 0.0424282 201.53 1.005590 1.922430

Monitor 4.154517 0.21805 0.0113182 371.16 3.738744 4.164022

UB

beta[1] 5.273698

beta[2] 0.311042

beta[3] 1.319463

beta[4] 1.257107

beta[5] 0.733734

beta[6] 0.094813

beta[7] 3.468211

beta[8] 1.578397

beta[9] 0.913065

beta[10] 3.199257

log.tau 1.167378

Deviance 110.720403

Monitor 3.331427

Monitor 4.584599

Demonic Suggestion

Due to the combination of the following conditions,

1. Delayed Rejection Adaptive Metropolis

2. The acceptance rate (0.191) is within the interval [0.15,0.5].
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3. At least one target MCSE is >= 6.27% of its marginal posterior

standard deviation.

4. Each target distribution has an effective sample size (ESS)

of at least 100.

5. Each target distribution became stationary by

301 iterations.

Laplace's Demon has not been appeased, and suggests

copy/pasting the following R code into the R console,

and running it.

Initial.Values <- Fit$Posterior1[Fit$Thinned.Samples,]

Fit <- LaplacesDemon(Model, Data=MyData, Adaptive=0,

Covar=Fit$Covar, DR=0, Initial.Values, Iterations=270000,

Periodicity=0, Status=23810, Thinning=270)

Laplace's Demon is finished consorting.

The Demonic Suggestion is a very helpful section of output. When Laplace’s Demon was
developed initially in late 2010, there were not to my knowledge any tools of Bayesian
inference that make suggestions to the user.

Before making its Demonic Suggestion, Laplace’s Demon considers and presents five condi-
tions: the algorithm, acceptance rate, Monte Carlo standard error (MCSE), effective sample
size (ESS), and stationarity. There are 48 combinations of these five conditions, though
many combinations lead to the same conclusions. In addition to these conditions, there
are other suggested values, such as a recommended number of iterations or values for the
Periodicity and Status arguments. The suggested value for Status is seeking to print a
status message every minute when the expected time is longer than a minute, and is based
on the time in minutes it took, the number of iterations, and the recommended number
of iterations. This estimate is fairly accurate for non-adaptive algorithms, and is hard to
estimate for adaptive algorithms. But, back to the really helpful part...

If these five conditions are unsatisfactory, then Laplace’s Demon is not appeased, and sug-
gests it should continue updating, and that the user should copy/paste and execute its
suggested R code. Here are the criteria it measures against. The final algorithm must be
non-adaptive, so that the Markov property holds (this is covered in the Details section).
The acceptance rate is considered satisfactory if it is within the interval [15%,50%]4. MCSE
is considered satisfactory for each target distribution if it is less than 6.27% of the standard
deviation of the target distribution. This allows the true mean to be within 5% of the area
under a Gaussian distribution around the estimated mean. ESS is considered satisfactory
for each target distribution if it is at least 100, which is usually enough to describe 95%
probability intervals. And finally, each variable must be estimated as stationary.

Notice that since stationarity has been estimated beginning with the 301st iteration, the
suggested R code changes from Adaptive=900 to Adaptive=0. The suggestion is to abandon
the adaptive MCMC algorithm in favor of a non-adaptive algorithm, specifically a Random-
Walk Metropolis (RWM). It is also replacing the initial values with the latest values of the

4While Spiegelhalter et al. (2003) recommend updating until the acceptance rate is within the inter-
val [20%, 40%], and Roberts and Rosenthal (2001) suggest [10%,40%], the interval recommended here is
[15%,50%] to include non-Gaussian cases.
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parameter chains, and is suggesting to begin with the latest covariance matrix. Some of
the arguments in the suggested R code seem excessive, such as Iterations=270000 and
Thinning=270. For the sake of the example, the suggested R code will be run:

> Initial.Values <- Fit$Posterior1[Fit$Thinned.Samples, ]

> Fit <- LaplacesDemon(Model, Data = MyData, Adaptive = 0,

+ Covar = Fit$Covar, DR = 0, Initial.Values, Iterations = 270000,

+ Periodicity = 0, Status = 23970, Thinning = 270)

Laplace's Demon was called on Thu Jan 13 20:34:08 2011

Performing initial checks...

Adaptation will not occur due to the Adaptive argument.

Adaptation will not occur due to the Periodicity argument.

Algorithm: Random-Walk Metropolis

Laplace's Demon is beginning to update...

Iteration: 23970, Proposal: Multivariate

Iteration: 47940, Proposal: Multivariate

Iteration: 71910, Proposal: Multivariate

Iteration: 95880, Proposal: Multivariate

Iteration: 119850, Proposal: Multivariate

Iteration: 143820, Proposal: Multivariate

Iteration: 167790, Proposal: Multivariate

Iteration: 191760, Proposal: Multivariate

Iteration: 215730, Proposal: Multivariate

Iteration: 239700, Proposal: Multivariate

Iteration: 263670, Proposal: Multivariate

Assessing Stationarity

Assessing Thinning and ESS

Creating Summaries

Creating Output

Laplace's Demon has finished.

Next, the user consorts with Laplace’s Demon:

> Consort(Fit)

#############################################################

# Consort with Laplace's Demon #

#############################################################

Call:

LaplacesDemon(Model = Model, Data = MyData, Adaptive = 0, Covar = Fit$Covar,

DR = 0, Initial.Values = Initial.Values, Iterations = 270000,

Periodicity = 0, Status = 23970, Thinning = 270)
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Acceptance Rate: 0.117

Adaptive: 270001

Algorithm: Random-Walk Metropolis

Covar: (NOT SHOWN HERE)

DIC of all samples (Dbar): 82.839

DIC of all samples (pD): 17.859

DIC of all samples (DIC): 100.70

DIC of stationary samples (Dbar): 82.839

DIC of stationary samples (pD): 17.859

DIC of stationary samples (DIC): 100.70

DR: 0

Iterations: 270000

Minutes of run-time: 3.35

Model: (NOT SHOWN HERE)

Monitor: (NOT SHOWN HERE)

Parameters (Number of): 11

Periodicity: 270001

Posterior1: (NOT SHOWN HERE)

Posterior2: (NOT SHOWN HERE)

Recommended Burn-In of Thinned Samples: 1

Recommended Burn-In of Un-thinned Samples: 270

Recommended Thinning: 270

Status is displayed every 23970 iterations

Summary1: (SHOWN BELOW)

Summary2: (SHOWN BELOW)

Thinned Samples: 1000

Thinning: 270

Summary of All Samples

Mean SD MCSE ESS LB Median UB

beta[1] 5.049414 0.11703 0.0037007 1000.0 4.8213813 5.04903 5.286891

beta[2] -0.456951 0.38159 0.0120668 1000.0 -1.1866647 -0.44209 0.285416

beta[3] -0.387225 0.91224 0.0288476 1000.0 -2.2137711 -0.37603 1.346461

beta[4] -0.088007 0.69464 0.0219666 1000.0 -1.4570598 -0.08442 1.237535

beta[5] -0.364783 0.51354 0.0162397 1000.0 -1.3624402 -0.35843 0.667524

beta[6] -0.493701 0.29823 0.0094307 1000.0 -1.0941874 -0.47841 0.085168

beta[7] 2.263348 0.56054 0.0177259 1000.0 1.1800345 2.25029 3.421534

beta[8] 0.627717 0.42579 0.0134647 1000.0 -0.2091316 0.62871 1.462383

beta[9] -0.204996 0.61125 0.0193293 1000.0 -1.4862898 -0.19935 0.972693

beta[10] 1.553713 0.77324 0.0244520 1000.0 -0.0052482 1.56880 3.024874

log.tau 0.663916 0.27930 0.0088322 1000.0 0.0901297 0.67766 1.177234

Deviance 82.838804 5.97653 0.1911866 977.2 73.9313406 82.07288 96.543775

Monitor 2.012494 0.55143 0.0174378 1000.0 1.0827196 1.95672 3.220192

Monitor 4.184054 0.20695 0.0065444 1000.0 3.7786554 4.18750 4.582045

Summary of Stationary Samples

Mean SD MCSE ESS LB Median UB

beta[1] 5.049414 0.11703 0.0037007 1000.0 4.8213813 5.04903 5.286891
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beta[2] -0.456951 0.38159 0.0120668 1000.0 -1.1866647 -0.44209 0.285416

beta[3] -0.387225 0.91224 0.0288476 1000.0 -2.2137711 -0.37603 1.346461

beta[4] -0.088007 0.69464 0.0219666 1000.0 -1.4570598 -0.08442 1.237535

beta[5] -0.364783 0.51354 0.0162397 1000.0 -1.3624402 -0.35843 0.667524

beta[6] -0.493701 0.29823 0.0094307 1000.0 -1.0941874 -0.47841 0.085168

beta[7] 2.263348 0.56054 0.0177259 1000.0 1.1800345 2.25029 3.421534

beta[8] 0.627717 0.42579 0.0134647 1000.0 -0.2091316 0.62871 1.462383

beta[9] -0.204996 0.61125 0.0193293 1000.0 -1.4862898 -0.19935 0.972693

beta[10] 1.553713 0.77324 0.0244520 1000.0 -0.0052482 1.56880 3.024874

log.tau 0.663916 0.27930 0.0088322 1000.0 0.0901297 0.67766 1.177234

Deviance 82.838804 5.97653 0.1911866 977.2 73.9313406 82.07288 96.543775

Monitor 2.012494 0.55143 0.0174378 1000.0 1.0827196 1.95672 3.220192

Monitor 4.184054 0.20695 0.0065444 1000.0 3.7786554 4.18750 4.582045

Demonic Suggestion

Due to the combination of the following conditions,

1. Random-Walk Metropolis

2. The acceptance rate (0.117) is below 0.15.

3. Each target MCSE is < 6.27% of its marginal posterior

standard deviation.

4. Each target distribution has an effective sample size (ESS)

of at least 100.

5. Each target distribution became stationary by

1 iterations.

Laplace's Demon has not been appeased, and suggests

copy/pasting the following R code into the R console,

and running it.

Initial.Values <- Fit$Posterior1[Fit$Thinned.Samples,]

Fit <- LaplacesDemon(Model, Data=MyData, Adaptive=0,

Covar=Fit$Covar, DR=1, Initial.Values, Iterations=270000,

Periodicity=270, Status=80597, Thinning=270)

Laplace's Demon is finished consorting.

In 3.35 minutes, Laplace’s Demon updated 270000 iterations, retaining every 270th iteration
due to thinning, and reported an acceptance rate of 0.117, which is low enough to trigger
a suggestion to continue updating. However, notice that all other criteria have been met:
MCSE’s are sufficiently small, ESS’s are sufficiently large, and stationarity was estimated
beginning with the first iteration.

Notice DR=1 in the suggested R code. Together with Adaptive=0, this indicates that a
Delayed Rejection Metropolis (DRM) algorithm is suggested. DRM is discussed in the
Details section, but here it is enough to state that in the case of a rejected proposal, the
DRM algorithm will make a second proposal before simply moving on to the next iteration.
This serves to increase the acceptance rate, and is obviously why Laplace’s Demon suggests
DRM.
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Figure 1: Plots of Marginal Posterior Samples

The low acceptance rate suggests that the proposal distribution may not be optimal, and
that the chains may not have mixed well. Even though Laplace’s Demon has not been
appeased due to the acceptance rate, everything else looks good. Since the algorithm was
RWM, the Markov property holds, so let’s look at some plots.

8 Plotting Output

Laplace’s Demon has a plot.demonoid function to enable its own customized plots with
demonoid objects. The variable BurnIn (below) may be left as it is so it will show only
the stationary samples (samples that are no longer trending), or set equal to one so that all
samples can be plotted. In this case, it will already be one, so I will leave it alone. The
function also enables the user to specify whether or not the plots should be saved as a .pdf
file, and allows the user to limit the number of parameters plotted, in case the number is
very large and only a quick glance is desired.

> BurnIn <- Fit$Rec.BurnIn.Thinned

> plot(Fit, BurnIn, MyData, PDF = FALSE, Parms = Fit$Parameters)

There are three plots for each parameter, the deviance, and each monitored variable (which
in this example are tau and mu[1]). The leftmost plot is a trace-plot, showing the history
of the value of the parameter according to the iteration. The middlemost plot is a kernel
density plot. The rightmost plot is an ACF or autocorrelation function plot, showing the
autocorrelation at different lags. The chains look stationary (do not exhibit a trend), the
kernel densities look Gaussian, and the ACF’s show low autocorrelation.
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Figure 2: Plots of Marginal Posterior Samples
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Figure 3: Plots of Marginal Posterior Samples
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Figure 4: Plots of Marginal Posterior Samples
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Figure 5: Plots of Marginal Posterior Samples
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If all is well, then the Markov chains should be studied with MCMC diagnostics, and fi-
nally, further assessments of model fit should be estimated with posterior predictive checks,
showing how well (or poorly) the model fits the data. When the user is satisfied, marginal
posterior samples may be used for inference.

When predicting the logarithm of y (Calories) with the demonsnacks data, the best fitting
variables are beta[6] (Sodium), beta[7] (Total.Carbohydrate), and beta[10] (Protein).
Overall, Laplace’s Demon seems to have done well, eating demonsnacks for breakfast.

9 Posterior Predictive Checks

A posterior predictive check is a method to assess discrepancies between the model and
the data (Gelman, Meng, and Stern, 1996). To perform posterior predictive checks with
Laplace’s Demon, simply use the predict function:

> Pred <- predict(Fit, Model, MyData)

This creates Pred, which is an object of class demonoid.ppc (where ppc is short for posterior
predictive check) that is a list which contains y and yhat. If the data set that was used
to estimate the model is supplied in predict, then replicates of y (also called yrep) are
estimated. If a new data set is supplied in predict, then new, unobserved instances of y

(called ynew) are estimated. Note that with new data, a y vector must still be supplied, and
if unknown, can be set to something sensible such as the mean of the y vector in the model.

The predict function calls the Model function once for each set of stationary samples in
Fit$Posterior2. Each set of samples is used to calculate mu, which is the expectation of y,
and mu is reported here as yhat. When there are few discrepancies between y and yrep, the
model is considered to fit the data well.

Since Pred$yhat is a large (39 x 1000) matrix, let’s look at the summary of the posterior
predictive distribution:

> summary(Pred)

Chi-square: 10.514

Concordance: 0.79487

Records:

y Mean SD LB Median UB p.value

1 4.1744 4.1858 0.20745 3.7666 4.1920 4.5825 0.528

2 5.3613 5.2842 0.41313 4.4357 5.2836 6.1401 0.422

3 6.0890 5.2860 0.54018 4.2064 5.2759 6.3511 0.073

4 5.2983 5.1487 0.33365 4.5135 5.1476 5.8109 0.323

5 4.4067 4.0780 0.25029 3.5634 4.0875 4.5620 0.095

6 2.1972 3.8151 0.20894 3.4179 3.8199 4.1925 1.000

7 5.0106 4.5501 0.19063 4.1550 4.5538 4.9156 0.007

8 1.6094 3.8739 0.20686 3.4748 3.8756 4.2477 1.000

9 4.3438 4.2327 0.24522 3.7474 4.2328 4.7040 0.310

10 4.8122 4.7294 0.23588 4.2739 4.7328 5.1903 0.365
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11 4.1897 4.4224 0.20614 4.0342 4.4246 4.8335 0.871

12 4.9200 4.5453 0.18446 4.1925 4.5503 4.9075 0.021

13 4.7536 4.3881 0.18856 4.0157 4.3904 4.7433 0.021

14 4.1271 4.1687 0.18095 3.7941 4.1713 4.5310 0.598

15 3.7136 4.1051 0.20306 3.6997 4.1075 4.4819 0.969

16 4.6728 4.4048 0.23932 3.9246 4.4051 4.8544 0.120

17 6.9305 7.1952 0.55131 6.0893 7.1920 8.2542 0.691

18 5.0689 4.8039 0.25718 4.2872 4.8084 5.3145 0.150

19 6.7754 6.3296 0.49831 5.3259 6.3341 7.2686 0.184

20 6.5539 7.2003 0.49003 6.2070 7.2029 8.1268 0.905

21 4.8903 5.3860 0.34824 4.7289 5.3837 6.0568 0.926

22 4.4427 4.2681 0.28390 3.6997 4.2768 4.8475 0.268

23 2.8332 3.0960 0.49883 2.0924 3.1091 4.1072 0.719

24 4.7875 4.9456 0.25055 4.4570 4.9456 5.4365 0.735

25 6.9334 7.2636 0.63901 6.0545 7.2398 8.5084 0.689

26 6.1800 6.0313 0.62848 4.7884 6.0231 7.2665 0.402

27 5.6525 5.3098 0.30975 4.6709 5.3136 5.9039 0.122

28 5.4293 4.4772 0.21382 4.0358 4.4801 4.8793 0.000

29 5.6348 5.5100 0.72067 4.1228 5.5060 6.9243 0.419

30 4.2627 4.0762 0.21579 3.6299 4.0770 4.4659 0.202

31 3.8918 4.0767 0.26180 3.5731 4.0855 4.5707 0.763

32 6.6134 6.6024 0.40611 5.7858 6.6144 7.3666 0.502

33 4.9200 4.4179 0.19352 4.0450 4.4151 4.7964 0.005

34 6.5410 6.4162 0.48677 5.4232 6.4300 7.3295 0.406

35 6.3456 6.4251 0.49918 5.4736 6.4227 7.3687 0.565

36 3.7377 4.0564 0.26623 3.5152 4.0569 4.5845 0.890

37 7.3563 7.9073 0.64082 6.6483 7.9128 9.1841 0.810

38 5.7398 4.7739 0.17252 4.4214 4.7783 5.1074 0.000

39 5.5175 5.1398 0.27099 4.6408 5.1426 5.6803 0.083

The summary.demonoid.ppc function returns a list with 2 components:

� Concordance is the predictive concordance of Gelfand (1996), that indicates the per-
centage of y, that was within the 95% probability interval of yhat. A goal is to have
95% predictive concordance. For more information, see the accompanying vignette
entitled “Bayesian Inference”. In this case, roughly 1% of the time, y is within the 95%
probability interval of yhat. These results suggest that the model should be attempted
again under different conditions, such as using different predictors, or specifying a dif-
ferent form to the model.

� The last part of the summarized output reports y, information about the distribution of
yhat, and the predictive quantile (PQ). The mean prediction of y[1], or yrep[1], given
the model and data, is 4.186. Most importantly, p.value[1] is 0.528, indicating that
52.8% of the time, yhat[1,] was greater than y[1], or that y[1] is close to the mean
yhat[1,]. Contrast this with the 6th record, where y[6]= 2.197 and p.value[6]=
1. Therefore, yhat[6,] was not a good replication of y[6], because the distribution
of yhat[6,] is always greater than y[6]. While y[6] is 2.197, yhat[6,] has a mean
of 3.815 and is within the 95% probability interval [3.418, 4.192]. Clearly, the 95%
probability interval of yrep[6,] is above y[6] 100% of the time, indicating a strong
discrepancy between the model and data, in this case.
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Figure 6: Posterior Predictive Plots

The last component of this summary may be viewed graphically as well. Rather than
observing plots for each of 39 records or rows, only the first 9 will be shown here:

> plot(Pred, Rows = c(1:9))

These posterior predictive checks indicate that there is plenty of room to improve this model.

10 General Suggestions

Following are general suggestions on how best to use Laplace’s Demon:

� As suggested by Gelman (2008), continuous predictors should be centered and scaled.
Here is an explicit example in R of how to center and scale a single predictor called
x01: x01.cs <- (x01 - mean(x01)) / (2*sd(x01)).

� Do not forget to reparameterize any bounded parameters in Model to be real-valued.

� MCMC is a stochastic method of numerical approximation, and as such, results may
differ with each run due to the use of pseudo-random number generation. It is good
practice to set a seed so that each update of the model may be reproduced. Here is
an example in R: set.seed(666).

� Once a model has been specified in Model, it may be tempting to specify a large number
of iterations and thinning in LaplacesDemon, and simply let the model update a long
time, hoping for convergence. Instead, it is wise to begin with few iterations such as
Iterations=20, set Adaptive=0 (preventing adaptation), and set Thinning=1. User-
error in specifying the Model function will be frustrating otherwise.
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� After studying updates with few iterations, the first “actual” update should be long
enough that adaptation begins to occur, and that enough iterations occur after the
first adaptation to allow the user to study the adaptation. In the supplied example,
adaptation was allowed to begin at the 900th iteration (Adaptive=900), but also oc-
curred with Periodicity=10, so every 10th iteration, adaptation occurred. It is also
wise to use delayed rejection to assist with the acceptance rate when the algorithm
may begin far from its solution, so set DR=1.

� If adaptation does not seem to improve estimation or the initial movement in the
chains is worse than expected, then consider changing the initial values. Initial values
are most effective when the starting points are close to the target distributions. When
initial values are far enough away from the target distributions to be in low-probability
regions, the algorithm may take longer than usual, and will struggle more as the
proposal covariance matrix approaches near-singularity. If there is no information
available to make a better selection, then randomize the initial values. Centered and
scaled predictors also help by essentially standardizing the possible range of the target
distributions.

� If Laplace’s Demon exhibits an unreasonably low acceptance rate (say, arbitrarily,
lower than 15%) and is having a hard time exploring after significant iterations, then
investigate the latest proposal covariance matrix by entering Fit$Covar. Chances are
that the elements of the diagonal, the variances, are large. In this case, it may be
best to set Covar=NULL for the next time it continues to update, which will begin by
default with a scaled identity matrix that should get more movement in the chains.
As is usual practice, the latest sampled values should also replace the initial values,
so it begins from the last update, but with larger proposal variances. The chains will
mix better the closer they get to their target distributions. The user can confirm
that Laplace’s Demon is making progress and moving overall in the right direction by
observing the trace-plot of the deviance. If it is decreasing run after run, then the
model is continuously fitting better and better, and one sign of convergence will be
when the deviance seems to become stationary or no longer shows a trend.

� Demonic Suggestion is intended as an aid, not an infallible replacement for criti-
cal thinking. As with anything else, its suggestions are based on assumptions, and
it is the responsibility of the user to check those assumptions. For example, the
Geweke.Diagnostic may indicate stationarity (lack of a trend) when it does not exist,
and this most likely occurs when too few thinned samples remain. Or, the Demonic

Suggestion may indicate that the next update may need to run for a million iterations
in a complex model, requiring weeks to complete. Is this really best for the user?

� Use a two-phase approach with Laplace’s Demon, where the first phase consists of us-
ing the AM or DRAM algorithm to achieve stationary samples that seem to have con-
verged to the target distributions (convergence can never be determined with MCMC,
but some instances of non-convergence can be observed). Once it is believed that con-
vergence has occurred, continue Laplace’s Demon with Adaptive=0 so that adaptation
will not occur. The final samples should again be checked for signs of non-convergence
and, if satisfactory, used for inference.

� The desirable number of final, thinned samples for inference depends on the required
precision of the inferential goal. A good general goal is to end up with 1,000 thinned
samples (Gelman et al., 2004, p. 295), where the ESS is at least 100.
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� Disagreement exists in MCMC literature as to whether to update one, long chain
(Geyer, 1992), or multiple, long chains with different, randomized initial values (Gel-
man and Rubin, 1992). Laplace’s Demon is not designed to simultaneously update
multiple chains. Nonetheless, if multiple chains are desired, then Laplace’s Demon can
be updated a series of times, each beginning with different initial values, until multiple
output objects of class demonoid exist with stationary samples, if time allows.

11 Independence and Observability

For the user, one set of advantages of Laplace’s Demon compared to many other available
methods is that it was designed with independence and observability in mind. By indepen-
dence, it is meant that a goal was to minimize the dependence on other software. Laplace’s
Demon is performed completely within base R (though of course the LaplacesDemon package
is required). From personal experience, I’ve used multiple packages to achieve goals before,
and have been trapped when one of those packages failed to keep pace with other changes.

All functions in Laplace’s Demon are written entirely in R, so the user can easily observe or
manipulate the algorithm or functions. For example, to print the code for LaplacesDemon

to the R console, simply enter:

> LaplacesDemon

12 Details

Laplace’s Demon accomplishes numerical approximation with Markov chain Monte Carlo
(MCMC) algorithms. There are a large number of MCMC algorithms, too many to review
here. Popular families (which are often non-distinct) include Gibbs sampling, Metropolis-
Hastings, Random-Walk Metropolis (RWM), slice sampling, and many others, including
hybrid algorithms. RWM was developed first (Metropolis et al., 1953), and Metropolis-
Hastings was a generalization of RWM (Hastings, 1970). All MCMC algorithms are known
as special cases of the Metropolis-Hastings algorithm. Regardless of the algorithm, the goal
in Bayesian inference is to maximize the joint posterior distribution and collect samples
of the target distributions, which are marginal posterior distributions, later to be used for
inference.

While designing Laplace’s Demon, the primary goal in numerical approximation was gen-
eralization. The most generalizable MCMC algorithm is the Metropolis-Hastings (MH)
generalization of the RWM algorithm. The MH algorithm extended RWM to include asym-
metric proposal distributions. Having no need of asymmetric proposals, Laplace’s Demon
uses variations of the original RWM algorithm, which use symmetric proposal distributions,
specifically Gaussian proposals. For years, the main disadvantage of the RWM and MH al-
gorithms was that the proposal variance (see below) had to be tuned manually, and therefore
other MCMC algorithms have become popular because they do not need to be tuned.

Gibbs sampling became popular for Bayesian inference, though it requires conditional sam-
pling of conjugate distributions, so it is precluded from non-conjugate sampling in its purest
form. Gibbs sampling also suffers under high correlations. Due to these limitations, Gibbs
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sampling is less generalizable than RWM. Slice sampling samples a distribution by sampling
uniformly from the region under the plot of its density function, and is more appropriate
with bounded distributions that cannot approach infinity.

There are valid ways to tune the RWM algorithm as it updates. This is known by many
names, including adaptive Metropolis and adaptive MCMC, among others. A brief discussion
follows of RWM and its adaptive variants.

12.1 Block Updating

Usually, there is more than one target distribution, in which case it must be determined
whether it is best to sample from target distributions individually, in groups, or all at once.
Block updating refers to splitting a multivariate vector into groups called blocks, so each
block may be treated differently. A block may contain one or more variables. Advantages
of block updating are that a different MCMC algorithm may be used for each block (or
variable, for that matter), creating a more specialized approach, and the acceptance of a
newly proposed state is likely to be higher than sampling from all target distributions at once
in high dimensions. Disadvantages of block updating are that correlations probably exist
between variables between blocks, and each block is updated while holding the other blocks
constant, ignoring these correlations of variables between blocks. Without simultaneously
taking everything into account, the algorithm may converge slowly or never arrive at the
proper solution. Also, as the number of blocks increases, more computation is required,
which slows the algorithm. In general, block updating allows a more specialized approach at
the expense of accuracy, generalization, and speed. Laplace’s Demon avoids block updating,
though this increases the importance that the initial values are not in low-probability regions,
and may cause Laplace’s Demon to have chains that are slow to begin moving.

12.2 Random-Walk Metropolis

In MCMC algorithms, each iterative estimate of a parameter is part of a changing state, and
is influenced only by the previous state. The succession of states or iterations constitutes a
Markov chain, where the current state is influenced only by the previous state. In RWM,
a proposed future estimate, called a proposal or candidate, of the joint posterior density is
calculated, and a ratio of the proposed to the current joint posterior density, called α, is
compared to a random number drawn uniformly from the interval (0,1). In practice, the
log of the joint posterior density is used, so log(α) is the proposal density minus the current
density. The proposed state is accepted, replacing the current state with probability 1 when
the proposed state is an improvement over the current state, and may still be accepted if the
logarithm of a random draw from a uniform distribution is less than log(α). Otherwise, the
proposed state is rejected, and the current state is repeated so that another proposal may be
estimated at the next iteration. By comparing log(α) to the log of a random number when
log(α) is not an improvement, random-walk behavior is included in the algorithm, and it is
possible for the algorithm to backtrack while it explores.

Random-walk behavior is desirable because it allows the algorithm to explore, and hopefully
avoid getting trapped in undesirable regions. On the other hand, random-walk behavior is
undesirable because it takes longer to converge to the target distribution while the algorithm
explores. The algorithm generally progresses in the right direction, but may periodically
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wander away. Such exploration may uncover multi-modal target distributions, which other
algorithms may fail to recognize, and then converge incorrectly. With enough iterations,
RWM is guaranteed theoretically to converge to the correct target distribution, regardless
of the starting point of each parameter, provided the proposal variance for each proposal of
a target distribution is sensible.

Multiple parameters usually exist, and therefore correlations may occur between the pa-
rameters. All MCMC algorithms in Laplace’s Demon are modified to attempt to estimate
multivariate proposals, thereby taking correlations into account through a covariance matrix.
If a failure is experienced in attempting to estimate multivariate proposals, then Laplace’s
Demon temporarily resorts to independent proposals by estimating univariate variances, and
will continue to attempt to return to multivariate proposals at each iteration.

Throughout the RWM algorithm, the proposal covariance or variance remains fixed. The
user may enter a vector of proposal variances or a proposal covariance matrix, and if neither
is supplied, then Laplace’s Demon estimates both before it begins, based on the number of
variables.

The acceptance or rejection of each proposal should be observed at the completion of the
RWM algorithm as the acceptance rate, which is the number of acceptances divided by the
total number of iterations. If the acceptance rate is too high, then the proposal variance
or covariance is too small. In this case, the algorithm will take longer than necessary to
find the target distribution and the samples will be highly autocorrelated. If the acceptance
rate is too low, then the proposal variance or covariance is too large, and the algorithm
is ineffective at exploration. In the worst case scenario, no proposals are accepted and the
algorithm fails to move. Under theoretical conditions, the optimal acceptance rate for a sole,
independent and identically distributed (IID), Gaussian, marginal posterior distribution is
0.44 or 44%. The optimal acceptance rate for an infinite number of distributions that are
IID and Gaussian is 0.234 or 23.4%.

12.3 Delayed Rejection Metropolis

The Delayed Rejection Metropolis (DRM or DR) algorithm is a RWM with one, small twist.
Whenever a proposal is rejected, the DRM algorithm will try one or more alternate pro-
posals, and correct for the probability of this conditional acceptance. By delaying rejection,
autocorrelation in the chains may be decreased, and the algorithm is encouraged to move.
Currently, Laplace’s Demon will attempt one alternate proposal when using the DRAM
(see below) or DRM algorithm. The additional calculations may slow each iteration of the
algorithm in which the first set of proposals is rejected, but it may also converge faster. For
more information on DRM, see Mira (2001).

DRM may be considered to be an adaptive MCMC algorithm, because it adapts the proposal
based on a rejection. However, DRM does not violate the Markov property (see below),
because the proposal is based on the current state. For the purposes of Laplace’s Demon,
DRM is not considered to be an adaptive MCMC algorithm, because it is not adapting to
the target distribution by considering previous states in the Markov chain, but merely makes
more attempts from the current state. DRM is rarely suggested by Laplace’s Demon, though
the combination of DRM and AM, called DRAM (see below), is suggested frequently.
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12.4 Adaptive Metropolis

In traditional, non-adaptive RWM, the Markov property is satisfied, creating valid Markov
chains, but it is difficult to manually optimize the proposal variance or covariance, and it is
crucial that it is optimized for good mixing of the Markov chains. Adaptive MCMC may
be used to automatically optimize the proposal variance or covariance based on the history
of the chains, though this violates the Markov property, which declares the proposed state
is influenced only by the current state. To retain the Markov property, and therefore valid
Markov chains, a two-phase approach may be used, in which adaptive MCMC is used in
the first phase to arrive at the target distributions while violating the Markov property,
and non-adaptive DRM or RWM is used in the second phase to sample from the target
distributions for inference, while possessing the Markov property.

There are too many adaptive MCMC algorithms to review here. All of them adapt the
proposal variance to improve mixing. Some adapt the proposal variance to also optimize
the acceptance rate (which becomes difficult as dimensionality increases), minimize auto-
correlation, or optimize a scale factor. Laplace’s Demon uses a variation of the Adaptive
Metropolis (AM) algorithm of Haario, Saksman, and Tamminen (2001).

Given the number of dimensions (d) or parameters, the optimal scale of the proposal vari-
ance, also called the jumping kernel, has been reported as 2.4/

√
d based on the asymp-

totic limit of infinite-dimensional Gaussian target distributions that are independent and
identically-distributed (Gelman, Roberts, and Gilks, 1996). In applied settings, each prob-
lem is different, so the amount of correlation varies between variables, target distributions
may be non-Gaussian, the target distributions may be non-IID, and the scale should be
optimized. Laplace’s Demon uses a scale that is accurate to more decimals: 2.381204/

√
d,

even though Haario et al. use a different form: 2.42/d. There are algorithms in statistical
literature that attempt to optimize this scale, and it is hoped that these algorithms will be
included in Laplace’s Demon in the future.

Haario et al. (2001) tested their algorithm with up to 200 dimensions or parameters, so it is
capable of large-scale Bayesian inference. The version in Laplace’s Demon should be capable
of more dimensions than the AM algorithm as it was presented, because when Laplace’s De-
mon experiences an error in multivariate AM, it defaults to independent adaptive proposals.
Although independent adaptive proposals should take longer to converge, the algorithm is
limited in dimension only by the RAM of the computer.

For multivariate adaptive tuning, the formula across K parameters and t iterations is:

Σ∗ = [φKcov(θ1:t,1:K)] + (φKCIK)

where φK is the scale according to K parameters, C is a small (1.0E-5) constant to ensure
the proposal covariance matrix is positive definite (does not have zero or negative variance
on the diagonal), and IK is a K x K identity matrix. The initial proposal covariance matrix,
when none is provided, defaults to the scaling component multiplied by its identity matrix:
phiKIK .

For independent adaptive tuning, the formula across K parameters and t iterations is:

σ∗2
k = φkvar(θ1:t,k) + φkC
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Each element in the initial vector of proposal variances is set equal to the asymptotic scale
according to its dimensions: φk.

In both the multivariate and independent cases, the AM algorithm begins with a fixed
proposal variance or covariance that is either estimated internally or supplied by the user.
Next, the algorithm begins, and it does not adapt until the iteration is reached that is
specified by the user in the Adaptive argument of LaplacesDemon. Then, the algorithm
will adapt with every n iterations according to the Periodicity argument. Therefore, the
user has control over when the AM algorithm begins to adapt, and how often it adapts.
The value of the Adaptive argument in Laplace’s Demon is chosen subjectively by the user
according to their confidence in the accuracy of the initial proposal covariance or variance.
The value of the Periodicity argument is chosen by the user according to their patience:
when the value is 1, the algorithm will adapt continuously, which will be slower to calculate.
The AM algorithm adapts the proposal covariance or variance according to the observed
covariance or variance in the entire history of all parameter chains, as well as the scale
factor.

As recommended by Haario et al. (2001), there are two tricks that may be used to assist
the AM algorithm in the beginning. Although Laplace’s Demon does not use the suggested
“greedy start” method, it uses the second suggested trick of shrinking the proposal as long
as the acceptance rate is less than 5%. Haario et al. (2001) suggest loosely that if “it
has not moved enough during some number of iterations, the proposal could be shrunk
by a constant factor”. For each iteration that the acceptance rate is less than 5% and
that the AM algorithm is used but the current iteration is prior to adaptation, Laplace’s
Demon multiplies the proposal covariance or variance by 99%. Over pre-adaptive time,
this encourages a smaller proposal covariance or variance to increase the acceptance rate so
that when adaptation begins, the observed covariance or variance of the chains will not be
constant, and then shrinkage will cease and adaptation will take it from there.

12.5 Delayed Rejection Adaptive Metropolis

The Delayed Rejection Adaptive Metropolis (DRAM) algorithm is merely the combination
of both DRM (or DR) and AM (Haario, Laine, Mira, and Saksman, 2006). DRAM has been
demonstrated as robust in extreme situations where DRM or AM fail separately. Haario
et al. (2006) present an example involving ordinary differential equations in which least
squares could not find a stable solution, and DRAM did well.

12.6 Afterward

Once the model is updated, the Geweke.Diagnostic function of Geweke (1992) is iteratively
applied to successively smaller tail-sections of the thinned samples to assess stationarity (or
lack of trend). When all parameters are estimated as stationary beyond a given iteration,
the previous iterations are suggested to be considered as burn-in and discarded. The number
of thinned samples is divided into cumulative 10% groups, and the Geweke.Diagnostic is
applied by beginning with each cumulative group.

The importance of Monte Carlo Standard Error (MCSE) is debated. Here, it is considered
important enough to be one of five main criteria to appease Laplace’s Demon. It is often
recommended that one of several competing batch methods should be used to estimate
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MCSE, arguing that the simple method (MCSE = σ/
√
m) is biased and reports less error

(where m is the ESS). I have calculated both the simple method and non-overlapping batch
MCSE’s on a wide range of applied models, and noted just as many cases of the simple
method producing higher MCSE’s as lower MCSE’s. As far as Laplace’s Demon is concerned,
the simple method is used to estimate MCSE, but it is open to debate.

13 Software Comparisons

There is now a wide variety of software to perform MCMC for Bayesian inference. Perhaps
the most common is BUGS, which is an acronym for Bayesian Using Gibbs Sampling (Lunn,
Spiegelhalter, Thomas, and Best, 2009). BUGS has several versions. A popular variant is
JAGS, which is an acronym for Just Another Gibbs Sampler (Plummer, 2003). The only
other comparisons made here are with some R packages (AMCMC, mcmc, MCMCpack, and UMACS)
and SAS. Many other R packages use MCMC, but are not intended as general-purpose
MCMC software. Hopefully I have not overlooked any general-purpose MCMC packages in
R.

WinBUGS has been the most common version of BUGS, though it is no longer developed.
BUGS is an intelligent MCMC engine that is capable of numerous MCMC algorithms, but
prefers Gibbs sampling. According to its user manual (Spiegelhalter et al., 2003), WinBUGS
1.4 uses Gibbs sampling with full conditionals that are continuous, conjugate, and standard.
For full conditionals that are log-concave and non-standard, derivative-free Adaptive Rejec-
tion Sampling (ARS) is used. Slice sampling is selected for non-log-concave densities on a
restricted range, and tunes itself adaptively for 500 iterations. Seemingly as a last resort, an
adaptive MCMC algorithm is used for non-conjugate, continuous, full conditionals with an
unrestricted range. The standard deviation of the Gaussian proposal distribution is tuned
over the first 4,000 iterations to obtain an acceptance rate between 20% and 40%. Sam-
ples from the tuning phases of both Slice sampling and adaptive MCMC are ignored in the
calculation of all summary statistics, although they appear in trace-plots.

The current version of BUGS, OpenBUGS, allows the user to specify an MCMC algorithm
from a long list for each parameter (Lunn et al., 2009). This is a step forward, overcoming
what is perceived here as an over-reliance on Gibbs sampling. However, if the user does not
customize the selection of the MCMC sampler, then Gibbs sampling will be selected for full
conditionals that are continuous, conjugate, and standard, just as with WinBUGS.

Based on years of almost daily experience with WinBUGS and JAGS, which are excellent
software packages for Bayesian inference, Gibbs sampling is selected too often in these au-
tomatic, MCMC engines. A suggestion for BUGS and JAGS would be to attempt Gibbs
sampling and abandon it if correlations are too high. An advantage of Gibbs sampling is
that the proposals are accepted with probability 1, so convergence may be faster, whereas
the RWM algorithm backtracks due to its random-walk behavior. Unfortunately, Gibbs
sampling is not as generalizable, because it can function only when certain conjugate dis-
tributional forms are known a priori. Moreover, Gibbs sampling was avoided for Laplace’s
Demon because it doesn’t perform well with correlated variables or parameters, which usu-
ally exist, and I have been bitten by that bug many times.

The BUGS and JAGS families of MCMC software are excellent. BUGS is capable of several
things that Laplace’s Demon is not. For example, BUGS automatically handles missing
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values in the dependent variable, where Laplace’s Demon requires specifications for each
one in the Model function. BUGS also allows the user to specify the model graphically as
a directed acyclic graph (DAG) in Doodle BUGS. Lastly, many textbooks in several fields
have been written that are full of WinBUGS examples.

The four MCMC algorithms in Laplace’s Demon are generalizable, and generally robust
to correlation between variables or parameters. The disadvantages are that convergence is
slower and RWM may get stuck in regions of low probability. The advantages, however, are
faster convergence when correlations are high, and more confidence in the results.

At the time this article was written, the AMCMC package in R is unavailable on CRAN, but
may be downloaded from the author’s website5. This download is best suited for a Linux,
Mac, or UNIX operating system, because it requires the gcc C compiler, which is unavailable
in Windows. It performs adaptive Metropolis-within-Gibbs (Roberts and Rosenthal, 2007),
and uses C language for significantly faster sampling. Metropolis-within-Gibbs is not as
generalizable as adaptive MCMC. Otherwise, if the user wishes to see the code of the AMCMC

sampler, then the user must also be familiar with C language.

Also in R, the mcmc package offers RWM with multivariate Gaussian proposals and allows
batching, as well as a simulated tempering algorithm, but it does not have any adaptive
algorithms.

The MCMCpack package in R takes a canned-function approach to RWM, which is convenient if
the user needs the specific form provided, but is otherwise not generalizable. General-purpose
RWM is included, but adaptive algorithms are not. It also offers the option of Laplace
Approximation to optimize initial values, though the algorithm is evaluated in optim, which
has not performed well in my testing of Laplace Approximations.

At the time this article was written, Gelman’s UMACS package has been removed from CRAN.
It became outdated due to lack of interest, and did not include an adaptive MCMC algorithm,
as far as I know.

In SAS 9.2, an experimental procedure called PROC MCMC has been introduced. It is
undeniably a rip-off of BUGS (including its syntax), though OpenBUGS is much more pow-
erful, tested, and generalizable. Since SAS is proprietary, the user cannot see or manipulate
the source code, and should expect much more from it than OpenBUGS or any open-source
software, given the absurd price.

14 Large Data Sets and Speed

An advantage of Laplace’s Demon compared to other MCMC software is that the model is
specified in a way that takes advantage of R’s vectorization. BUGS and JAGS, for example,
require models to be specified so that each record of data is processed one by one inside a
‘for loop’, which significantly slows updating with larger data sets. In contrast, Laplace’s
Demon avoids ‘for loops’ wherever possible. For example, a data set of 100,000 rows and 16
columns (the dependent variable, a column vector of 1’s for the intercept, and 14 predictors)
was updated 1,000 times with Adaptive=2, DR=0, and Periodicity=10 in 1.55 minutes by

5AMCMC is available from J. S. Rosenthal’s website at http://www.probability.ca/amcmc/
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Laplace’s Demon, according to a simple, linear regression6. It was nowhere near convergence,
but try to run 100,000 rows of comparable data for 1,000 iterations in BUGS or JAGS, and
tell me how long it took!

However, with small data sets, other MCMC software (AMCMC is a good example) can be faster
than Laplace’s Demon, if it is programmed in a faster language such as Component Pascal, C,
or C++. I have not studied all MCMC algorithms in R, but most are probably programmed
in C and called from R. And Laplace’s Demon could be much faster if programmed in C as
well.

When the non-adaptive algorithm updates in Laplace’s Demon, the expected speed of an
iteration should not differ depending on how many iterations it has previously updated.
However, the adaptive algorithm will slow as iterations are updated, because each time it
adapts, it is adapting to the covariance of the entire history of the chains. As the history
increases, the calculations take longer to complete, and the expected speed of an adaptive
iteration decreases, compared to earlier adaptive iterations. If time is of the essence and the
algorithm needs to be adaptive, then it may be best to make multiple, shorter updates in
place of one, longer update.

15 Future Goals

Laplace’s Demon is useful software for Bayesian inference. Nonetheless, there are several
future goals to improve it. There are a bewildering number of methods for numerical ap-
proximation. For example, not only are there a large number of MCMC algorithms, some
of which are newer and take additional things into account, there are other methods of ap-
proximation, including Laplace Approximation (also called Laplace’s Method), Expectation
Maximization (EM) and Variational Bayes, Approximate Bayesian Computation (ABC),
and other methods such as iterative quadrature.

Currently, Laplace’s Demon offers custom variations of four MCMC algorithms. It is likely
that future versions of Laplace’s Demon will include other MCMC algorithms for the user
to select. Additionally, a deterministic algorithm such as Laplace Approximation may be-
come optional to initially approximate the solution prior to using MCMC, thus speeding
convergence.

To this end, I have not yet found a generalizable Laplace Approximation algorithm. Laplace
Approximation is available as the laplace function in the LearnBayes package, and also
as an option in the MCMCpack package for some MCMC models. Both functions are solved
with the optim function of base R, and both exhibit error that increases unacceptably with
the number of parameters, usually beyond 6. Using the BB package for optimization, I have
been able to accurately estimate approximately 60 parameters in a simple model.

It is possible that the algorithms may also be included in C language, so the user can select
whichever language is preferred, probably C for speed. Last but not least, I’m sure my R

code could be more efficient.

Contributions toward the development of Laplace’s Demon are welcome. Please send an
email to statisticat@gmail.com with constructive criticism, reports of software bugs, or

6These updates were performed on a 2010 System76 Pangolin Performance laptop with 64-bit Debian
Linux and 8GB RAM.

32



offers to contribute to or promote Laplace’s Demon.
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