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Abstract

This package greedily finds experimental designs with greatly improved balance while
preserving randomness near complet randomization. You may use a balance metric of
your choice. Theory and inference of this procedure is discussed in Krieger, Azriel, and
Kapelner (2016).
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1. Introduction

Assume a randomized controlled two-arm experiment with n subjects and treatment (T)
and control (C) denoted by the n-binary vector 1T where entries of 1 in location i indicates
subject i was administered T and entries of 0 indicates C. Define the number of treatments
nT :=

∑n
i=1

1T,i and the number of controls nC := n − nT . For each subject, p covariates
X := [x1, . . . ,xp] are measured. Define X̄T as the p-vector of sample averages for each of
the covariates in subjects where 1T,i = 1 (the treatments) and X̄C as the p-vector of sample
averages for each of the covariates in subjects where 1T = 0 (the controls). The investigator
will eventually measure one response for each subject collected in the n-vector y, but this is
not our current interest. We assume that each of the p covariates is standardized.

There are many functions of 1T and X that will yield higher efficiency when testing null
hypotheses about effects of the treatment. Below are a couple:1

1. (ABS)
∑p

j=1

∣

∣X̄T,j − X̄C,j

∣

∣ /sj which is a measure of balance between the covariate
distributions. Covariate distribution permitting, zero is the optimal value.

2. (MAHAL) nTnC

n

(

X̄T − X̄C

)⊤
S−1

X

(

X̄T − X̄C

)

is a Mahalanobis-like distance metric.
Covariate distribution permitting, zero is the optimal value.

We will fix nT = nC and then minimize one of the two objective functions above. Other
balcne objective functions can be programmed in by extending the ObjectiveFunction class
in Java.

1 There are also metrics which measure the similarity between the two joint densities fT and fC which we

may want to explore later.
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2. Greedy Switches Algorithm

We begin with an n-subject dataset X. Each subject can be assigned to treatment or control
but nT = nC . Thus, the space of possible 1T ’s has

(

n
n/2

)

elements. We outline the algorithm
now below:

Algorithm 1 Greedy search for design vector local maximum

1: Let 1∗T be a random draw from the space of
(

n
n/2

)

balanced vectors.

2: Create a list of the indices of size n/2 corresponding to where 1∗T = 1 (call it IT ). Create
a list of the indices of size n/2 corresponding to where 1T = 0 (call it IC).

3: For every pair in IT × IC (i.e. n
2
×

n
2
= n2

4
total pairs), switch the 0 and 1 within 1∗T and

record the resulting value of the objective function. Find the switch which yielded the
minimum value of the objective function. Make that switch inside 1T .

4: Repeat the previous step until the minimum value of the objective function does not
improve.

5: Repeat the entire procedure (steps 1–4) d times where d is constrained only by your
computing resources and time.

3. The package

We first load the package which relies on rJava. Thus, the first line should give parameters for
the Java Virtual Machine initialization. In our example, 1GB of memory is probably enough:

> options(java.parameters = "-Xmx1000m")

> library(GreedyExperimentalDesign)

To construct aGreedyExperimentalDesign object, use the function initGreedyExperimental
DesignObject. This function takes your data as parameter X which can be a matrix or
dataframe. You then specify the objective function which is either ABS or MAHAL.

The next thing to specify is max_designs which is the d value in Algorithm 1 line 5 which
controls how many searches are done in the treatment vector space. As the speed of the
algorithm depends on n, p and the objective function, it is hard to gauge how long it will take
to finish all searches. Luckily, it doesn’t matter, since the searching is done in the background
and you can stop it whenever you wish. Thus, we recommend making this parameter very
large. As we will see in the examples, there is benefit to doing an exhaustive search on the
1T space (well, as exhaustive as you can).

The last parameter is the number of cores. This should be all your cores if you are using a
server. On a workstation which you are using, all your cores less one if you still want your
workstation to be usable. The algorithm is perfectly parallelized; thus doubling the cores will
double your rate of vectors found.

To begin the search use the startGreedySearch function.

> ged = initGreedyExperimentalDesignObject(X,

max_designs = 1000, num_cores = 3, objective = "abs_sum_diff")

> startGreedySearch(ged)
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For this example, X had 200 subjects with 40 measurements each and each measurement was
generated as independent realizations of a standard normal.

Once the search has begun, it runs in the background on the number of cores specified. At
any time you can check the progress via printing the object:

> ged

The search has found 144 vectors thus far (14%).

When it is done, it will display:

> ged

The search has completed. 1000 vectors have been found.

You can plot the histogram of the objective values for each of the d vectors found as well as
the minimum objective value as a function of the number of searches via:

> plot(ged)

which produces

After 1000 searches

objective value
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An important application of this package is the ability to use these treatment vectors in
experimentation. To run a hypothesis test, a permutation test can be used. Thus, you will
need many vectors, let’s say c vectors. You can see the cth order statistic as a function of the
search in realtime. For instance, if you want 200 vectors,

> plot_obj_val_order_statistic(ged, order_stat = 200)

which produces
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as we can see, there is benefit to running more than d = 1000 here as we can still find a set
of 200 treatment vectors with better balance.

In fact, even at 100000 searches, there is still room for improvement.
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If it any time you wish to stop the search, you can use

> stopGreedySearch(ged)

Results (including vectors) can be retrieved via the resultsGreedySearch method. This
method has a parameter max_vectors which will return this numbed of vectors with the
smallest objective values. We do not recommend returning all d vectors as this is an expensive
operation. The result object is a list. We demonstrate how to pull out the best design

> res = resultsGreedySearch(ged, max_vectors = 100)

> best_design = res$indicTs[1, ]
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Replication

The stable version of GreedyExperimentalDesign will be soon on CRAN and the development
version is located at https://github.com/kapelner/GreedyExperimentalDesign. You can
install the package by cloning the repository, then running ant to compile the Java code then
running R CMD INSTALL GreedyExperimentalDesign. The package code is licensed under
GPL3 and LGPL. Results, tables, and figures found in this paper can be replicated via the
scripts located in the git repository in the folder GreedyExperimentalDesign/vignettes.
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