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1 Introduction

This document is intended to give a short overview of the methods found in the GPLTR
package. The acronym GPLTR is designed for — Generalized Partially Linear Tree-based
Regression model —.

The GPLTR programs build classification or regression models of a very general structure
using a three stage procedure with several additional tools; the resulting model is an hybrid
model combining a generalized linear model with an additional tree part on the same scale.
The model was first proposed by Chen et al.[2] for genetic epidemiology study studies in
order to assess complex joint gene-gene and gene-environment effects taking into account
confounding variables. In practice, the GPLTR models represent a new class of semi-
parametric regression models that integrates the advantages of generalized linear regression
and tree-structure models. To our best knowledge, there is currently no implemented
package dealing with this kind of model. The available classical tree-based methods do not
provide a way for controlling confounding factors outside the tree part (the final tree is



generally a mixture of confounders and explanatory variables lacking of clear interpretation
and resulting in a distorted joint effect).

2 GPLTR model

Denote Y the outcome of interest, X a set of confounding variables, and G the explanatory
variables. The model fitted inside the GPLTR package is specified by:

g (EB(Y[X,G))=X'0+prF(T(G)), (1)

where ¢(-) is a known link function (generalized linear model), F (T (Z)) is a vector of
indicator variables representing the leaves of the tree T' (G).

The variables considered in the linear part (confounding variables or variables we wish
to control) of the model 1 have a direct impact on the structure of the tree, beginning by
the split criterion and ending by the pruning procedure.

3 Fitting methods

The method we used in this package to fit the model 1 can be summarized into three major
steps:

Stepl Fit the linear part and build a maximal tree within an iterative procedure by playing
on several offsets terms. The nodes of the tree are splitted by maximizing a deviance
criterion, while an intercept coefficient is fitted inside the node using the corresponding
glm with the linear part considered as offset.

Step2 In order to prune back the maximal tree obtained previously, we use a forward
procedure to build a sequence of nested subtrees.

Step3 The optimal tree is selected, using either a BIC criterion, a AIC criterion, a K-fold
Cross-validation procedure on the underlying GPLTR models corresponding to the
nested trees sequence. The original parametric bootstrap test procedure proposed by
Chen et al. is also available.

We further propose a procedure to test the joint effect of the selected tree while adjusting
for confounders. The users are encouraged to read the recent paper of Mbogning et al. [5]
for a more thorough explanation about the model and the methods.



4 Illustration via several examples

In the following, we will present the results obtained on the publicly available "burn” Data
Set (Times to Infection for Burn Patients from the book of Klein and Moeschberger [4]).
This dataset comes from a study (Ichida et al.[3]) that evaluates a protocol change in
disinfectant practices for a cohort of 154 patients. A complete description of the data is
also available inside the GPLTRpackage documentation.

In this example, the dependent variable is the administration of prophylactic antibiotic
treatment (D2: yes/no), the confounding variable is the gender (Z2: male/female) and
the potential explanatory variables are: ethnicity, severity of the burn as measured by
percentage of total surface area of body burned, burn site (head, buttocks, trunk, upper
legs, lower legs, respiratory tract), and type of burn (chemical, scald, electric, flame). In
this analysis, we included gender as a confounding factor since this factor has already been
described as related to infections among burn patients (Wisplinghoff et al. [7]). Such
adjustment for confounders cannot be performed within the classical CART framework.

Results obtained with the classical CART algorithm

First of all, we have fitted a classical tree model on the dependent variable D2, using the
CART algorithm [1] via the 'rpart’ routines [6] of the R software:

A\

data(burn)

cfit <- rpart(D2 ~ Z1 + Z2 + Z3 + Z4 + Z5 + Z6 + Z7 + Z8 + Z9
+ Z10 + Z11, data = burn, method = "class")

par(mar = rep(0.1, 4))

plot(cfit, uniform = TRUE)

> text(cfit, xpd = TRUE, use.n = TRUE)
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Figure (1) represents the tree obtained using the classical CART algorithm.
Results obtained with our proposed method within the GPLTR package

A logistic partially linear tree-based regression model is fitted by using our proposed
method:

> #setting the parameters

> args.rpart <- list(minbucket = 10, maxdepth = 4, cp = 0)

> family <- "binomial"

> X.names = "Z2"

> Y.name = "D2"

> G.names = c('Z1','Z3','z4','Z5','26"','Z7"','Z28"','Z29','Z10"','Z11")
> # Build the tree with an adjustment on gender (Z2)
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Tree obtained on the burn dataset with rpart.



> fit_pltr <- pltr.glm(burn, Y.name, X.names, G.names, args.rpart =
args.rpart, family = family,iterMax =8, iterMin = 6,
verbose = TRUE)

Iteration process...

Iteration 1 in PLTR; Diff_norm_gamma = 0.3450989
Iteration 2 in PLTR; Diff_norm_gamma = 0.1035102
Iteration 3 in PLTR; Diff_norm_gamma = 0.1555209
Iteration 4 in PLTR; Diff_norm_gamma = 0.04005871
Iteration 5 in PLTR; Diff_norm_gamma = 0.01202298
Iteration 6 in PLTR; Diff_norm_gamma = 0.003612611
Iteration 7 in PLTR; Diff_norm_gamma = 0.001085865
Iteration 8 in PLTR; Diff_norm_gamma = 0.0003264183

End of iteration process
Number of iterations: 9
> tree_select <- best.tree.BIC.AIC(xtree = fit_pltr$tree,burn,Y.name,
X.names, G.names, family = family, verbose = FALSE)
> summary(tree_select$tree$BIC)
Call:
rpart(formula = as.formula(paste(Y.name, " ~ ", paste(G.names,
collapse = " + "), paste("+ offset(offsetX)"))), data = eval(parse(text = paste("daf
product, "hat_gamma)"))), method = method, control = args.rpart)
n= 154

CP nsplit rel error

1 0.0604978419 0 1.0000000
2 0.0408578707 1 0.9395022
3 0.0318009580 2 0.8986443
4 0.0261741219 3 0.8668433
5 0.0147618258 5 0.8144951
6 0.0073443205 6 0.7997333
7 0.0025318226 7 0.7923889
8 0.0002897679 8 0.7898571
9 0.0000000000 9 0.7895673

Variable importance
Z24 71 210 76 Z5 Z11 7Z7 78 19
32 26 16 9 5 5 4 2 1
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Z4 < 47.5 to the left, agree=0.711, adj=0.257, (0 split)
Z5 < 0.5 to the left, agree=0.633, adj=0.057, (0 split)

Node number 4: 25 observations
events = 2, coef = -2.6717880, deviance = 14.89458

Node number 5: 39 observations
events = 14, coef = -0.8618721, deviance = 49.87204

Node number 6: 55 observations, complexity param=0.02617412
events = 22, coef = -0.6175948, deviance = 68.93242

left son=12 (37 obs) right son=13 (18 obs)

Primary splits:

Z6 < 0.5 to the left, improve=4.886466, (0 missing)
Z4 < 39 to the left, improve=4.504188, (0 missing)
Z8 < 0.5 to the left, improve=2.328673, (0 missing)
Z1 < 0.5 to the left, improve=2.056546, (0 missing)

Z5 < 0.5 to the right, improve=1.881947, (0 missing)
Surrogate splits:

Z4 < 36.5 to the left, agree=0.782, adj=0.333, (0 split)

Z11 < 2.5 to the right, agree=0.727, adj=0.167, (0 split)
Z7 < 0.5 to the right, agree=0.691, adj=0.056, (0 split)
Z9 < 0.5 to the left, agree=0.691, adj=0.056, (0 split)

Node number 7: 35 observations
events = 25, coef = 0.6995323, deviance = 42.00763

Node number 12: 37 observations, complexity param=0.02617412
events = 11, coef = -1.0794600, deviance = 42.43535
left son=24 (20 obs) right son=25 (17 obs)
Primary splits:
Z1 < 0.5 to the left, improve=5.7243740, (0 missing)
Z4 < 21.5 to the right, improve=2.7335920, (0O missing)
Z8 < 0.5 to the left, improve=0.3237422, (0 missing)
Z5 < 0.5 to the right, improve=0.1542775, (0O missing)
Surrogate splits:
Z4 < 23.5 to the right, agree=0.649, adj=0.235, (0 split)
Z9 < 0.5 to the left, agree=0.568, adj=0.059, (0 split)

Node number 13: 18 observations



events =

11, coef =

Node number 24: 20 observations

events = 3, coef =

Node number 25:
events = 8,

coef =

17 observations

> summary(tree_select$fit_glm$BIC)

Call:
glm(formula =

xformula, family = family, data

Deviance Residuals:

0.2519882, deviance

-2.0596390, deviance

-0.2338515, deviance

21.61060

14.90882

21.80216

Min 1Q Median 3Q Max
-1.9830 -0.8274 -0.3593 0.9052  2.3547
Coefficients:

(Intercept)

z2

as.integer(Z4 < c(15.5) & Z1 < c(0.5))
as.integer(Z4 < c(15.5) & Z1 >= c(0.5))
as.integer(Z4 >= c(15.5) & Z10 < c(0.5) & Z6
as.integer(Z4 >= c(15.5) & Z10 < c(0.5) & Z6
as.integer(Z4 >= c(15.5) & Z10 < c(0.5) & Z6
(Intercept)

Z2

as.integer(Z4 < c(15.5) & Z1 < ¢(0.5))
as.integer(Z4 < c(15.5) & Z1 >= c(0.5))
as.integer(Z4 >= c(15.5) & Z10 < c(0.5) & Z6
as.integer(Z4 >= c(15.5) & Z10 < c(0.5) & Z6
as.integer(Z4 >= c(15.5) & Z10 < c(0.5) & Z6
(Intercept)

zZ2

as.integer(Z4 < c(15.5) & Z1 < c(0.5))
as.integer(Z4 < c(15.5) & Z1 >= c(0.5))
as.integer(Z4 >= c(15.5) & Z10 < c(0.5) & Z6
as.integer(Z4 >= c(15.5) & Z10 < c(0.5) & Z6

= xdata)

< c(0.5) &
< c(0.5) &
>= ¢(0.5))

< c(0.5) &
< c(0.5) &
>= ¢(0.5))

< c(0.5) &
< c(0.5) &

Z1
Z1

Z1
Z1

Z1
Z1

< ¢(0.5))
>= ¢(0.5))

< ¢(0.5))
>= ¢(0.5))

< ¢(0.5))
>= ¢(0.5))

Estimate

.6805
.1349
.3883
.5766
.7869
.9263
L4475
. Error

.3882
.4686
.8405
.5175
.7534
.6241
0.6238

O O O O O o

z value

.753
.422
.031
.047
.699
.484



as.integer(Z4 >= c(15.5) & Z10 < c(0.5) & Z6 >= c(0.5))

(Intercept)

z2

as.integer(Z4 < c(15.5) & Z1 < c(0.5))

as.integer(Z4 < c(15.5) & Z1 >= c(0.5))

as.integer(Z4 >= c(15.5) & Z10 < c(0.5) & Z6 < c(0.5) & Z1 < c(0.5))
as.integer(Z4 >= c(15.5) & Z10 < c(0.5) & Z6 < c(0.5) & Z1 >= c(0.5))
as.integer(Z4 >= c(15.5) & Z10 < c(0.5) & Z6 >= c(0.5))

153

&

(Intercept)

Z2

as.integer(Z4 < c(15.5) & Z1 < c(0.5))

as.integer(Z4 < c(15.5) & Z1 >= c(0.5))

as.integer(Z4 >= c(15.5) & Z10 < c(0.5) & Z6 < c(0.5) & Z1 < c(0.5))
as.integer(Z4 >= c(15.5) & Z10 < c(0.5) & Z6 < c(0.5) & Z1 >= c(0.5))
as.integer(Z4 >= c(15.5) & Z10 < c(0.5) & Z6 >= c(0.5))

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 208.37 on 153 degrees of freedom
Residual deviance: 165.03 on 147 degrees of freedom
AIC: 179.03

Number of Fisher Scoring iterations: 5

> par(mfrow = c(1,2), mar = rep(0.1, 4))

> plot(fit_pltr$tree, uniform = TRUE, margin = 0.05)

> plot(tree_select$tree$BIC, uniform = TRUE, margin = 0.05)
> text(tree_select$tree$BIC, xpd = TRUE)
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e The underlying method behind the ’binomial’ family above is a new one, different
from those implemented inside the rpart package. The splitting criterion is based
on a logistic deviance criterion considering the linear part as offset (See Mbogning et

al.[5)).

e The child nodes of node = are always 2z and 2x + 1, to help in navigating the tree

summary (compare the summary to figure 2).
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Figure 2: The figure on the left is the maximal tree obtained with pltr.glm; the figure on
the right is a pruned tree via a BIC criterion
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e They are many Items in the tree summary list:

— the complexity table

— the variable importance

— the node number

— the number of cases within the node

— the number of events (number of cases with attribute 1) inside the node

— the logistic intercept coeflicient fitted inside the node, which represents the sum-
mary statistic of the node. This coefficient represents the predicted value of the
node. that’s the main difference with a conventional tree where the predicted
value is the modal class of the node.

— the logistic deviance of the previous model inside the node which is used as the
splitting criterion

e * indicates that the node is terminal.

e the first split is on the Percentage of total surface area burned (Z;). 64 individuals
with Z4 < 15.5 go to the left while the remaining 90 go to the right. The split with
the maximum number of events is always on the right.

e The improvement listed is the change in deviance for the split, ie., D(parent) —
(D(leftson) + D(rightson)), where D is the deviance operator. This is similar to a
likelihood ratio test statistic.

e the other nodes can be described similarly.

For all the two models (tree with rpart (Fig 1) and the tree with our proposed procedure
(Fig 2)), the 777rst split is due to the percentage of total surface area burned ((< 16.5%, >
16.5%) for rpart and (< 15.5%, > 15.5%) for the proposed method). The subsequent splits
are di??7erent between patients having a high or low percentage of total surface area burned.
The classical rpart model shows only one split whereas our proposed PLTR model shows
two splits. With the exception of CART model where no split occurs, the subsequent split
for the group of patients with a low percentage of area burned is due to the initial treatment
(routine bathing/body cleansing). For high percentage of surface area burned, the split for
the two models is due to the respiratory tract damage. Our proposed procedure identi???es
other splits due to the treatment and the buttock burns. In particular, we observed that
the group of patients with a high percentage of surface area of body burned, without tract
respiratory damage, buttock injury and without routine bathing shows a lower proportion of
prophylactic antibiotics administration. This group is not detected by the original PLTR
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method. It is worth noting that the confounding factor Z2 is significant with a higher
proportion of prophylactic antibiotics administration among women.

The particularity of the PLTR model is that in addition with the tree part, the final
model is a classical logistic model with new risk factors emerging from the tree part. The
summary of the final logistic model is presented within the R code above. We can see for
example that the new risk factor constitute by individuals sharing the attributes Z4 < 15.5
and Z1 < 0.5 is higly significant. Similar interpretation can be made for other factors.

5 Compute the generalization error of the procedure

We can further compute the generalization error of the procedure. This can be computed

via the function best.tree.CV which can also provide the best tree based on a K-fold
cross-validation procedure.

> tree_selected <- best.tree.CV(fit_pltr$tree, burn, Y.name, X.names,
G.names, family = family, args.rpart = args.rpart,
epsi = 0.001, iterMax = 15, iterMin = 8, ncv = 10,
verbose = FALSE)

Max tree size 10 reached

Max tree size 10 reached

> tree_selected$CV_ERROR

[[11]
[1] 0.3221053

[[21]
[1] 0.3701754 0.3782456 0.3435088 0.3501754 0.3621053
[6] 0.3354386 0.3221053 0.3287719

> Bic_size <- sum(tree_select$tree$BIC$frame$var == '<leaf>')
## Bic_size <- tree_select$best_index[[1]]

CV_ERROR_BIC <- tree_selected$CV_ERROR[[2]] [Bic_size]
CV_ERROR_BIC

[1] 0.3354386

>
>
>
>
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6 Test the joint effect of the selected tree while adjusting for
confounders.

We can also test the joint effect of the selected tree after adjusting for the confounding
variable

> args.parallel = list(numWorkers = 1, type = "PSOCK")

> index = Bic_size

> # p_value <- p.val.tree(xtree = fit_pltr$tree, data_pltr, Y.name, X.names,
> # G.names, B = 1000, args.rpart = args.rpart, epsi = le-3,

> # iterMax = 15, iterMin = 8, family = family, LB = FALSE,

> # args.parallel = args.parallel, index = index, verbose =

> # FALSE)

>

# p_value$P.value
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