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GPLTR-package Fit a generalized partially linear tree-based regression model

Description

Package for generalize partially linear tree-based regression model, combining a generalized linear
model with an additional tree part on the same scale.

Details

Package: GPLTR
Type: Package
Version: 0.85
Date: 2014-04-22
License: GPL(>=2.0)

Author(s)

Cyprien Mbogning and Wilson Toussile

Maintainer: Cyprien Mbogning <cyprien.mbogning@gmail.com>

References

Mbogning, C., Perdry, H., Toussile, W., Broet, P.: A novel tree-based procedure for deciphering the
genomic spectrum of clinical disease entities. Journal of Clinical Bioinformatics 4:6, (2014)

Terry M. Therneau, Elizabeth J. Atkinson (2013) An Introduction to Recursive Partitioning Using
the RPART Routines. Mayo Foundation.

Chen, J., Yu, K., Hsing, A., Therneau, T.M.: A partially linear tree-based regression model for
assessing complex joint gene-gene and gene-environment effects. Genetic Epidemiology 31, 238-
251 (2007)

Examples

##load the data set

#data(data_pltr)
#args.rpart <- list(minbucket = 40, maxdepth = 10, cp = 0)
#family <- "binomial"
#Y.name <- "Y"
#X.names <- "G1"
#G.names <- paste("G", 2:15, sep="")

# build a maximal tree

#fit_pltr <- pltr.glm(data_pltr, Y.name, X.names, G.names, args.rpart = args.rpart,
# family = family,iterMax = 4, iterMin = 3)

#plot(fit_pltr$tree, main = 'MAXIMAL TREE')
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#text(fit_pltr$tree, minlength = 0L, xpd = TRUE)

## prunned back the maximal tree by BIC or AIC criterion

#tree_select <- best.tree.BIC.AIC(xtree = fit_pltr$tree,data_pltr,Y.name,
# X.names, G.names, family = family)

#plot(tree_select$tree$BIC, main = 'BIC TREE')
#text(tree_select$tree$BIC, minlength = 0L,xpd = TRUE)

## prunned back the maximal tree by a cross-validation procedure

#tree_selected <- best.tree.CV(fit_pltr$tree, data_pltr, Y.name, X.names, G.names,
# family = family, args.rpart = args.rpart, epsi = 0.001, iterMax = 15,
# iterMin = 8, ncv = 10)

#plot(tree_selected$tree, main = 'CV TREE')
#text(tree_selected$tree, minlength = 0L, xpd = TRUE)

## Compute the p-value of the selected tree by BIC

#args.parallel = list(numWorkers = 1, type = "PSOCK")
#index = tree_select$best_index[[1]]
#p_value <- p.val.tree(xtree = fit_pltr$tree, data_pltr, Y.name, X.names, G.names,
# B = 10, args.rpart = args.rpart, epsi = 1e-3,
# iterMax = 15, iterMin = 8, family = family, LB = FALSE,
# args.parallel = args.parallel, index = index)

## select an test the selected tree by a pametric bootstrap procedure

#best_bootstrap <- best.tree.bootstrap(fit_pltr$tree, data_pltr, Y.name, X.names,
# G.names, B = 10, BB = 10, args.rpart = args.rpart, epsi = 0.001,
# iterMax = 15, iterMin = 8, family = family, LEVEL = 0.05,LB = FALSE,
# args.parallel = args.parallel)

## bagging a set of PLTR predictors

#bagging_pred <- bagging.pltr(data_pltr, Y.name, X.names, G.names, family,
# args.rpart,epsi = 0.001, iterMax = 15, iterMin = 8, LB = FALSE,
# args.parallel = args.parallel, Bag = 20, Pred_Data = data.frame())

##%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
## Example on a public dataset: the burn data
##%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
## The burn data are also displayed in the KMsurv package
##%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
data(burn)

## Build the rpart tree with all the variables

cfit = rpart(D2 ~ Z1 + Z2 + Z3 + Z4 + Z5 + Z6 + Z7 + Z8 + Z9 + Z10 + Z11,
data = burn, method = "class")

plot(cfit, main = 'rpart tree')
text(cfit, xpd = TRUE)
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## fit the PLTR model after adjusting on gender (Z2) using the proposed method

args.rpart <- list(minbucket = 10, maxdepth = 4, cp = 0)
family <- "binomial"
X.names = "Z2"
Y.name = "D2"
G.names = c('Z1','Z3','Z4','Z5','Z6','Z7','Z8','Z9','Z10','Z11')

fit_pltr <- pltr.glm(burn, Y.name, X.names, G.names, args.rpart = args.rpart,
family = family,iterMax = 4, iterMin = 3, verbose = FALSE)

tree_select <- best.tree.BIC.AIC(xtree = fit_pltr$tree, burn ,Y.name,
X.names, G.names, family = family)

plot(tree_select$tree$BIC, main = 'new PLTR tree')
text(tree_select$tree$BIC, xpd = TRUE)
summary(tree_select$fit_glm$BIC)

## fit the PLTR model after adjusting on gender (Z2) using the original method

## uncomment the following code and set numWorkers = 1 on a windows plateform

# args.parallel = list(numWorkers = 10, type = "PSOCK")
#best_bootstrap <- best.tree.bootstrap(fit_pltr$tree, burn, Y.name, X.names,
# G.names, B = 2000, BB = 2000, args.rpart = args.rpart, epsi = 0.008,
# iterMax = 6,iterMin = 5, family = family, LEVEL = 0.05,LB = FALSE,
# args.parallel = args.parallel, verbose = FALSE)
# plot(best_bootstrap$selected_model$tree, main = 'original method')
# text(best_bootstrap$selected_model$tree, xpd = TRUE)

bagging.pltr bagging pltr models

Description

bagging procedure to agregate several PLTR models for accurate prediction

Usage

bagging.pltr(xdata, Y.name, X.names, G.names, family = "binomial",
args.rpart,epsi = 0.001, iterMax = 15, iterMin = 8, LB = FALSE,
args.parallel = list(numWorkers = 10, type = "PSOCK"),
Bag = 20, Pred_Data = data.frame(), verbose = TRUE)

Arguments

xdata the learning data frame

Y.name the name of the binary dependent variable

X.names the names of independent variables to consider in the linear part of the glm and
as offset in the tree part

G.names the names of independent variables to consider in the tree part of the hybrid glm.
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family the glm family considered depending on the type of the dependent variable (only
the binomial family works in this function for the moment) .

args.rpart a list of options that control details of the rpart algorithm. minbucket: the
minimum number of observations in any terminal <leaf> node; cp: complexity
parameter (Any split that does not decrease the overall lack of fit by a factor of
cp is not attempted); maxdepth: the maximum depth of any node of the final
tree, with the root node counted as depth 0. ... See rpart.control for further
details

epsi a treshold value to check the convergence of the algorithm

iterMax the maximal number of iteration to consider

iterMin the minimum number of iteration to consider

LB a binary indicator with values TRUE or FALSE indicating weither the loading
is balanced or not in the parallel computing. It is nevertheless useless on a
windows platform. See parallel

args.parallel a list of two elements containing the number of workers and the type of paral-
lelization to achieve see parallel.

Bag The number of Bagging samples to consider

Pred_Data An optional data frame to validate the bagging procedure (the test dataset)

verbose Logical; TRUE for printing progress during the computation (helpful for debug-
ging)

Value

A list with six elements

IND_OOB A list of length Bag containing the Out Of Bag (OOB) individual for each PLTR
model

OOB_ERRORS A vector of length Bag containing OOB error of each PLTR model

OOB_ERROR The OOB error of the Bagging procedure

Tree_BAG A list of length Bag containing the bagging trees

Glm_BAG A list of length Bag containing the bagging pltr model; could be helpfull for
prediction of new features.

TEST A value of "000" if Pred_Data is not available. A list of three elements oth-
erwise: PRED_ERROR: the estimated error of the Bagging procedure on the test
sample; PRED_IND: a matrix with the prediction of the testing data individuals
with each bagging PLTR model (column by column); FINAL_PRED_IND: A vec-
tor with the final prediction of each individual of the testing data by the bagging
procedure (the modal prediction).

Timediff The execution time of the bagging procedure

Author(s)

Cyprien Mbogning
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Examples

##load the data set
#data(data_pltr)
#args.rpart <- list(minbucket = 40, maxdepth = 10, cp = 0)
#family <- "binomial"
#Y.name <- "Y"
#X.names <- "G1"
#G.names <- paste("G", 2:15, sep="")

## bagging a set of PLTR predictors
#args.parallel = list(numWorkers = 1, type = "PSOCK")

#bagging_pred <- bagging.pltr(data_pltr, Y.name, X.names, G.names, family,
# args.rpart,epsi = 0.001, iterMax = 15, iterMin = 8, LB = FALSE,
# args.parallel = args.parallel, Bag = 20, Pred_Data = data.frame())

best.tree.BIC.AIC Prunning the Maximal tree

Description

this function is set to prune back the maximal tree by using the BIC or the AIC criterion.

Usage

best.tree.BIC.AIC(xtree, xdata, Y.name, X.names,
G.names, family = "binomial", verbose = TRUE)

Arguments

xtree a tree to prune

xdata the dataset used to build the tree

Y.name the name of the dependent variable

X.names the names of independent variables to consider in the linear part of the glm

G.names the names of independent variables to consider in the tree part of the hybrid glm.

family the glm family considered depending on the type of the dependent variable.

verbose Logical; TRUE for printing progress during the computation (helpful for debug-
ging)

Value

a list of four elements:

best_index The size of the selected trees by BIC and AIC

tree The selected trees by BIC and AIC

fit_glm The fitted pltr models selected with BIC, and AIC

Timediff The execution time of the selection procedure
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Author(s)

Cyprien Mbogning

References

Mbogning, C., Perdry, H., Toussile, W., Broet, P.: A novel tree-based procedure for deciphering the
genomic spectrum of clinical disease entities. Journal of Clinical Bioinformatics 4:6, (2014)

Akaike, H.: A new look at the statistical model identification. IEEE Trans. Automat. Control AC-19,
716-723 (1974)

Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6, 461-464
(1978)

See Also

best.tree.CV, pltr.glm

Examples

##load the data set
#data(data_pltr)
#args.rpart <- list(minbucket = 40, maxdepth = 10, cp = 0)
#family <- "binomial"
#Y.name <- "Y"
#X.names <- "G1"
#G.names <- paste("G", 2:15, sep="")

## build a maximal tree

#fit_pltr <- pltr.glm(data_pltr, Y.name, X.names, G.names, args.rpart = args.rpart,
# family = family,iterMax =15, iterMin = 8)

##prunned back the maximal tree by BIC or AIC criterion

#tree_select <- best.tree.BIC.AIC(xtree = fit_pltr$tree,data_pltr,Y.name,
# X.names, G.names, family = family)

#plot(tree_select$tree$BIC, main = 'BIC TREE')
#text(tree_select$tree$BIC, minlength = 0L, xpd = TRUE)

best.tree.bootstrap parametric bootstrap on a pltr model

Description

a parametric bootstrap procedure to select and test at the same time the selected tree

Usage

best.tree.bootstrap(xtree, xdata, Y.name, X.names, G.names, B = 10, BB = 10,
args.rpart = list(cp = 0, minbucket = 20, maxdepth = 10), epsi = 0.001,
iterMax = 15, iterMin = 8, family = "gaussian", LEVEL = 0.05, LB = FALSE,
args.parallel = list(numWorkers = 10, type = "PSOCK"), verbose = TRUE)
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Arguments

xtree the maximal tree obtained by the function pltr.glm

xdata the data frame used to build xtree

Y.name the name of the dependent variable

X.names the names of independent variables to consider in the linear part of the glm

G.names the names of independent variables to consider in the tree part of the hybrid glm.

B the size of the bootstrap sample

BB the size of the bootstrap sample to compute the adjusted p-value

args.rpart a list of options that control details of the rpart algorithm. minbucket: the
minimum number of observations in any terminal <leaf> node; cp: complexity
parameter (Any split that does not decrease the overall lack of fit by a factor of
cp is not attempted); maxdepth: the maximum depth of any node of the final
tree, with the root node counted as depth 0. ... See rpart.control for further
details

epsi a treshold value to check the convergence of the algorithm

iterMax the maximal number of iteration to consider

iterMin the minimum number of iteration to consider

family the glm family considered depending on the type of the dependent variable.

LEVEL the level of the test

LB a binary indicator with values TRUE or FALSE indicating weither the loading is
balanced or not in the parallel computing. It is useless on a windows platform.

args.parallel a list of two elements containing the number of workers and the type of paral-
lelization to achieve

verbose Logical; TRUE for printing progress during the computation (helpful for debug-
ging)

Value

a list with six elements

selected_model

a list with the fit of the selected pltr model fit_glm, the selected tree tree,
the p-value of the selected tree p.value, the ajusted p-value of the selected
tree adj_p.value and an indicator Tree_Selected to assess wether the test is
significant or not.

fit_glm the fitted pltr model under the null hypothesis if the test is not significant

Timediff The execution time of the parametric bootstrap procedure

comp_p_values The P-values of the competing trees

Badj The number of samples used in the inner level of the procedure

BBadj The number of samples used in the outer level of the procedure

Author(s)

Cyprien Mbogning
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References

Chen, J., Yu, K., Hsing, A., Therneau, T.M.: A partially linear tree-based regression model for
assessing complex joint gene-gene and gene-environment effects. Genetic Epidemiology 31, 238-
251 (2007)

See Also

p.val.tree

Examples

#load the data set
data(data_pltr)
args.rpart <- list(minbucket = 40, maxdepth = 10, cp = 0)
family <- "binomial"
Y.name <- "Y"
X.names <- "G1"
G.names <- paste("G", 2:15, sep="")

## build a maximal tree

#fit_pltr <- pltr.glm(data_pltr, Y.name, X.names, G.names, args.rpart = args.rpart,
# family = family,iterMax =15, iterMin = 8)

## select an test the selected tree by a parametric bootstrap procedure
#args.parallel = list(numWorkers = 1, type = "PSOCK")

#best_bootstrap <- best.tree.bootstrap(fit_pltr$tree, data_pltr, Y.name, X.names,
# G.names, B = 10, BB = 10, args.rpart = args.rpart, epsi = 0.001,
# iterMax = 15, iterMin = 8, family = family, LEVEL = 0.05,LB = FALSE,
# args.parallel = args.parallel)

best.tree.CV Prunning the Maximal tree

Description

this function is set to prune back the maximal tree by using a K-fold cross-validation procedure.

Usage

best.tree.CV(xtree, xdata, Y.name, X.names, G.names, family = "binomial",
args.rpart = list(cp = 0, minbucket = 20, maxdepth = 10), epsi = 0.001,
iterMax = 15, iterMin = 8, ncv = 10, verbose = TRUE)

Arguments

xtree a tree to prune

xdata the dataset used to build the tree

Y.name the name of the dependent variable

X.names the names of independent variables to consider in the linear part of the glm
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G.names the names of independent variables to consider in the tree part of the hybrid glm.

family the glm family considered depending on the type of the dependent variable.

args.rpart a list of options that control details of the rpart algorithm. minbucket: the
minimum number of observations in any terminal <leaf> node; cp: complexity
parameter (Any split that does not decrease the overall lack of fit by a factor of
cp is not attempted); maxdepth: the maximum depth of any node of the final
tree, with the root node counted as depth 0. ... See rpart.control for further
details

epsi a treshold value to check the convergence of the algorithm

iterMax the maximal number of iteration to consider

iterMin the minimum number of iteration to consider

ncv The number of folds to consider for the cross-validation

verbose Logical; TRUE for printing progress during the computation (helpful for debug-
ging)

Value

a list of five elements:

best_index The size of the selected tree by the cross-validation procedure

tree The selected tree by CV

fit_glm The fitted gpltr models selected with CV

CV_ERROR The cross-validation error of the selected tree by the CV procedure and a vector
of cross-validation error of all the competing models

Timediff The execution time of the CV procedure

Author(s)

Cyprien Mbogning

References

Mbogning, C., Perdry, H., Toussile, W., Broet, P.: A novel tree-based procedure for deciphering the
genomic spectrum of clinical disease entities. Journal of Clinical Bioinformatics 4:6, (2014)

See Also

best.tree.BIC.AIC, pltr.glm

Examples

##load the data set
#data(data_pltr)
#args.rpart <- list(minbucket = 40, maxdepth = 10, cp = 0)
#family <- "binomial"
#Y.name <- "Y"
#X.names <- "G1"
#G.names <- paste("G", 2:15, sep="")

# build a maximal tree
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#fit_pltr <- pltr.glm(data_pltr, Y.name, X.names, G.names, args.rpart = args.rpart,
# family = family,iterMax =15, iterMin = 8)

##prunned back the maximal tree by a cross-validation procedure

#tree_selected <- best.tree.CV(fit_pltr$tree, data_pltr, Y.name, X.names, G.names,
# family = family, args.rpart = args.rpart, epsi = 0.001, iterMax = 15,
# iterMin = 8, ncv = 10)

#plot(tree_selected$tree, main = 'CV TREE')
#text(tree_selected$tree, minlength = 0L, xpd = TRUE)

best.tree.permute permutation test on a pltr model

Description

a unified permutation test procedure to select and test at the same time the selected tree

Usage

best.tree.permute(xtree, xdata, Y.name, X.names, G.names, B = 10,
args.rpart = list(cp = 0, minbucket = 20, maxdepth = 10), epsi = 0.001,
iterMax = 15, iterMin = 8, family = "binomial", LEVEL = 0.05,
LB = FALSE, args.parallel = list(numWorkers = 10, type = "PSOCK"), verbose = TRUE)

Arguments

xtree the maximal tree obtained by the function pltr.glm

xdata the data frame used to build xtree

Y.name the name of the dependent variable

X.names the names of independent variables to consider in the linear part of the glm. For
this function, only a binary variable is supported.

G.names the names of independent variables to consider in the tree part of the hybrid glm.

B the size of the bootstrap sample

args.rpart a list of options that control details of the rpart algorithm. minbucket: the
minimum number of observations in any terminal <leaf> node; cp: complexity
parameter (Any split that does not decrease the overall lack of fit by a factor of
cp is not attempted); maxdepth: the maximum depth of any node of the final
tree, with the root node counted as depth 0. ... See rpart.control for further
details

epsi a treshold value to check the convergence of the algorithm

iterMax the maximal number of iteration to consider

iterMin the minimum number of iteration to consider

family the binomial family.

LEVEL the level of the test

LB a binary indicator with values TRUE or FALSE indicating weither the loading is
balanced or not in the parallel computing. It is useless on a windows platform.
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args.parallel a list of two elements containing the number of workers and the type of paral-
lelization to achieve

verbose Logical; TRUE for printing progress during the computation (helpful for debug-
ging)

Value

a list with six elements:

p.val_selected

the adjusted p-value of the selected tree
selected_model

a list with the fit of the selected pltr model fit_glm, the selected tree tree
and the p-value of the selected tree without adjusting for multiple comparisons
p.value

fit_glm the fitted pltr model under the null hypothesis if the test is not significant

Timediff The execution time of the permutation test procedure

comp_p_values The P-values of the competing trees

Badj The number of samples used inside the procedure

Author(s)

Cyprien Mbogning

See Also

p.val.tree, best.tree.bootstrap

Examples

##load the data set
#data(data_pltr)
#args.rpart <- list(minbucket = 40, maxdepth = 10, cp = 0)
#family <- "binomial"
#Y.name <- "Y"
#X.names <- "G1"
#G.names <- paste("G", 2:15, sep="")

## build a maximal tree

#fit_pltr <- pltr.glm(data_pltr, Y.name, X.names, G.names, args.rpart = args.rpart,
# family = family,iterMax =15, iterMin = 8)

## select an test the selected tree by a permutation test procedure
#args.parallel = list(numWorkers = 1, type = "PSOCK")

#best_permute <- best.tree.permute(fit_pltr$tree, data_pltr, Y.name, X.names,
# G.names, B = 10, args.rpart = args.rpart, epsi = 0.001, iterMax = 15,
# iterMin = 8, family = family, LEVEL = 0.05,LB = FALSE,
# args.parallel = args.parallel)
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burn burn dataset

Description

The burn data frame has 154 rows and 17 columns.

Usage

data(burn)

Format

A data frame with 154 observations on the following 17 variables.

Obs Observation number

Z1 Treatment: 0-routine bathing 1-Body cleansing

Z2 Gender (0=male 1=female)

Z3 Race: 0=nonwhite 1=white

Z4 Percentage of total surface area burned

Z5 Burn site indicator: head 1=yes, 0=no

Z6 Burn site indicator: buttock 1=yes, 0=no

Z7 Burn site indicator: trunk 1=yes, 0=no

Z8 Burn site indicator: upper leg 1=yes, 0=no

Z9 Burn site indicator: lower leg 1=yes, 0=no

Z10 Burn site indicator: respiratory tract 1=yes, 0=no

Z11 Type of burn: 1=chemical, 2=scald, 3=electric, 4=flame

T1 Time to excision or on study time

D1 Excision indicator: 1=yes 0=no

T2 Time to prophylactic antibiotic treatment or on study time

D2 Prophylactic antibiotic treatment: 1=yes 0=no

T3 Time to straphylocous aureaus infection or on study time

D3 Straphylocous aureaus infection: 1=yes 0=no

Source

Klein and Moeschberger (1997) Survival Analysis Techniques for Censored and truncated data,
Springer.

Ichida et al. Stat. Med. 12 (1993): 301-310.

Examples

data(burn)
## maybe str(burn) ;
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data_pltr gpltr data example

Description

A data frame to test the functions of the package

Usage

data(data_pltr)

Format

A data frame with 3000 observations on the following 16 variables.

G1 a numeric vector

G2 a factor with levels 0 1

G3 a factor with levels 0 1

G4 a factor with levels 0 1

G5 a factor with levels 0 1

G6 a binary numeric vector

G7 a binary numeric vector

G8 a binary numeric vector

G9 a binary numeric vector

G10 a binary numeric vector

G11 a binary numeric vector

G12 a binary numeric vector

G13 a binary numeric vector

G14 a binary numeric vector

G15 a binary numeric vector

Y a binary numeric vector

Details

The numeric variable G1 is considered as offset in the simulated PLTR model; the variables G2,...,G5
are used to simulate the tree part, while G6,...,G15 are noise variables.

Examples

data(data_pltr)
## maybe str(data_pltr) ...
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nested.trees compute the nested trees

Description

Compute a set of nested competing trees for the prunning phase

Usage

nested.trees(xtree, xdata, Y.name, X.names, G.names, MaxTreeSize = NULL,
family = "gaussian", verbose = TRUE)

Arguments

xtree a tree inheriting to the rpart method

xdata the dataset used to build the tree

Y.name the name of the dependent variable in the tree model

X.names the names of independent variables considered as offset in the tree model

G.names the names of independent variables used to build the tree.

MaxTreeSize The maximal size of the competing trees

family the glm family considered depending on the type of the dependent variable.

verbose Logical; TRUE for printing progress during the computation (helpful for debug-
ging)

Value

a list with 4 elements:

leaves a list of leaves of the competing trees to consider for the optimal tree

null_deviance the deviance of the null model (linear part of the glm)

deviances a vector of deviances of the competing PLTR models

diff_deviances a vector of the deviance differencies between the competing PLTR models and
the null model

Author(s)

Cyprien Mbogning

Examples

##load the data set

#data(data_pltr)
#args.rpart <- list(minbucket = 40, maxdepth = 10, cp = 0)
#family <- "binomial"
#Y.name <- "Y"
#X.names <- "G1"
#G.names <- paste("G", 2:15, sep="")

## build a maximal tree
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#fit_pltr <- pltr.glm(data_pltr, Y.name, X.names, G.names, args.rpart = args.rpart,
# family = family,iterMax =15, iterMin = 8)

## compute the competing trees
#nested_trees <- nested.trees(fit_pltr$tree, data_pltr, Y.name, X.names, G.names,
# MaxTreeSize = 10, family = family)

p.val.tree Compute the p-value

Description

Test weither the selected tree by either BIC, AIC or CV procedure is significantly associated to the
dependent variable or not, while adjusting for a confounding effect.

Usage

p.val.tree(xtree, xdata, Y.name, X.names, G.names, B = 10, args.rpart =
list(minbucket = 40, maxdepth = 10, cp = 0), epsi = 0.001, iterMax = 15,
iterMin = 8, family = "binomial", LB = FALSE,
args.parallel = list(numWorkers = 10, type = "PSOCK"), index = 4, verbose = TRUE)

Arguments

xtree the maximal tree obtained by the function pltr.glm
xdata the data frame used to build xtree
Y.name the name of the dependent variable
X.names the names of independent variables to consider in the linear part of the glm

G.names the names of independent variables to consider in the tree part of the hybrid glm.
B the resampling size of the deviance difference
args.rpart a list of options that control details of the rpart algorithm. minbucket: the

minimum number of observations in any terminal <leaf> node; cp: complexity
parameter (Any split that does not decrease the overall lack of fit by a factor of
cp is not attempted); maxdepth: the maximum depth of any node of the final
tree, with the root node counted as depth 0. ... See rpart.control for further
details

epsi a treshold value to check the convergence of the algorithm
iterMax the maximal number of iteration to consider
iterMin the minimum number of iteration to consider
family the glm family considered depending on the type of the dependent variable.
LB a binary indicator with values TRUE or FALSE indicating weither the loading

are balanced or not in the parallel computing
args.parallel a list of two elements containing the number of workers and the type of paral-

lelization to achieve
index the size of the selected tree (by the functions best.tree.BIC.AIC or best.tree.CV)

using one of the proposed criteria
verbose Logical; TRUE for printing progress during the computation (helpful for debug-

ging)
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Value

A list of three elements:

p.value The P-value of the selected tree

Timediff The execution time of the test procedure

Badj The number of samples used inside the the procedure

Author(s)

Cyprien Mbogning

References

Mbogning, C., Perdry, H., Toussile, W., Broet, P.: A novel tree-based procedure for deciphering the
genomic spectrum of clinical disease entities. Journal of Clinical Bioinformatics 4:6, (2014)

Fan, J., Zhang, C., Zhang, J.: Generalized likelihood ratio statistics and WILKS phenomenon.
Annals of Statistics 29(1), 153-193 (2001)

See Also

best.tree.bootstrap, best.tree.permute

Examples

#load the data set

#data(data_pltr)
#args.rpart <- list(minbucket = 40, maxdepth = 10, cp = 0)
#family <- "binomial"
#Y.name <- "Y"
#X.names <- "G1"
#G.names <- paste("G", 2:15, sep="")

## build a maximal tree

#fit_pltr <- pltr.glm(data_pltr, Y.name, X.names, G.names, args.rpart = args.rpart,
# family = family,iterMax =15, iterMin = 8)

##prunned back the maximal tree by BIC or AIC criterion

#tree_select <- best.tree.BIC.AIC(xtree = fit_pltr$tree,data_pltr,Y.name,
# X.names, G.names, family = family)

## Compute the p-value of the selected tree by BIC

#args.parallel = list(numWorkers = 1, type = "PSOCK")
#index = tree_select$best_index[[1]]
#p_value <- p.val.tree(xtree = fit_pltr$tree, data_pltr, Y.name, X.names, G.names,
# B = 10, args.rpart = args.rpart, epsi = 1e-3,
# iterMax = 15, iterMin = 8, family = family, LB = FALSE,
# args.parallel = args.parallel, index = index)
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pltr.glm Partially tree-based regression model function

Description

The pltr.glm function is designed to fit an hybrid glm model with an additive tree part on a glm
scale.

Usage

pltr.glm(data, Y.name, X.names, G.names, family = "binomial",
args.rpart = list(cp = 0, minbucket = 20, maxdepth = 10),
epsi = 0.001, iterMax = 15, iterMin = 8, verbose = TRUE)

Arguments

data a data frame containing the variables in the model

Y.name the name of the dependent variable

X.names the names of independent variables to consider in the linear part of the glm

G.names the names of independent variables to consider in the tree part of the hybrid glm.

family the glm family considered depending on the type of the dependent variable.

args.rpart a list of options that control details of the rpart algorithm. minbucket: the
minimum number of observations in any terminal <leaf> node; cp: complexity
parameter (Any split that does not decrease the overall lack of fit by a factor of
cp is not attempted); maxdepth: the maximum depth of any node of the final
tree, with the root node counted as depth 0. ... See rpart.control for further
details

epsi a treshold value to check the convergence of the algorithm

iterMax the maximal number of iteration to consider

iterMin the minimum number of iteration to consider

verbose Logical; TRUE for printing progress during the computation (helpful for debug-
ging)

Details

The pltr.glm function use an itterative procedure to fit the linear part of the glm and the tree part.
The tree obtained at the convergence of the procedure is a maximal tree which overfits the data. It’s
then mandatory to prunned back this tree by using one of the proposed criteria (BIC, AIC and CV).

Value

A list with four elements:

fit the global glm fitted at the end of the algorithm

tree the maximal tree obtained at the end of the algorithm

nber_iter the number of iterations used by the algorithm

Timediff The execution time of the iterative procedure
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Note

The tree obtained at the end of these itterative procedure usually ovrfits the data. It’s therefore
mendatory to use either best.tree.BIC.AIC or best.tree.CV to prunne back the tree.

Author(s)

Cyprien Mbogning

References

Mbogning, C., Perdry, H., Toussile, W., Broet, P.: A novel tree-based procedure for deciphering the
genomic spectrum of clinical disease entities. Journal of Clinical Bioinformatics 4:6, (2014)

Terry M. Therneau, Elizabeth J. Atkinson (2013) An Introduction to Recursive Partitioning Using
the RPART Routines. Mayo Foundation.

Chen, J., Yu, K., Hsing, A., Therneau, T.M.: A partially linear tree-based regression model for
assessing complex joint gene-gene and gene-environment effects. Genetic Epidemiology 31, 238-
251 (2007)

See Also

rpart

Examples

##load the data set

data(data_pltr)
args.rpart <- list(minbucket = 40, maxdepth = 10, cp = 0)
family <- "binomial"
Y.name <- "Y"
X.names <- "G1"
G.names <- paste("G", 2:15, sep="")

## build a maximal tree (uncomment the following code)

#fit_pltr <- pltr.glm(data_pltr, Y.name, X.names, G.names, args.rpart = args.rpart,
# family = family,iterMax =15, iterMin = 8)

#plot(fit_pltr$tree, main = 'MAXIMAL TREE')
#text(fit_pltr$tree, minlength = 0L, xpd = TRUE)

predict_bagg.pltr prediction on new features

Description

Predict new features using a set of bagging pltr models

Usage

predict_bagg.pltr(bag_pltr, Y.name, newdata, type = "response",
thresshold = 0.5)
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Arguments

bag_pltr a list containing the set of bagging pltr model obtained with the function bagging.pltr

Y.name the name of the binary dependent variable

newdata a data frame in which to look for variables with which to predict.

type the type of prediction required. type = "response" is the default; It gives the
predicted probabilities. At this stage of the package, only this type is take into
account. Other types like "link" and "terms" aren’t supported yet.

thresshold the cutoff value for binary prediction

Value

A list with three elements

PRED_IND A vector with the final prediction of each individual of the testing data by the
bagging procedure (the modal prediction).

PRED_IND a matrix with the prediction of the testing data individuals with each bagging
PLTR model (column by column)

PRED_ERROR the estimated error of the Bagging procedure on the test sample.

Author(s)

Cyprien Mbogning

See Also

bagging.pltr, predict.glm

Examples

##

tree2glm tree to GLM

Description

fit the PLTR model for a given tree. The tree is tranform in indicators covariates.

Usage

tree2glm(xtree, xdata, Y.name, X.names, G.names, family = "gaussian")

Arguments

xtree a tree inherits from the rpart method

xdata a data frame containing the variables in the model

Y.name the name of the dependent variable

X.names the names of independent variables to consider in the linear part of the glm

G.names the names of independent variables considered in the tree part.

family the glm family considered depending on the type of the dependent variable.
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Value

the fitted model (fit)

Author(s)

Cyprien Mbogning

Examples

##load the data set

#data(data_pltr)
#args.rpart <- list(minbucket = 40, cp = 0)
#family <- "binomial"
#Y.name <- "Y"
#X.names <- "G1"
#G.names <- paste("G", 2:15, sep="")

## build a maximal tree

#fit_pltr <- pltr.glm(data_pltr, Y.name, X.names, G.names, args.rpart = args.rpart,
# family = family,iterMax = 15, iterMin = 8)

#fit_glm <- tree2glm(fit_pltr$tree, data_pltr, Y.name, X.names, G.names,
# family = family)

#summary(fit_glm)

tree2indicators From a tree to indicators

Description

Coerces a given tree structure to binary covariates.

Usage

tree2indicators(fit)

Arguments

fit a tree structure inheriting to the rpart method

Value

a list of indicators

Author(s)

Cyprien Mbogning
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Examples

##load the data set

#data(data_pltr)
#args.rpart <- list(minbucket = 40, xval = 10, cp = 0)
#family <- "binomial"
#Y.name <- "Y"
#X.names <- "G1"
#G.names <- paste("G", 2:15, sep="")

## build a maximal tree

#fit_pltr <- pltr.glm(data_pltr, Y.name, X.names, G.names, args.rpart = args.rpart,
# family = family,iterMax = 15, iterMin = 8)

##Compute a list of indicator from the leaves of the tree fitted tree

#tree2indicators(fit_pltr$tree)
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