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1 Introduction

Cubist is an R port of the Cubist GPL C code released by RuleQuest at
http://rulequest.com/cubist-info.html

See the last section of this document for information on the porting. The other parts describes the
functionality of the R package.

2 Model Trees

Cubist is a rule-based model that is an extension of Quinlan’s M5 model tree. A tree is grown where
the terminal leaves contain linear regression models. These models are based on the predictors used
in previous splits. Also, there are intermediate linear models at each step of the tree. A prediction
is made using the linear regression model at the terminal node of the tree, but is “smoothed” by
taking into account the prediction from the linear model in the previous node of the tree (which
also occurs recursively up the tree). The tree is reduced to a set of rules, which initially are paths
from the top of the tree to the bottom. Rules are eliminated via pruning and/or combined for
simplification.

This is explained better in Quinlan (1992). Wang and Witten (1997) attempted to recreate this
model using a “rational reconstruction” of Quinlan (1992) that is the basis for the M5P model in
Weka (and the R package RWeka).

An example of a model tree can be illustrated using the Boston Housing data in the mlbench
package.
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modelTree <- cubist(x = trainingPredictors, y = trainingOutcome)
modelTree

> library(Cubist)

> library(mlbench)

> data(BostonHousing)

> set.seed(1)

> inTrain <- sample(1:nrow(BostonHousing), floor(.8*nrow(BostonHousing)))
> trainingPredictors <- BostonHousing[ inTrain, -14]
> testPredictors <- BostonHousing[-inTrain, -14]
> trainingOutcome <- BostonHousing$medv[ inTrain]

> testOutcome <- BostonHousing$medv/[-inTrain]

>

>

Call:
cubist.default(x = trainingPredictors, y = trainingQutcome)

Number of samples: 404
Number of predictors: 13

Number of committees: 1
Number of rules: 4

> summary (modelTree)

Call:
cubist.default(x = trainingPredictors, y = trainingQutcome)

Cubist [Release 2.07 GPL Edition] Wed Apr 27 14:35:09 2011

Target attribute “outcome'
Read 404 cases (14 attributes) from undefined.data
Model:
Rule 1: [88 cases, mean 13.81, range 5 to 27.5, est err 2.10]

if
nox > 0.668
then
outcome = 2.07 + 3.14 dis - 0.35 1lstat + 18.8 nox + 0.007 b
- 0.12 ptratio - 0.008 age - 0.02 crim

Rule 2: [153 cases, mean 19.54, range 8.1 to 31, est err 2.16]

if
nox <= 0.668
lstat > 9.59
then
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outcome = 34.81 - 1 dis - 0.72 ptratio - 0.056 age - 0.19 1stat + 1.5 rm
- 0.11 indus + 0.004 b

Rule 3: [39 cases, mean 24.10, range 11.9 to 50, est err 2.73]

if
rm <= 6.23
lstat <= 9.59
then
outcome = 11.89 + 3.69 crim - 1.25 1lstat + 3.9 rm - 0.0045 tax
- 0.16 ptratio

Rule 4: [128 cases, mean 31.31, range 16.5 to 50, est err 2.95]

if
rm > 6.23
lstat <= 9.59
then
outcome = -1.13 + 1.6 crim - 0.93 1lstat + 8.6 rm - 0.0141 tax
- 0.83 ptratio - 0.47 dis - 0.019 age - 1.1 nox

Evaluation on training data (404 cases):

Average |error| 2.27
Relative |error| 0.34
Correlation coefficient 0.94

Attribute usage:
Conds Model

78%  100% lstat
59% 53% nox
419, 78% rm

100% ptratio

90% age
90% dis
62% crim
59% b

419, tax
38% indus

Time: 0.0 secs

There is no formula method for cubist; the predictors are specified as matrix or data frame and the
outcome is a numeric vector.

There is a predict method for the model:
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> mtPred <- predict(modelTree, testPredictors)
> ## Test set RMSE
> sqrt(mean((mtPred - testOutcome) ~2))

[1] 3.337924

> ## Test set R°2
> cor(mtPred, testOutcome) "2

[1] 0.8573504

3 Boosting

The Cubist model can also use a boosting-like scheme called committees where iterative model
trees are created in sequence. The first tree follows the procedure described in the last section.
Subsequent trees using a weighting scheme similar to gradient boosting where case weights are
applied based on the errors from previous model trees. Unlike traditional boosting, stage weights
for each committee are not used to average the predictions from each model tree; the final prediction
is a simple average of the predictions from each model tree.

The committee option can be used to control number of model trees:

> set.seed(1)

> committeeModel <- cubist(x = trainingPredictors, y = trainingOutcome,
+ committees = 5)

> summary (committeeModel)

Call:

cubist.default(x = trainingPredictors, y = trainingOutcome, committees = 5)

Cubist [Release 2.07 GPL Edition] Wed Apr 27 14:35:09 2011

Target attribute “outcome'
Read 404 cases (14 attributes) from undefined.data
Model 1:
Rule 1/1: [88 cases, mean 13.81, range 5 to 27.5, est err 2.10]
if
nox > 0.668

then
outcome = 2.07 + 3.14 dis - 0.35 1lstat + 18.8 nox + 0.007 b
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- 0.12 ptratio - 0.008 age - 0.02 crim
Rule 1/2: [153 cases, mean 19.54, range 8.1 to 31, est err 2.16]

if
nox <= 0.668
lstat > 9.59
then
outcome = 34.81 - 1 dis - 0.72 ptratio - 0.056 age - 0.19 lstat + 1.5 rm
- 0.11 indus + 0.004 b

Rule 1/3: [39 cases, mean 24.10, range 11.9 to 50, est err 2.73]

if
rm <= 6.23
lstat <= 9.59
then
outcome = 11.89 + 3.69 crim - 1.25 1stat + 3.9 rm - 0.0045 tax
- 0.16 ptratio

Rule 1/4: [128 cases, mean 31.31, range 16.5 to 50, est err 2.95]

if
rm > 6.23
lstat <= 9.59
then
outcome = -1.13 + 1.6 crim - 0.93 1lstat + 8.6 rm - 0.0141 tax
- 0.83 ptratio - 0.47 dis - 0.019 age - 1.1 nox
Model 2:

Rule 2/1: [71 cases, mean 13.41, range 5 to 27.5, est err 2.62]

if
crim > 5.69175
dis > 1.4254
then
outcome = 43.01 + 2.57 dis - 0.47 1lstat - 0.7 ptratio - 2 rm

Rule 2/2: [84 cases, mean 18.75, range 8.1 to 27.5, est err 2.25]

if
crim <= 5.69175
nox > 0.532
dis > 1.4254
tax > 222
ptratio > 17

then
outcome

44.08 + 1.19 crim - 0.43 1lstat - 1.05 ptratio - 0.011 age

Rule 2/3: [15 cases, mean 23.43, range 5 to 50, est err 5.62]
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if
dis <= 1.4254
ptratio > 17
then
outcome = 174.86 - 100.95 dis - 1.07 1lstat - 0.09 ptratio

Rule 2/4: [77 cases, mean 23.90, range 11.8 to 50, est err 2.35]

if
ptratio <= 17
1stat > 5.12
then
outcome = -2.7 + 8.2 rm - 0.0228 tax - 1.68 dis - 0.064 age - 0.1 lstat
- 0.24 ptratio - 3.7 nox + 0.009 zn - 0.02 crim - 0.02 indus
+ 0.001 b

Rule 2/5: [128 cases, mean 25.56, range 14.4 to 50, est err 3.12]

if
crim <= 5.69175
nox <= 0.532
ptratio > 17
then
outcome = -14.6 + 2.4 crim + 7 rm - 0.075 age + 0.23 1lstat - 0.42 dis
- 0.17 ptratio

Rule 2/6: [16 cases, mean 27.91, range 15.7 to 39.8, est err 5.25]

if
tax <= 222
lstat > 5.12
then
outcome = 274.62 - 12.31 ptratio - 0.212 age - 0.03 lstat

Rule 2/7: [18 cases, mean 30.49, range 22.5 to 50, est err 3.76]

if
rm <= 6.861
lstat <= 5.12
then
outcome = -58.67 + 10.99 crim + 13.3 rm - 0.08 dis - 0.02 lstat
- 0.05 ptratio

Rule 2/8: [19 cases, mean 41.54, range 31.2 to 50, est err 3.64]

if
rm > 6.861
age <= 71
lstat <= 5.12
then
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outcome = -57.01 + 14.2 rm - 0.23 dis - 0.05 1lstat - 0.13 ptratio
- 2.2 nox + 0.006 zn - 0.01 crim

Rule 2/9: [14 cases, mean 43.48, range 22.8 to 50, est err 5.55]

if
age > 71
1stat <= 5.12
then
outcome = -24.48 + 1.99 crim + 0.467 age + 3.5 rm
Model 3:

Rule 3/1: [88 cases, mean 13.81, range 5 to 27.5, est err 2.29]

if
nox > 0.668
then
outcome = -12.77 + 5.44 dis + 22.7 nox - 0.18 1lstat + 0.013 b
- 0.07 crim

Rule 3/2: [10 cases, mean 17.64, range 11.7 to 27.5, est err 11.51]

if
nox <= 0.668
b <= 179.36
then
outcome = -2.19 + 0.149 b + 0.76 lstat

Rule 3/3: [156 cases, mean 19.68, range 8.1 to 33.8, est err 2.23]

if
nox <= 0.668
lstat > 9.53
then
outcome = 28.86 - 1.08 dis - 0.27 lstat - 0.067 age + 2.6 rm
- 0.62 ptratio

Rule 3/4: [164 cases, mean 29.68, range 11.9 to 50, est err 3.44]
if
1stat <= 9.53
then
outcome = 6.37 + 4.09 crim - 0.75 1lstat + 7.6 rm - 0.0303 tax
- 0.78 ptratio - 0.14 dis - 2.2 nox + 0.001 b
Model 4:
Rule 4/1: [335 cases, mean 19.44, range 5 to 50, est err 2.60]

if
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rm <= 7.079
lstat > 5.12
then
outcome = 50.33 - 0.0168 tax - 0.39 1lstat + 0.32 rad - 12.7 nox
- 0.65 ptratio - 0.59 dis - 0.11 crim

Rule 4/2: [18 cases, mean 30.49, range 22.5 to 50, est err 4.90]

if
rm <= 6.861
lstat <= 5.12
then
outcome = 20.98 + 8.17 crim - 0.54 1lstat + 0.23 rad + 1.3 rm

Rule 4/3: [5 cases, mean 31.10, range 13.8 to 50, est err 24.23]

if
dis <= 1.2852
lstat > 5.12
then
outcome = 36.25

Rule 4/4: [35 cases, mean 36.15, range 22.5 to 50, est err 3.57]

if
age <= 71
lstat <= 5.12
then
outcome = -67.2 + 156.9 rm - 1.04 rad - 0.005 b - 0.05 1lstat - 0.05 dis

Rule 4/5: [43 cases, mean 39.37, range 15 to 50, est err 6.47]

if
rm > 7.079
then
outcome = -132.71 + 0.323 b + 9.1 rm - 0.48 rad - 1.4 ptratio
- 0.0015 tax - 0.03 1lstat

Rule 4/6: [14 cases, mean 43.48, range 22.8 to 50, est err 5.19]

if
age > 71
1stat <= 5.12
then
outcome = -34.38 + 0.6 age - 0.75 1lstat + 6.1 rm - 0.047 b + 0.16 rad
Model 5:

Rule 5/1: [86 cases, mean 13.32, range 5 to 23.2, est err 2.71]

if
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nox > 0.659
lstat > 9.53
then
outcome = -28.42 + 7.76 dis + 35.5 nox + 0.017 b - 0.12 1lstat
- 0.18 ptratio + 0.4 rm - 0.01 age - 0.03 crim + 0.02 rad
- 0.0006 tax

Rule 5/2: [154 cases, mean 19.76, range 8.1 to 33.8, est err 2.34]

if
nox <= 0.659
1stat > 9.53
then
outcome = 32.87 - 1.36 dis - 0.1 age + 2.5 rm - 0.68 ptratio - 0.1 1lstat
- 2.8 nox - 0.03 crim + 0.002 b + 0.01 rad

Rule 5/3: [138 cases, mean 28.31, range 16.5 to 50, est err 2.52]

if
dis > 2.6403
lstat <= 9.53
then
outcome = -34.37 + 11.1 rm + 0.81 crim - 0.2 lstat - 0.0064 tax
- 0.03 age - 0.3 ptratio - 0.17 dis + 0.03 rad - 2.2 nox
+ 0.002 b

Rule 5/4: [26 cases, mean 36.97, range 11.9 to 50, est err 11.81]

if
dis <= 2.6403
lstat <= 9.53
then
outcome = -1.18 + 2.48 crim + 3.6 rm

Rule 5/5: [21 cases, mean 41.33, range 21.9 to 50, est err 10.93]

if
nox > 0.573
lstat <= 9.53
then
outcome = 61.04 + 4.95 crim - 51.6 nox - 0.0226 tax - 0.48 lstat
+ 4.3 rm - 0.64 ptratio

Evaluation on training data (404 cases):

Average |error| 1.94
Relative |error| 0.29
Correlation coefficient 0.96
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Attribute usage:
Conds Model

75% 98Y% lstat
457, 61% nox

28% 70% rm

16Y% 86% dis

147% 90% ptratio
13% 76% crim

5% 489, tax

4% 58% age

49% b

38% rad
11% indus
49, zn

Time: 0.1 secs

For this model:

> cmPred <- predict(committeeModel, testPredictors)
> ## RMSE
> sqrt(mean((cmPred - testOutcome) ~2))

[1] 2.863727

> ## R™2
> cor(cmPred, testOutcome) "2

[1] 0.8967124

4 Instance—Based Corrections

Another innovation in Cubist using nearest-—neighbors to adjust the predictions from the rule-based
model. First, a model tree (with or without committees) is created. Once a sample is predicted by
this model, Cubist can find it’s nearest neighbors and determine the average of these training set
points. See Quinlan (1993a) for the details of the adjustment.

The development of rules and committees is independent of the choice of using instances. The
original C code allowed the program to choose whether to use instances, not use them or let the
program decide. Our approach is to build a model with the cubist function that is ignorant to
the decision about instances. When samples are predicted, the argument neighbors can be used to
adjust the rule-based model predictions (or not).

We can add instances to the previously fit committee model:
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> instancePred <- predict(committeeModel, testPredictors, neighbors = 5)
> ## RMSE
> sqrt(mean((instancePred - testOutcome) "2))

[1] 2.685944

> ## R™2
> cor(instancePred, testOutcome) "2

[1] 0.9125262

Note that the previous models used the implicit default of neighbors = 0 for their predictions.

To tune the model over different values of neighbors and committees, the train function in the
caret package can be used to optimize these parameters.

5 Exporting the Model

As previously mentioned, this code is a port of the command-line C code. To run the C code, the
training set data must be converted to a specific file format as detailed on the RuleQuest website.
Two files are created. The file.data file is a header-less, comma delimited version of the data
(the file part is a name given by the user). The file.names file provides information about the
columns (eg. levels for categorical data and so on). After running the C program, another text file
called file.models, which contains the information needed for prediction.

Once a model has been built with the R cubist package, the exportCubistFiles can be used to
create the .data, .names and .model files so that the same model can be run at the command-line.

6 Current Limitations

There are a few features in the C code that are not yet operational in the R package:

e variable usage/importance haven’t been ported into R objects
e only continuous and categorical predictors can be used (the C allows for other data types)

e there is an option to let the C code decide on using instances or not. The choice is more
explicit in this package

e non—standard predictor names are not currently checked /fixed

e the C code supports binning of predictors

Many of these features will be implemented in the future.
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7 About the Cubist C Code and Our Approach

This section may be interesting or important to those of you who care about the implementation
(if you exist at all).

The cubist sources are written to take specific data files from the file system, pull them into
memory, run the computations, then write the results to a text file that is also saved to the file
system. The code makes use of a lot of global variables (especially for the data). The code has
been around for a while and, after reading it, one can tell that the author put in a lot of time to
catch many special cases. At Pfizer, we have pushed millions of samples through the non—-GPL code
without any substantive errors.

So the approach here is to pass in the training data as strings that mimic the formats that one
would use with the command line version and get back the textual representation that would be
saved to the .model file also as a string. The prediction function would then pass the model text
string (and the data text string if instances are used) to the C code for prediction.

We did this for a few reasons. First, this approach would require us to re-write main() and touch
as little of the original code as possible (otherwise we would have to write a parser for the data
and try to get it into the global variable structure with complete fidelity). Second, most modeling
functions implicitly assume that the data matrix is all numeric, thus factors are converted to dummy
variables etc. Cubist doesn’t want categorical data split into dummy variables based on how it does
splits. Thus, we would have to pass in the numeric and categorical predictors separately unless we
want to get really fancy.

8 Session Information

R version 2.11.1 (2010-05-31), x86_64-apple-darwin9.8.0

Locale: en_US.UTF-8/en_US.UTF-8/C/C/en_US.UTF-8/en_US.UTF-8

Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

Other packages: Cubist 0.0.5, lattice 0.18-8, mlbench 2.1-0, reshape2 1.1

Loaded via a namespace (and not attached): grid 2.11.1, plyr 1.2.1, stringr 0.4
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