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Abstract

paper Regression models based on log-incremental payments by Stavros
Christofides [1], published as part of the Claims Reserving Manual (Version
2) of the Institute of Actuaries.

The paper is available together with a spread sheet model, illustrating
the calculations. It is very much based on ideas by Barnett and Zehnwirth,
see [2] for a reference. However, doing statistical analysis in a spread sheet

programme is often cumbersome. | will go through the first 15 pages of
Christofides’ paper today and illustrate how the model can be implemented
in R.
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1 Development triangles

Historical insurance data is often presented in form of a triangle structure, showing
the development of claims over time for each exposure (origin) period. An origin
period could be the year the policy was written or earned, or the loss occurrence
period. Of course the origin period doesn't have to be yearly, e.g. quarterly or
monthly origin periods are also often used. The development period of an origin
period is also called age or lag. Data on the diagonals present payments in the
same calendar period. Note, data of individual policies is usually aggregated to
homogeneous lines of business, division levels or perils.

As an example we present a claims payment triangle from a UK Motor Non-
Comprehensive account as published by [2]. For convenience we set the origin
period from 2007 to 2013.

The following data frame presents the claims data in a typical form as it would be
stored in a data base. The first column holds the origin year, the second column the
development year and the third column has the incremental payments / transactions.

R>n <-7
R> Claims <-
data.frame(originf = factor(rep(2007:2013, n:1)),
dev=sequence(n:1),
inc.paid=
c(3511, 3215, 2266, 1712, 1059, 587,
340, 4001, 3702, 2278, 1180, 956,
629, 4355, 3932, 1946, 1522, 1238,
4295, 3455, 2023, 1320, 4150, 3747,
2320, 5102, 4548, 6283))

To present the data in a triangle format we can use the matrix function:

R> (inc.triangle <- with(Claims, {
M <- matrix(nrow=n, ncol=n,
dimnames=1ist (origin=levels(originf), dev=1:n))
M[cbind(originf, dev)] <- inc.paid
M
»)

dev
origin 1 2 3 4 5 6 7
2007 3511 3215 2266 1712 1059 587 340
2008 4001 3702 2278 1180 956 629 NA
2009 4355 3932 1946 1522 1238 NA NA
2010 4295 3455 2023 1320 NA NA NA
2011 4150 3747 2320 NA NA NA NA



2012 5102 4548 NA NA NA NA NA
2013 6283 NA NA NA NA NA NA

It is the objective of a reserving exercise to forecast the future claims development in
the bottom right corner of the triangle and potential further developments beyond
development age 7. Eventually all claims for a given origin period will be settled,
but it is not always obvious to judge how many years or even decades it will take.
We speak of long and short tail business depending on the time it takes to pay all
claims.

Often it is helpful to consider the cumulative development of claims as well, which
is presented below.

R> (cum.triangle <- t(apply(inc.triangle, 1, cumsum)))

dev
origin 1 2 3 4 5 6 7
2007 3511 6726 8992 10704 11763 12350 12690
2008 4001 7703 9981 11161 12117 12746 NA
2009 4355 8287 10233 11755 12993 NA NA
2010 4295 7750 9773 11093 NA NA NA
2011 4150 7897 10217 NA NA NA NA
2012 5102 9650 NA NA NA NA NA
2013 6283 NA NA NA NA NA NA

The latest diagonal of the triangle presents the latest cumulative paid position of
all origin years:

R> (latest.paid <- cum.triangle[row(cum.triangle) == n - col(cum.triangle) + 1])
[1] 6283 9650 10217 11093 12993 12746 12690

We add the cumulative paid data as column to the data frame as well.
R> Claims$cum.paid <- cum.triangle[with(Claims, cbind(originf, dev))]
To start the reserving analysis we plot the data.

R> op <- par(fig=c(0,0.5,0,1), cex=0.8, oma=c(0,0,0,0))
R> with(Claims, {
interaction.plot (x.factor=dev, trace.factor=originf, response=inc.paid,
fun=sum, type="b", bty='n', legend=FALSE); axis(1, at=1:n)
par(fig=c(0.45,1,0,1), new=TRUE, cex=0.8, oma=c(0,0,0,0))
interaction.plot (x.factor=dev, trace.factor=originf, response=cum.paid,



fun=sum, type="b", bty='n'); axis(1l,at=1:n)
P
R> mtext("Incremental and cumulative claims development",
side=3, outer=TRUE, line=-3, cex = 1.1, font=2)
R> par(op)
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Figure 1: Plot of incremental and cumulative claims payments by origin year using
base graphics, using interaction.plot of the stats package in R.

R> library(lattice)
R> xyplot(cum.paid ~ dev | originf, data=Claims, t="b", layout=c(4,2),
as.table=TRUE, main="Cumulative claims development")

Figures 1 and 2 present the incremental and cumulative claims development by
origin year. The triangle appears to be fairly well behaved. The last two years, 2012
and 2013 appear to be slightly higher than years 2008 to 2011 and the values in
2007 are lower in comparison to the later years, e.g. the book changed over the
years. The last payment of 1,238 for the 2009 origin year stands out a bit as well.

Other claims information can provide valuable insight into the reserving process
too, such as claims numbers, transition timings between different claims settlement
stages and earning patterns. See for example [5, 8, 7] respectively. A deep under-
standing of the whole business process from pricing, underwriting, claims handling
and data management will guide the actuary to interpret the claims data at hand.
The Claims Reserving Working Party Paper, [4], outlines the different aspects in
more detail.
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Figure 2: Claims developments by origin year using the lattice package, with one
panel per origin year.

1.1 Chain-ladder in the context of linear regression

Since the early 1990s several papers have been published to embed the determin-
istic chain-ladder method into a statistical framework. [1, 6] were not the only
ones to point out that the chain-ladder age-to-age link ratios could be regarded as
coefficients of a linear regression through the origin. To illustrate this concept we
follow [1].

Let C' ;, denote the k-th column in the cumulative claims triangle. The chain-ladder
algorithm can be seen as:

C. ki1 = fi C.p + (k) with g, ~ N(0,07C°)) (1)

The parameter fi describes the slope or the 'best’ line through the origin and data
points [C. i, C. x+1], with § as a 'weighting’ parameter. [1] distinguish the cases:

e ) = 0 ordinary regression with intercept 0
e ) =1 historical chain ladder age-to-age link ratios

e § = 2 straight averages of the individual link ratios

Indeed, we can demonstrate the different cases by applying different linear models to
our data. First, we add columns to the original data frame Claims, to have payments
of the current and previous development period next to each other, additionally we
add a column with the development period as a factor.



R> names(Claims) [3:4] <- c("inc.paid.k", "cum.paid.k")
R> ids <- with(Claims, cbind(originf, dev))
R> Claims <- within(Claims,{
cum.paid.kpl <- cbind(cum.triangle[,-1], NA)[ids]
inc.paid.kpl <- cbind(inc.triangle[,-1], NA)[ids]
devf <- factor(dev)
}
)

In the next step we apply the linear regression function 1m to each development
period, vary the weighting parameter ¢ from 0 to 2 and extract the slope coefficients.

R> delta <- 0:2
R> ATA <- sapply(delta, function(d)
coef (Im(cum.paid.kpl ~ 0 + cum.paid.k : devf,
weights=1/cum.paid.k~d, data=Claims))

)

R> dimnames (ATA) [[2]] <- paste("Delta = ", delta)
R> ATA

Delta = O Delta = 1 Delta = 2
cum.paid.k:devfl 1.888 1.889 1.890
cum.paid.k:devf2 1.280 1.282 1.284
cum.paid.k:devf3 1.146 1.147 1.148
cum.paid.k:devf4 1.097 1.097 1.097
cum.paid.k:devfb 1.051 1.051 1.051
cum.paid.k:devf6 1.028 1.028 1.028

Indeed, the development ratios for 6 = 1 and § = 2 tally with those of the previous
section. Let's plot the data again, with the cumulative paid claims of one period
against the previous one, including the regression output for each development
period, see Figure 3.

R> xyplot(cum.paid.kpl ~ cum.paid.k | devf,
data=subset (Claims, dev < (n-1)),
main="Age-to-age developments", as.table=TRUE,
scales=list(relation="free"),
key=list (columns=2, lines=list(1ty=1:4, type="1"),
text=list(lab=c("Im(y ~ x)",
rllm(y ~ O + X) n,
"Im(y ~ 0 + x, w=1/x)",
"Im(y ~ 0 + x, w=1/x"2)"))),
panel=function(x,y,...){
panel.xyplot(x,y,...)
if (length (x)>1){



panel.abline(1m(y ~ x), lty=1)

panel.abline(ilm(y ~ 0 + x), 1lty=2)
panel.abline(im(y ~ 0 + x, weights=1/x), 1ty=3)
panel.abline(Im(y ~ 0 + x, , weights=1/x"2), 1ty=4)

Note that for development periods 2 and 3 we observe a difference in the slope of
the linear regression with and without an intercept. Of course we could test the
significance of the intercept via the usual tests.
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Figure 3: Plot of the cumulative development positions from one development year
to the next for each development year, including regression lines of different linear
models.

1.2 Reserving based on log-incremental payments

We noted in the previous section that the claims appear to follow a log-normal
distribution. [9] was not the first to consider modelling the log of the incremental
claims payments, but his papers and software ICRFS!' have popularised this ap-
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proach. Here we present the key concepts of what [9] calls the probabilistic trend
family (PTF).

Zehnwirth's model assumes the following structure for the incremental claims X ;

j i+j
In(X;;)=Yi; =0 + Z’yk + Z Lt + €45, (2)
k=1 t=1

The errors are assumed to be normal with ¢; ; ~ N(0, 0?). The parameters o, Vi» bt
model trends in three time directions, namely origin year, development year and
calendar (or payment) year respectively, see Figure 4.

development period

origin period

Figure 4: Structure of a typical claims triangle and the three time directions: origin,
development and calendar periods.

[2] examines a very similar model, but uses the following notation
In(X; ;) =Vi; = ai+d; + &, (3)

with a, d representing the parameters in origin and development period direction
(a parameter p;;;_1 for the payment year direction could be added). Although
models 2 and 3 are essentially the same, the design matrices differ and therefore
the coefficients and their interpretation.

Note that the above model is not a GLM, e.g. log(y 4+ ¢) = X 5. Instead it models
log(y) = X B + ¢; although both models assume £ ~ N(0,02). Hence, we will use
least square regression to fit the coefficients via 1m again.

Before we apply the log-linear model to the data, and we will follow [2], we shall
plot it again on a log scale.

R> Claims <- within(Claims, {
log.inc <- log(inc.paid.k)
cal <- as.numeric(levels(originf)) [originf] + dev - 1

P

The interaction plot, Figure 5, suggests a linear relationship after the second devel-
opment year on a log-scale. The lines of the different origin years are fairly closely



group, but the last two years, labelled 6 and 7, do stand out. We shall test if this
is significant. We start with a model using all levels of the origin factor and two
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Figure 5: The interaction plot shows the developments of the origin years on a log
scale. From the second development year the decay appears to be linear.

dummy parameters for the development year, with dy = dl and d; = (j — 1) - d27
for j > 1. Hence, we add two dummy variables to our data.

R> Claims <- within(Claims, {
dl <- ifelse(dev < 2, 1, 0)
d27 <- ifelse(dev < 2, 0, dev - 1)
i)

The dummy variable d1 is 1 for the first development period and 0 otherwise, while
d27 is 0 for the first development period and counts up from 1 then onwards. Hence,
we will estimate one parameter for the first payment and a constant trend (decay)
for the following periods.

R> summary(fitl <- Im(log.inc ~ originf + d1 + d27, data=Claims))

Call:
lm(formula = log.inc ~ originf + d1 + d27, data = Claims)

Residuals:
Min 1Q Median 3Q Max
-0.2214 -0.0397 0.0112 0.0329 0.1962

Coefficients:
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Estimate Std. Error t value Pr(>|tl)

(Intercept) 8.572835 0.075690 113.26 < 2e-16 **x*
originf2008 0.000956 0.063935 0.01 0.98822
originf2009 0.092037 0.068675 1.34 0.19600
originf2010 -0.018715 0.075261 -0.25 0.80629
originf2011 0.063828 0.084302 0.76 0.45825
originf2012 0.272668 0.098245 2.78 0.01205 =*
originf2013 0.468983 0.131593 3.56 0.00207 *x*
d1 -0.296215  0.069903 -4.24 0.00045 *x**
d27 -0.434960 0.018488 -23.53 1.6e-15 *x*x

Signif. codes: O “***’ 0.001 ‘*x’> 0.01 ‘x> 0.05 ‘.” 0.1 ¢ * 1

Residual standard error: 0.114 on 19 degrees of freedom
Multiple R-squared: 0.983, Adjusted R-squared: 0.976
F-statistic: 139 on 8 and 19 DF, p-value: 3.29e-15

The model output confirms what we had noticed from the interaction plot already,
apart from the origin years 2012 and 2013 there is no significant difference between
the years; the p-values are all greater than 5% and the coefficients are less than
twice their standard errors. Therefore we reduce the model and replace the origin
variable with two dummy columns for those years.

R> Claims <- within(Claims, {
a6 <- ifelse(originf == 2012, 1, 0)
a7 <- ifelse(originf == 2013, 1, 0)
P
R> summary(fit2 <- 1Im(log.inc ~ a6 + a7 + di1 + d27, data=Claims))

Call:
Im(formula = log.inc ~ a6 + a7 + dl + d27, data = Claims)

Residuals:
Min 1Q Median 3Q Max
-0.21567 -0.04910 0.00654 0.05137 0.27199

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept)  8.6079 0.0515 167.14 < 2e-16 **x
a6 0.2435 0.0852 2.86 0.00887 **
a7 0.4411 0.1217 3.62 0.00142 *x
d1 -0.3035 0.0678 -4.48 0.00017 **x
d27 -0.4397 0.0167 -26.39 < 2e-16 *x*x

Signif. codes: 0 ‘**x’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 ‘.’ 0.1 ¢ ’ 1
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Residual standard error: 0.112 on 23 degrees of freedom
Multiple R-squared: 0.98, Adjusted R-squared: 0.977
F-statistic: 288 on 4 and 23 DF, p-value: <2e-16

The reduction in parameters from 9 to 5 seems sensible, all coefficient are significant
and the model error reduced from 0.114 to 0.112 as well. Further we can read off
the coefficient for d27 that claims payments are predicted to reduce by 44% each
year after year one. Next, we plot the model:

R> op <- par(mfrow=c(2,2), oma = c(0, 0, 3, 0))
R> plot(fit2)
R> par(op)

Reviewing the residual plots in Figure 6 highlights again the latest payment for the
2009 origin year (the 18th row of the Claims data) as a potential outlier.

The error distribution appears to follow a normal distribution, top right qg-plot in
Figure 6, confirmed by the Shapiro-Wilk normality test.

R> shapiro.test(fit2$residuals)

Shapiro-Wilk normality test

data: fit2$residuals
W =0.97, p-value = 0.5

To investigate the residuals further we shall plot them against the fitted values and
the three trend directions. The following function will create those four plots for
our model.

R> resPlot <- function(model, data){
xvals <- list(
fitted = model[['fitted.values']],
origin = as.numeric(levels(data$originf)) [data$originf],
cal=data$cal, dev=data$dev
)
op <- par(mfrow=c(2,2), oma = c(0, 0, 3, 0))
for(i in 1:4){
plot.default (rstandard(model) ~ xvals[[i]] ,
main=paste ("Residuals vs", names(xvals)[i] ),
xlab=names (xvals) [i], ylab="Standardized residuals")
panel.smooth(y=rstandard(model), x=xvals[[i]])
abline(h=0, 1ty=2)
}
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Im(log.inc ~ a6 + a7 + d1 + d27)
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Figure 6: Residual plots of the log-incremental model £it2. The last payment of
2009 (row 18) is highlighted again as a potential outlier, so are rows 11, 7 and 4.

mtext (as.character (model$call) [2], outer = TRUE, cex = 1.2)

par(op)
}

R> resPlot(fit2, Claims)

Again, the residual plots all look fairly well behaved, however, we notice from the
bottom left plot in Figure 7 that claims for the payment years 2007, 2008 are slightly
over-fitted and 2009, 2010 are under-fitted. Hence, we introduce an additional
parameter for that period and update our model.

R> Claims <- within(Claims, {
p34 <- ifelse(cal < 2011 & cal > 2008, cal-2008, 0)

»
R> summary(fit3 <- update(fit2, ~ . + p34, data=Claims))

Call:
Im(formula = log.inc ~ a6 + a7 + dl + d27 + p34, data = Claims)
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log.inc ~ a6 + a7 +d1 + d27
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Figure 7: Residual plots of the log-incremental model £it2 against fitted values
and the three trend directions.

Residuals:
Min 1Q Median 3Q Max
-0.1941 -0.0595 0.0164 0.0511 0.2840

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 8.5576 0.0540 158.51 < 2e-16 **x*
a6 0.2822 0.0819 3.45 0.00230 *x*
a7 0.4777 0.11562 4.15 0.00042 **x
d1 -0.2897 0.0638 -4.54 0.00016 x***
da27 -0.4301 0.0163 -26.45 < 2e-16 ***
p34 0.0603 0.0292 2.07 0.05074 .

Signif. codes: 0 ‘**%*x’ 0.001 ‘*x’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ ’ 1
Residual standard error: 0.105 on 22 degrees of freedom

Multiple R-squared: 0.984, Adjusted R-squared: 0.98
F-statistic: 264 on 5 and 22 DF, p-value: <2e-16
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R> resPlot(fit3, Claims)

The residual plot against calendar years, Figure 8, has improved and the parameter
p34 could be regarded significant. The coefficient p34 describes a 6% increase of
claims payments in those two years. An investigation should clarify if this effect is
the result of a temporary increase in claims inflation, a change in the claims settling
process, other causes or just random noise.

Observe that the new model has a

slightly lower residual standard error of 0.105 compared to 0.112.

Standardized residuals

Standardized residuals

Within the linear regression framework we can forecast the claims payments and
estimated the standard errors. We follow the paper by [2] again. Recall that for a
log-normal distribution the mean is E(X) = exp(u + 1/202) and the variance is
Var(X) = exp(2u + 02)(exp(0?) — 1), where 1 and o are the mean and standard
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Figure 8: Residual plot of the log-incremental model £it3.

R> log.incr.predict <- function(model, newdata){

Pred
Y <-
VarY
P <-

15

<- predict(model, newdata=newdata, se.fit=TRUE)
Pred$fit
<- Pred$se.fit”"2 + Pred$residual.scale”2
exp(Y + VarY/2)



VarP <- P~2x*(exp(VarY)-1)

seP <- sqrt(VarP)

model.formula <- as.formula(paste("~", formula(model)[3]))

mframe <- model.frame (model.formula, data=newdata)

X <- model.matrix(model.formula, data=newdata)

varcovar <- X }*J, vcov(model) %*% t(X)

CoVar <- sweep(sweep((exp(varcovar)-1), 1, P, "x"), 2, P, "x")

CoVar [col (CoVar)==row(CoVar)] <- 0O

Total.SE <- sqrt(sum(CoVar) + sum(VarP))

Total.Reserve <- sum(P)

Incr=data.frame(newdata, Y, VarY, P, seP, CV=seP/P)

out <- list(Forecast=Incr,

Totals=data.frame(Total.Reserve,

Total.SE=Total.SE,
CV=Total.SE/Total.Reserve))

return (out)

}

With the above function it is straightforward to carry out the prediction for future
claims payment and standard errors. As a bonus we can estimate payments beyond
the available data.

To forecast the future claims we prepare a data frame with the predictors for those
years, here with 6 years beyond age 7.

R> tail.years <-6

R> fdat <- data.frame(
origin=rep(2007:2013, n+tail.years),
dev=rep(1l: (n+tail.years), each=n)
)

R> fdat <- within(fdat, {
cal <- origin + dev - 1
a7 <- ifelse(origin == 2013, 1, 0)
a6 <- ifelse(origin == 2012, 1, 0)
originf <- factor(origin)
p34 <- ifelse(cal < 2011 & cal > 2008, cal-2008, 0)
dl <- ifelse(dev < 2, 1, 0)
d27 <- ifelse(dev < 2, 0, dev - 1)

»

So, here are the results for the two models:

R> reserve2 <- log.incr.predict(fit2, subset(fdat, cal>2013))
R> reserve2$Totals

Total.Reserve Total.SE Cv
1 33847 2545 0.07519
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R> reserve3 <- log.incr.predict(fit3, subset(fdat, cal>2013))
R> reserve3$Totals

Total.Reserve Total.SE Ccv
1 34251 2424 0.07078

The two models produce very similar results and it shouldn’t be much of a surprise
as they are quite similar indeed. The third model has proportionally a slightly smaller
standard error and may hence be the preferred choice.

The future payments can be displayed with the xtabs function:

R> round(xtabs(P ~ origin + dev, reserve3$Forecast))

dev
origin 2 3 4 5 6 7 8 9 10 11 12 13
2007 0 0 0 0 0 0 259 168 110 71 47 30
2008 0 0 0 0 0 397 259 168 110 71 47 30
2009 0 0 0 0 610 397 259 168 110 71 47 30
2010 0 0 0 937 610 397 259 168 110 71 a7 30
2011 0 0 1441 937 610 397 259 168 110 71 a7 30

2012 0 2946 1916 1247 812 529 344 224 146 95 62 40
2013 5529 3595 2338 15621 990 645 420 273 178 116 76 49

The model structure is clearly visible in the above future claims triangle; as the
origin years 2007 to 2011 share the same parameter, the predicted future payments
for those years have the same identical mean expectations.

For comparison here is the output of the Mack chain-ladder model, assuming a tail

factor of 1.05 and standard error of 0.02:

R> round (summary (MackChainLadder (cum. triangle, est.sigma="Mack",
tail=1.05, tail.se=0.02))$Totals,2)

Totals
Latest: 75672.00
Dev: 0.69
Ultimate: 109544.16
IBNR: 33872.16
Mack S.E.: 2563.40
CV(IBNR): 0.08

The chain ladder method provides similar forecast to the log-incremental regression
model, but at the price of many more parameters and hence potential instability.

A model with few parameters is potentially more robust and can be analysed by
back testing the model with fewer data points.
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The log-incremental regression model provides an intuitive and elegant stochastic
claims reserving model and can help to investigate trends in the calendar/payment
year direction, such as claims inflation, which is challenging to define and measure,

[3]-

Additionally the tail extrapolation is part of the model design and not a artificial

add on.

See [2] and [9] for a more detailed discussion of the log-incremental model.
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