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Abstract
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1 Introduction

1.1 Claims reserving in insurance

Unlike other industries the insurance industry does not sell products as such, but
promises. An insurance policy is a promise by the insurer to the policyholder to pay
for future claims for an upfront received premium.

As a result insurers don't know the upfront cost of their service, but rely on historical
data analysis and judgment to derive a sustainable price for their offering. In General
Insurance (or Non-Life Insurance, e.g. motor, property and casualty insurance) most
policies run for a period of 12 months. However, the claims payment process can
take years or even decades. Therefore often not even the delivery date of their
product is known to insurers.

In particular claims arising from casualty insurance can take a long time to settle.
Claims can take years to materialise. A complex and costly example are the claims
from asbestos liabilities. A research report by a working party of the Institute of
Actuaries has estimated that the undiscounted cost of UK mesothelioma-related
claims to the UK Insurance Market for the period 2009 to 2050 could be around
£10bn [ ]. The cost for asbestos related claims in the US for the worldwide
insurance industry was estimate to be around $120bn in 2002 | ]

Thus, it should come to no surprise that the biggest item on the liability side of an
insurer’s balance sheet is often the provision or reserves for future claims payments.
Those reserves can be broken down in case reserves (or out-standings claims), which
are losses already reported to the insurance company and incurred but not reported
(IBNR) claims.

Over the years several methods have been developed to estimate reserves for insur-
ance claims, see [ I [ ] for an overview. Changes in regulatory require-
ments, e.g. Solvency II' in Europe, have fostered further research into this topic,
with a focus on stochastic and statistical techniques.

2 The ChainLadder package

2.1 Motivation

The ChainLadder | ] package provides various statistical methods which are
typically used for the estimation of outstanding claims reserves in general insurance.
The package started out of presentations given by Markus Gesmann at the Stochas-
tic Reserving Seminar at the Institute of Actuaries in 2007 and 2008, followed by
talks at Casualty Actuarial Society (CAS) meetings joined by Dan Murphy in 2008
and Wayne Zhang in 2010.

1See http://ec.europa.eu/internal _market/insurance/solvency/index_en.htm
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Implementing reserving methods in R has several advantages. R provides:

e a rich language for statistical modelling and data manipulations allowing fast
prototyping

e a very active user base, which publishes many extension

e many interfaces to data bases and other applications, such as MS Excel
e an established framework for documentation and testing

e workflows with version control systems

e code written in plain text files, allowing effective knowledge transfer

e an effective way to collaborate over the internet

e built in functions to create reproducible research reports?

e in combination with other tools such as IATEX and Sweave easy to set up
automated reporting facilities

e access to academic research, which is often first implemented in R

2.2 Brief package overview

This vignette will give the reader a brief overview of the functionality of the Chain-
Ladder package. The functions are discussed and explained in more detail in the
respective help files and examples, see also | ]

The ChainLadder package has implementations of the Mack-, Munich- and Boot-
strap chain-ladder methods | I 1 I [ I 1 ]. Since version
0.1.3-3 it provides general multivariate chain ladder models by Wayne Zhang [ ]
Version 0.1.4-0 introduced new functions on loss development factor (LDF) fitting
methods and Cape Cod by Daniel Murphy following a paper by David Clark | ]
Version 0.1.5-0 has added loss reserving models within the generalized linear model
framework following a paper by England and Verrall | ] implemented by Wayne
Zhang.

The package also offers utility functions to convert quickly tables into triangles,
triangles into tables, cumulative into incremental and incremental into cumulative
triangles.

A set of demos is shipped with the packages and the list of demos is available via:
R> demo (package="ChainLadder")

and can be executed via

2For an example see the project: Formatted Actuarial Vignettes in R, http://www.favir.net/
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R> library(ChainLadder)
R> demo("demo name")

For more information and examples see the project web site: http://code.google.
com/p/chainladder/

2.3 Installation
We can install ChainLadder in the usual way from CRAN, e.g.:
R> install.packages('ChainLadder')

For more details about installing packages see | ]. The installation was suc-
cessful if the command library(ChainLadder) gives you the following message:

R> library(ChainLadder)

ChainLadder version 0.1.9 by:

Markus Gesmann <markus.gesmann@gmail.com>
Wayne Zhang <actuary_zhang@hotmail.com>
Daniel Murphy <danielmarkmurphy@gmail.com>

Type 7ChainlLadder to access overall documentation and
vignette('ChainLadder') for the package vignette.

Type demo(Chainladder) to get an idea of the functionality of this package.
See demo(package='ChainlLadder') for a list of more demos.

More information is available on the ChainLadder project web-site:
http://code.google.com/p/chainladder/

To suppress this message use the statement:
suppressPackageStartupMessages (library(ChainLadder))

3 Using the ChainLadder package

3.1 Working with triangles

Historical insurance data is often presented in form of a triangle structure, showing
the development of claims over time for each exposure (origin) period. An origin
period could be the year the policy was sold, or the accident year. Of course the
exposure period doesn't have to be yearly, e.g. quarterly or monthly origin periods
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are also often used. Most reserving methods of the ChainLadder package expect
triangles as input data sets with development periods along the columns and the
origin period in rows. The package comes with several example triangles. The
following R command will list them all:

R> require(ChainLadder)
R> data(package="ChainLadder")

Let’s look at one example triangle more closely. The following triangle shows data
from the Reinsurance Association of America (RAA):

R> ## Sample triangle
R> RAA

dev
origin 1 2 3 4 5 6 7 8 9 10
1981 5012 8269 10907 11805 13539 16181 18009 18608 18662 18834
1982 106 4285 5396 10666 13782 15599 15496 16169 16704 NA
1983 3410 8992 13873 16141 18735 22214 22863 23466 NA NA
1984 5655 11555 15766 21266 23425 26083 27067 NA NA NA
1985 1092 9565 15836 22169 25955 26180 NA NA NA NA
1986 1513 6445 11702 12935 15852 NA NA NA NA NA
1987 557 4020 10946 12314 NA NA NA NA NA NA
1988 1351 6947 13112 NA NA NA NA NA NA NA
1989 3133 5395 NA NA NA NA NA NA NA NA
1990 2063 NA NA NA NA NA NA NA NA NA

This matrix shows the known values of loss from each origin year as of the end
of the origin year as as of annual evaluations thereafter. For example, the known
values of loss originating from the 1988 exposure period are 1351, 6947, and 13112
as of year ends 1988, 1989, and 1990, respectively. The latest diagonal — i.e., the
vector 18834, 16704, ... 2063 from the upper right to the lower left — shows the
most recent evaluation available. The column headings — 1, 2,..., 10 — hold the
ages (in years) of the observations in the column relative to the beginning of the
exposure period. For example, for the 1988 origin year, the age of the 1351 value,
evaluated as of 1988-12-31, is three years.

The objective of a reserving exercise is to forecast the future claims development in
the bottom right corner of the triangle and potential further developments beyond
development age 10. Eventually all claims for a given origin period will be settled,
but it is not always obvious to judge how many years or even decades it will take.
We speak of long and short tail business depending on the time it takes to pay all
claims.



3.1.1 Plotting triangles

The first thing you often want to do is to plot the data to get an overview. For
a data set of class triangle the Chainl.adder package provides default plotting
methods to give a graphical overview of the data:

R> plot (RAA)
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Figure 1: Claims development chart of the RAA triangle, with one line per origin
period. Output of plot (RAA)

Setting the argument lattice=TRUE will produce individual plots for each origin
period3, see Figure 2.

R> plot(RAA, lattice=TRUE)

You will notice from the plots in Figures 1 and 2 that the triangle RAA presents
claims developments for the origin years 1981 to 1990 in a cumulative form. For more
information on the triangle plotting functions see the help pages of plot.triangle,
e.g. via

3ChainLadder uses the lattice package for plotting the development of the origin years in
separate panels.
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Figure 2: Claims development chart of the RAA triangle, with individual panels for
each origin period. Output of plot (RAA, lattice=TRUE)

R> 7plot.triangle

3.1.2 Transforming triangles between cumulative and incremental repre-
sentation

The ChainLadder packages comes with two helper functions, cum2incr and incr2cum
to transform cumulative triangles into incremental triangles and vice versa:

R> raa.inc <- cum2incr(RAA)
R> ## Show first origin period and its incremental development
R> raa.inc([1,]

1 2 3 4 5 6 7 8 9 10
5012 3257 2638 898 1734 2642 1828 599 54 172

R> raa.cum <- incr2cum(raa.inc)
R> ## Show first origin period and its cumulative development
R> raa.cum[1,]



1 2 3 4 5 6 7 8 9 10
5012 8269 10907 11805 13539 16181 18009 18608 18662 18834

3.1.3 Importing triangles from external data sources

In most cases you want to analyse your own data, usually stored in data bases. R
makes it easy to access data using SQL statements, e.g. via an ODBC connection®
and the ChainLadder packages includes a demo to showcase how data can be
imported from a MS Access data base, see:

R> demo (DatabaseExamples)

For more details see [ ]

In this section we use data stored in a CSV-file® to demonstrate some typical op-
erations you will want to carry out with data stored in data bases. In most cases
your triangles will be stored in tables and not in a classical triangle shape. The
ChainLadder package contains a CSV-file with sample data in a long table format.
We read the data into R's memory with the read.csv command and look at the
first couple of rows and summarise it:

R> filename <- file.path(system.file("Database",

+ package="ChainLadder"),
+ "TestData.csv")

R> myData <- read.csv(filename)

R> head (myData)

origin dev value lob

1 1977 1 153638 ABC
2 1978 1 178536 ABC
3 1979 1 210172 ABC
4 1980 1 211448 ABC
5 1981 1 219810 ABC
6 1982 1 205654 ABC

R> summary (myData)

origin dev value lob
Min. : 1 Min. : 1.00 Min. : -17657  AutoLiab :105
1st Qu.: 3 1st Qu.: 2.00 1st Qu.: 10324 Generalliab 1105
Median : 6 Median : 4.00 Median : 72468 M3IR5 1105

4See the RODBC package
5Please ensure that your CSV-file is free from formatting, e.g. characters to separate units of
thousands, as those columns will be read as characters or factors rather than numerical values.
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Mean : 642 Mean : 4.61 Mean : 176632  ABC

. 66

3rd Qu.:1979 3rd Qu.: 7.00 3rd Qu.: 197716 CommercialAutoPaid: 55

Max. :1991 Max. :14.00 Max. : 3258646 GenIns
(Other)

Let's focus on one subset of the data. We select the RAA data again:

R> raa <- subset(myData, lob jinj, "RAA")
R> head(raa)

origin dev value lob

67 1981 1 5012 RAA
68 1982 1 106 RAA
69 1983 1 3410 RAA
70 1984 1 5655 RAA
71 1985 1 1092 RAA
72 1986 1 1513 RAA

To transform the long table of the RAA data into a triangle we use the function
as.triangle. The arguments we have to specify are the column names of the
origin and development period and further the column which contains the values:

R> raa.tri <- as.triangle(raa,

+ origin="origin",
+ dev="dev",
+ value="value")

R> raa.tri

dev
origin 1 2 3 4 5 6 7 8 9 10
1981 5012 3257 2638 898 1734 2642 1828 599 54 172
1982 106 4179 1111 5270 3116 1817 -103 673 535 NA
1983 3410 5582 4881 2268 2594 3479 649 603 NA NA
1984 5655 5900 4211 5500 2159 2658 984 NA NA NA
1985 1092 8473 6271 6333 3786 225 NA NA NA NA
1986 1513 4932 5257 1233 2917 NA NA NA NA NA
1987 557 3463 6926 1368 NA NA NA NA NA NA
1988 1351 5596 6165 NA NA NA NA NA NA NA
1989 3133 2262 NA NA NA NA NA NA NA NA
1990 2063 NA NA NA NA NA NA NA NA NA

We note that the data has been stored as an incremental data set. As mentioned
above, we could now use the function incr2cum to transform the triangle into a
cumulative format.

We can transform a triangle back into a data frame structure:

11

: 55
:210



R> raa.df <- as.data.frame(raa.tri, na.rm=TRUE)
R> head(raa.df)

origin dev value
1981-1 1981 1 5012
1982-1 1982 1 106
1983-1 1983 1 3410
1984-1 1984 1 5655
1985-1 1985 1 1092
1986-1 1986 1 1513

This is particularly helpful when you would like to store your results back into a
data base. Figure 3 gives you an idea of a potential data flow between R and data

bases.
—_
sqlQuery las_triangle

Q.

R: ChainLadder

Figure 3: Flow chart of data between R and data bases.

3.1.4 Copying and pasting from MS Excel

Small data sets in Excel can be transfered to R backwards and forwards with via
the clipboard under MS Windows.

Copying from Excel to R  Select a data set in Excel and copy it into the clipboard,
then go to R and type:

R> x <- read.table(file="clipboard", sep="\t", na.strings="")

12



Copying from R to Excel Suppose you would like to copy the RAA triangle into
Excel, then the following statement would copy the data into the clipboard:

R> write.table(RAA, file="clipboard", sep="\t", na="")

Now you can paste the content into Excel. Please note that you can't copy lists
structures from R to Excel.

3.2 Chain-ladder methods
The classical chain-ladder is a deterministic algorithm to forecast claims based on

historical data. It assumes that the proportional developments of claims from one
development period to the next are the same for all origin years.

3.2.1 Basic idea

Most commonly as a first step, the age-to-age link ratios are calculated as the volume
weighted average development ratios of a cumulative loss development triangle from

one development period to the next Cy, i,k =1,...,n.
n—k
fu= Tl )
Zi:l O1,k
R> n <- 10
R> f <- sapply(1:(n-1),
+ function(i){
+ sum(RAA[c(1:(n-i)),i+1])/sum(RAA[c(1: (n-1i)),i])
+ }
+ )
R> f

[1] 2.999 1.624 1.271 1.172 1.113 1.042 1.033 1.017 1.009

Often it is not suitable to assume that the oldest origin year is fully developed. A
typical approach is to extrapolate the development ratios, e.g. assuming a log-linear
model.

R> dev.period <- 1:(n-1)

R> plot(log(f-1) ~ dev.period, main="Log-linear extrapolation of age-to-age factors")
R> tail.model <- 1m(log(f-1) ~ dev.period)

R> abline(tail.model)

R> co <- coef(tail.model)

R> ## extrapolate another 100 dev. period

13



R> tail <- exp(co[1] + c((m + 1):(n + 100)) * co[2]) + 1
R> f.tail <- prod(tail)
R> f.tail

[1] 1.005

Log-linear extrapolation of age—-to—age factors
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The age-to-age factors allow us to plot the expected claims development patterns.

R> plot (100* (rev(1/cumprod(rev(c(f, tail[tail>1.0001]1))))), t="b",

+ main="Expected claims development pattern',
+ xlab="Dev. period", ylab="Development j, of ultimate loss")

14



Expected claims development pattern
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The link ratios are then applied to the latest known cumulative claims amount to
forecast the next development period. The squaring of the RAA triangle is calcu-
lated below, where an ultimate column is appended to the right to accommodate
the expected development beyond the oldest age (10) of the triangle due to the tail
factor (1.005) being greater than unity.

R> f <- c(f, f.tail)

R> fullRAA <- cbind(RAA, Ult =
R> for(k in 1:n){

+ fullRAA[(n-k+1) :n, k+1] <- fullRAA[(n-k+1):n,k]*f[k]
+ }

R> round(fullRAA)

rep(0, 10))

1981
1982
1983
1984
1985
1986
1987
1988

1
5012
106
3410
5655
1092
1513
557
1351

2
8269
4285
8992

11555
9565
6445
4020
6947

3
10907
5396
13873
15766
15836
11702
10946
13112

4
11805
10666
16141
21266
22169
12935
12314
16664

5
13539
13782
18735
23425
25955
15852
14428
19525

15

6
16181
15599
22214
26083
26180
17649
16064
21738

7
18009
15496
22863
27067
27278
18389
16738
22650

8
18608
16169
23466
27967
28185
19001
17294
23403

9
18662
16704
23863
28441
28663
19323
17587
23800

10
18834
16858
24083
28703
28927
19501
17749
24019

Ult
18928
16942
24204
28847
29072
19599
17838
24139



1989 3133 5395 8759 11132 13043 14521 15130 15634 15898 16045 16125
1990 2063 6188 10046 12767 14959 16655 17353 17931 18234 18402 18495

The total estimated outstanding loss under this method is about 53200:

R> sum(fullRAA[ ,11] - getLatestCumulative(RAA))
[1] 53202

This approach is also called Loss Development Factor (LDF) method.

More generally, the factors used to square the triangle need not always be drawn
from the dollar weighted averages of the triangle. Other sources of factors from
which the actuary may select link ratios include simple averages from the triangle,
averages weighted toward more recent observations or adjusted for outliers, and
benchmark patterns based on related, more credible loss experience. Also, since the
ultimate value of claims is simply the product of the most current diagonal and the
cumulative product of the link ratios, the completion of interior of the triangle is
usually not displayed in favor of that multiplicative calculation.

For example, suppose the actuary decides that the volume weighted factors from the
RAA triangle are representative of expected future growth, but discards the 1.005
tail factor derived from the loglinear fit in favor of a five percent tail (1.05) based
on loss data from a larger book of similar business. The LDF method might be
displayed in R as follows.

R> linkratios <- c(attr(ata(RA4), "vwtd"), tail = 1.05)
R> round(linkratios, 3) # display to only three decimal places

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 tail
2.999 1.624 1.271 1.172 1.113 1.042 1.033 1.017 1.009 1.050

R> LDF <- rev(cumprod(rev(linkratios)))
R> names (LDF) <- colnames(RAA) # so the display matches the triangle
R> round(LDF, 3)

1 2 3 4 5 6 7 8 9 10
9.366 3.123 1.923 1.513 1.292 1.160 1.113 1.078 1.060 1.050

R> currentEval <- getLatestCumulative (RAA)

R> # Reverse the LDFs so the first, least mature factor [1]

R> # is applied to the last origin year (1990)

R> EstdUlt <- currentEval * rev(LDF) #

R> # Start with the body of the exhibit

R> Exhibit <- data.frame(currentEval, LDF = round(rev(LDF), 3), EstdUlt)

16



R> # Tack on a Total row

R> Exhibit <- rbind(Exhibit,

+ data.frame (currentEval=sum(currentEval), LDF=NA, EstdUlt=sum(EstdUlt),
+ row.names = "Total"))

R> Exhibit

currentEval LDF EstdUlt

1981 18834 1.050 19776
1982 16704 1.060 17701
1983 23466 1.078 25288
1984 27067 1.113 30138
1985 26180 1.160 30373
1986 158562 1.292 20476
1987 12314 1.513 18637
1988 13112 1.923 25220
1989 5395 3.123 16847
1990 2063 9.366 19323
Total 160987 NA 223778

Since the early 1990s several papers have been published to embed the simple chain-
ladder method into a statistical framework. Ben Zehnwirth and Glenn Barnett point
out in [ ] that the age-to-age link ratios can be regarded as the coefficients of
a weighted linear regression through the origin, see also [ ]

R> 1mCL <- function(i, Triangle){

+ 1m(y~x+0, weights=1/Triangle[,i],

+ data=data.frame(x=Triangle[,i], y=Triangle[,i+1]))
+ }

R> sapply(lapply(c(1:(n-1)), 1mCL, RAA), coef)

X X X X X X X X X
2.999 1.624 1.271 1.172 1.113 1.042 1.033 1.017 1.009

3.2.2 Mack chain-ladder

Thomas Mack published in 1993 | ] a method which estimates the stan-
dard errors of the chain-ladder forecast without assuming a distribution under three
conditions.

Following the notation of Mack [ ] let C;j. denote the cumulative loss amounts
of origin period (e.g. accident year)i = 1,...,m, with losses known for development
period (e.g. development year) k <n+1—i.

In order to forecast the amounts C;j, for k > n+1 —i the Mack chain-ladder-model

17



assumes:

Ci
CL1: E[Fik|0i1, Cig, R Czk] = fk with Fj, = % (2)
Ci k41 o?
CL2: Vv . Ci1,Cioy ..., Ci) = 3
(=g |Ci1, Ci k) (T (3)
CL3: {Ci1,...,Cin}, {Cj1,...,Cjp}, are independent for origin period i # j
(4)

with w;, € [0;1],« € {0,1,2}. If these assumptions hold, the Mack-chain-ladder-
model gives an unbiased estimator for IBNR (Incurred But Not Reported) claims.

The Mack-chain-ladder model can be regarded as a weighted linear regression
through the origin for each development period: lm(y ~ x + 0, weights=w/x"(2-
alpha)), where y is the vector of claims at development period k + 1 and x is the
vector of claims at development period k.

The Mack method is implemented in the ChainLadder package via the function
MackChainlLadder.

As an example we apply the MackChainLadder function to our triangle RAA:

R> mack <- MackChainLadder (RAA, est.sigma="Mack")
R> mack

MackChainLadder (Triangle = RAA, est.sigma = "Mack")

Latest Dev.To.Date Ultimate IBNR Mack.S.E CV(IBNR)

1981 18,834 1.000 18,834 0 0 NaN

1982 16,704 0.991 16,858 154 206 1.339

1983 23,466 0.974 24,083 617 623 1.010

1984 27,067 0.943 28,703 1,636 TAT 0.457

1985 26,180 0.905 28,927 2,747 1,469 0.535

1986 15,852 0.813 19,501 3,649 2,002 0.549

1987 12,314 0.694 17,749 5,435 2,209 0.406

1988 13,112 0.546 24,019 10,907 5,358 0.491

1989 5,395 0.336 16,045 10,650 6,333 0.595

1990 2,063 0.112 18,402 16,339 24,566 1.503
Totals

Latest: 160,987.00

Dev: 0.76

Ultimate: 213,122.23

IBNR: 52,135.23

Mack S.E.: 26,909.01

CV(IBNR): 0.52

We can access the loss development factors and the full triangle via

18



R> mack$f
[1] 2.999 1.624 1.271 1.172 1.113 1.042 1.033 1.017 1.009 1.000
R> mack$FullTriangle

dev
origin 1 2 3 4 5 6 7 8 9 10
1981 5012 8269 10907 11805 13539 16181 18009 18608 18662 18834
1982 106 4285 5396 10666 13782 15599 15496 16169 16704 16858
1983 3410 8992 13873 16141 18735 22214 22863 23466 23863 24083
1984 5655 11555 15766 21266 23425 26083 27067 27967 28441 28703
1985 1092 9565 15836 22169 25955 26180 27278 28185 28663 28927
1986 1513 6445 11702 12935 15852 17649 18389 19001 19323 19501
1987 557 4020 10946 12314 14428 16064 16738 17294 17587 17749
1988 1351 6947 13112 16664 19525 21738 22650 23403 23800 24019
1989 3133 5395 8759 11132 13043 14521 15130 15634 15898 16045
1990 2063 6188 10046 12767 14959 16655 17353 17931 18234 18402

To check that Mack’s assumption are valid review the residual plots, you should see
no trends in either of them.

R> plot(mack)
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We can plot the development, including the forecast and estimated standard errors
by origin period by setting the argument lattice=TRUE.

R> plot(mack, lattice=TRUE)
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Chain ladder developments by origin period
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3.2.3 Bootstrap chain-ladder

The BootChainLadder function uses a two-stage bootstrapping/simulation ap-
proach following the paper by England and Verrall | ]. In the first stage an
ordinary chain-ladder methods is applied to the cumulative claims triangle. From
this we calculate the scaled Pearson residuals which we bootstrap R times to forecast
future incremental claims payments via the standard chain-ladder method. In the
second stage we simulate the process error with the bootstrap value as the mean
and using the process distribution assumed. The set of reserves obtained in this
way forms the predictive distribution, from which summary statistics such as mean,
prediction error or quantiles can be derived.

R> ## See also the example in section 8 of England & Verrall (2002)
R> ## on page 55.

R> B <- BootChainLadder (RAA, R=999, process.distr="gamma")

R> B

BootChainlLadder (Triangle = RAA, R = 999, process.distr = "gamma")

Latest Mean Ultimate Mean IBNR SD IBNR IBNR 75% IBNR 95
1981 18,834 18,834 0 0 0 0
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1982 16,704 16,859 155 705 188 1,216

1983 23,466 24,105 639 1,334 1,073 3,096

1984 27,067 28,739 1,672 1,933 2,555 5,164

1985 26,180 29,025 2,845 2,360 4,023 7,095

1986 15,852 19,428 3,576 2,376 4,862 7,984

1987 12,314 17,894 5,580 3,143 7,340 11,274

1988 13,112 23,948 10,836 4,860 13,894 19,361

1989 5,395 15,957 10,562 5,943 14,254 21,982

1990 2,063 18,759 16,696 12,904 24,034 40,036
Totals

Latest: 160,987

Mean Ultimate: 213,547

Mean IBNR: 52,560

SD IBNR: 18,314

Total IBNR 75%: 63,523
Total IBNR 95%: 84,530

R> plot(B)
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Quantiles of the bootstrap IBNR can be calculated via the quantile function:
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R> quantile(B, ¢(0.75,0.95,0.99, 0.995))

$ByOrigin

IBNR 75% IBNR 95% IBNR 99% IBNR 99.5%
1981 0.0 0 0 0
1982 188.5 1216 2697 3663
1983 1073.3 3096 5288 6170
1984 2554.8 5164 8048 9434
1985 4022.9 7095 10795 11409
1986 4862.4 7984 10589 11213
1987  7339.7 11274 15001 15931
1988 13893.7 19361 24320 25644
1989 14253.8 21982 27352 28882
1990 24033.7 40036 49932 52418
$Totals

Totals

IBNR 75%: 63523
IBNR 95Y%: 84530

IBNR 99%: 1055682
IBNR 99.5%: 111633

The distribution of the IBNR appears to follow a log-normal distribution, so let's fit
it:

R> ## fit a distribution to the IBNR

R> library (MASS)

R> plot(ecdf (B$IBNR.Totals))

R> ## fit a log-normal distribution

R> fit <- fitdistr (B$IBNR.Totals[B$IBNR.Totals>0], "lognormal")
R> fit

meanlog sdlog
10.806119 0.367667
( 0.011632) ( 0.008225)

R> curve(plnorm(x,fit$estimate["meanlog"], fit$estimate["sdlog"]),
+ col="red", add=TRUE)
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ecdf(B$IBNR.Totals)

0.8 1.0
|

Fn(x)
0.6

04

0.2

0.0

T T T T
0 50000 100000 150000

3.2.4 Munich chain-ladder

The Mack-chain-ladder model forecasts future claims developments based on a his-
torical cumulative claims development triangle and estimates the standard error
around those [ ]

R> MCLpaid

dev
origin 1 2 3 4 5 6 7
576 1804 1970 2024 2074 2102 2131
866 1948 2162 2232 2284 2348 NA
1412 3758 4252 4416 4494 NA NA
2286 5292 5724 5850 NA NA NA
1868 3778 4648 NA NA NA NA
1442 4010 NA NA NA NA NA
2044 NA NA NA NA NA NA

~NOo O WwN -

R> MCLincurred
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dev
origin 1 2 3 4 5 6 7
978 2104 2134 2144 2174 2182 2174
1844 2552 2466 2480 2508 2454 NA
2904 4354 4698 4600 4644 NA NA
3502 5958 6070 6142 NA NA NA
2812 4882 4852 NA NA NA NA
2642 4406 NA NA NA NA NA
5022 NA NA NA NA NA NA

~NOo o WN -

R> op <- par(mfrow=c(1,2))

R> plot(MCLpaid)

R> plot(MCLincurred)

R> par(op)

R> # Following the example in Quarg's (2004) paper:

R> MCL <- MunichChainLadder (MCLpaid, MCLincurred, est.sigmaP=0.1, est.sigmaI=0.1)
R> MCL

MunichChainLadder (Paid = MCLpaid, Incurred = MCLincurred, est.sigmaP = 0.1,
est.sigmal = 0.1)

Latest Paid Latest Incurred Latest P/I Ratio Ult. Paid Ult. Incurred

1 2,131 2,174 0.980 2,131 2,174
2 2,348 2,454 0.957 2,383 2,444
3 4,494 4,644 0.968 4,597 4,629
4 5,850 6,142 0.952 6,119 6,176
5 4,648 4,852 0.958 4,937 4,950
6 4,010 4,406 0.910 4,656 4,665
7 2,044 5,022 0.407 7,549 7,650

Ult. P/I Ratio
1 0.980
2 0.975
3 0.993
4 0.991
5 0.997
6 0.998
7 0.987
Totals

Paid Incurred P/I Ratio

Latest: 25,525 29,694 0.86
Ultimate: 32,371 32,688 0.99

R> plot (MCL)
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3.3 Multivariate chain-ladder

The Mack chain ladder technique can be generalized to the multivariate setting
where multiple reserving triangles are modeled and developed simultaneously. The
advantage of the multivariate modeling is that correlations among different triangles
can be modeled, which will lead to more accurate uncertainty assessments. Reserv-
ing methods that explicitly model the between-triangle contemporaneous correla-
tions can be found in | , ]. Another benefit of multivariate loss reserving
is that structural relationships between triangles can also be reflected, where the
development of one triangle depends on past losses from other triangles. For ex-
ample, there is generally need for the joint development of the paid and incurred
losses [ ]. Most of the chain-ladder-based multivariate reserving models can be
summarised as sequential seemingly unrelated regressions | ]. We note another
strand of multivariate loss reserving builds a hierarchical structure into the model to
allow estimation of one triangle to “borrow strength” from other triangles, reflecting
the core insight of actuarial credibility [ ]

Denote Y; ;, = (YZ(}C), . ,Yi(,]cv)) as an N x 1 vector of cumulative losses at accident
year i and development year k where (n) refers to the n-th triangle. [ | specifies
the model in development period k as:

Yik+1 =Ar +Bi - Yik + €k, (5)

where A, is a column of intercepts and By is the development matrix for develop-
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ment period k. Assumptions for this model are:

EeinlYi, -+ Yiryi-k) = 0. (6)
_ —5/2 —5/2

cov(eik|Yin, -, Yirti—k) = DY, /") D(Y, 7). (7)

losses of different accident years are independent. (8)

€;.; are symmetrically distributed. (9)

In the above, D is the diagonal operator, and § is a known positive value that
controls how the variance depends on the mean (as weights). This model is referred
to as the general multivariate chain ladder [GMCL] in | ]. A important special
case where Ap = 0 and By's are diagonal is a naive generalization of the chain
ladder, often referred to as the multivariate chain ladder [MCL] [ ]

In the following, we first introduce the class "triangles", for which we have defined
several utility functions. Indeed, any input triangles to the MultiChainLadder
function will be converted to "triangles" internally. We then present loss reserving
methods based on the MCL and GMCL models in turn.

3.3.1 The "triangles" class

Consider the two liability loss triangles from [ ]. It comes as a list of two
matrices :

R> str(liab)

List of 2
$ GenerallLiab: num [1:14, 1:14] 59966 49685 51914 84937 98921

$ AutoLiab : num [1:14, 1:14] 114423 152296 144325 145904 170333 ...

We can convert a list to a "triangles" object using

R> liab2 <- as(liab, "triangles")
R> class(liab2)

[1] "triangles"

attr(, "package")

[1] "ChainLadder"

We can find out what methods are available for this class:

R> showMethods(classes = "triangles")

For example, if we want to extract the last three columns of each triangle, we can
use the " [" operator as follows:
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R> # use drop = TRUE to remove rows that are all NA's
R> liab2[, 12:14, drop = TRUE]

An object of class "triangles"
[[1]]

(11 [,21  [,3]
[1,] 540873 547696 549589

[2,] 563571 562795 NA
[3,] 602710 NA NA
[[21]

[,1] [,2] [,3]
[1,] 391328 391537 391428
[2,] 485138 483974 NA
[3,] 540742 NA NA

The following combines two columns of the triangles to form a new matrix:

R> cbind2(1liab2[1:3, 12])

[,1] [,2]
[1,] 540873 391328
[2,] 563571 485138
[3,] 602710 540742

3.3.2 Separate chain ladder ignoring correlations

The form of regression models used in estimating the development parameters is
controlled by the fit.method argument. If we specify fit.method = "OLS", the
ordinary least squares will be used and the estimation of development factors for
each triangle is independent of the others. In this case, the residual covariance
matrix X is diagonal. As a result, the multivariate model is equivalent to running
multiple Mack chain ladders separately.

R> fitl <- MultiChainLadder(liab, fit.method = "OLS")
R> lapply (summary(fitl1)$report.summary, "[", 15, )

$ Summary Statistics for Triangle 1°
Latest Dev.To.Date Ultimate IBNR S.E Cv
Total 11343397 0.6482 17498658 6155261 427289 0.0694

$ Summary Statistics for Triangle 2°

Latest Dev.To.Date Ultimate IBNR S.E Cv
Total 8759806 0.8093 10823418 2063612 162872 0.0789
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$ Summary Statistics for Triangle 1+2°
Latest Dev.To.Date Ultimate IBNR S.E Cv
Total 20103203 0.7098 28322077 8218874 457278 0.0556

In the above, we only show the total reserve estimate for each triangle to reduce the
output. The full summary including the estimate for each year can be retrieved using
the usual summary function. By default, the summary function produces reserve
statistics for all individual triangles, as well as for the portfolio that is assumed to
be the sum of the two triangles. This behavior can be changed by supplying the
portfolio argument. See the documentation for details.

We can verify if this is indeed the same as the univariate Mack chain ladder. For
example, we can apply the MackChainLadder function to each triangle:

R> fit <- lapply(liab, MackChainLadder, est.sigma = "Mack")
R> # the same as the first triangle above
R> lapply(fit, function(x) t(summary(x)$Totals))

$Generalliab

Latest: Dev: Ultimate: IBNR: Mack S.E.: CV(IBNR):
Totals 11343397 0.6482 17498658 6155261 427289  0.06942
$AutoLiab

Latest: Dev: Ultimate: IBNR: Mack S.E.: CV(IBNR):
Totals 8759806 0.8093 10823418 2063612 162872 0.07893

The argument mse .method controls how the mean square errors are computed. By
default, it implements the Mack method. An alternative method is the conditional

re-sampling approach in [ ], which assumes the estimated parameters are
independent. This is used when mse.method = "Independence". For example,
the following reproduces the result in [ ]. Note that the first argument

must be a list, even though only one triangle is used.

R> (B1 <- MultiChainLadder (1ist(GenIns), fit.method = "OLS",
+ mse.method = "Independence"))

$ Summary Statistics for Input Triangle”

Latest Dev.To.Date Ultimate IBNR S.E Cv
1 3,901,463 1.0000 3,901,463 0 0 0.000
2 5,339,085 0.9826 5,433,719 94,634 75,535 0.798
3 4,909,315 0.9127 5,378,826 469,511 121,700 0.259
4 4,588,268 0.8661 5,297,906 709,638 133,551 0.188
5 3,873,311 0.7973 4,858,200 984,889 261,412 0.265
6 3,691,712 0.7223 5,111,171 1,419,459 411,028 0.290
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7 3,483,130 0.6153 5,660,771 2,177,641 558,356 0.256
8 2,864,498 0.4222 6,784,799 3,920,301 875,430 0.223
9 1,363,294 0.2416 ©5,642,266 4,278,972 971,385 0.227
10 344,014 0.0692 4,969,825 4,625,811 1,363,385 0.295
Total 34,358,090 0.6478 53,038,946 18,680,856 2,447,618 0.131

3.3.3 Multivariate chain ladder using seemingly unrelated regressions

To allow correlations to be incorporated, we employ the seemingly unrelated regres-
sions (see the package systemfit) that simultaneously model the two triangles in
each development period. This is invoked when we specify fit.method = "SUR":

R> fit2 <- MultiChainLadder(liab, fit.method = "SUR")
R> lapply (summary(fit2)$report.summary, "[", 15, )

$ Summary Statistics for Triangle 1°
Latest Dev.To.Date Ultimate IBNR S.E Cv
Total 11343397 0.6484 17494907 6151510 419293 0.0682

$ Summary Statistics for Triangle 2°
Latest Dev.To.Date Ultimate IBNR S.E Cv
Total 8759806 0.8095 10821341 2061535 162464 0.0788

$° Summary Statistics for Triangle 1+2°
Latest Dev.To.Date Ultimate IBNR S.E Ccv
Total 20103203 0.71 28316248 8213045 500607 0.061

We see that the portfolio prediction error is inflated to 500,607 from 457,278 in
the separate development model ("OLS"). This is because of the positive correlation
between the two triangles. The estimated correlation for each development period
can be retrieved through the residCor function:

R> round(unlist (residCor(fit2)), 3)

[11 0.247 0.495 0.682 0.446 0.487 0.451 -0.172 0.805 0.337 0.688
[11] -0.004 1.000 0.021

Similarly, most methods that work for linear models such as coef, fitted, resid
and so on will also work. Since we have a sequence of models, the retrieved results
from these methods are stored in a list. For example, we can retrieve the estimated
development factors for each period as

R> do.call("rbind", coef(fit2))

30



eql_x[[1]] eq2_x[[2]]

[1,] 3.227 2.2224
[2,1] 1.719 1.2688
[3,] 1.352 1.1200
[4,] 1.179 1.0665
[5,] 1.106 1.0356
[6,] 1.055 1.0168
[7,] 1.026 1.0097
[8,] 1.015 1.0002
[9,] 1.012 1.0038
[10,] 1.006 0.9994
[11,] 1.005 1.0039
[12,] 1.005 0.9989
[13,] 1.003 0.9997

The smaller-than-one development factors after the 10-th period for the second
triangle indeed result in negative IBNR estimates for the first several accident years
in that triangle.

The package also offers the plot method that produces various summary and di-
agnostic figures:

R> parold <- par(mfrow = c(4, 2), mar = c(4, 4, 2, 1),
+ mgp = c(1.3, 0.3, 0), tck = -0.02)

R> plot(fit2, which.triangle = 1:2, which.plot = 1:4)
R> par(parold)

The resulting plots are shown in Figure 4. We use which.triangle to suppress
the plot for the portfolio, and use which.plot to select the desired types of plots.
See the documentation for possible values of these two arguments.

3.3.4 Other residual covariance estimation methods

Internally, the MultiChainLadder calls the systemfit function to fit the regression
models period by period. When SUR models are specified, there are several ways
to estimate the residual covariance matrix ;. Available methods are "noDfCor",
"geomean", "max", and "Theil" with the default as "geomean". The method
"Theil" will produce unbiased covariance estimate, but the resulting estimate may
not be positive semi-definite. This is also the estimator used by | ]. However,
this method does not work out of the box for the 1iab data, and is perhaps one
of the reasons [ ] used extrapolation to get the estimate for the last several
periods.

Indeed, for most applications, we recommend the use of separate chain ladders for
the tail periods to stabilize the estimation - there are few data points in the tail and
running a multivariate model often produces extremely volatile estimates or even
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fails. To facilitate such an approach, the package offers the MultiChainLadder?2
function, which implements a split-and-join procedure: we split the input data into
two parts, specify a multivariate model with rich structures on the first part (with
enough data) to reflect the multivariate dependencies, apply separate univariate
chain ladders on the second part, and then join the two models together to produce
the final predictions. The splitting is determined by the "last" argument, which
specifies how many of the development periods in the tail go into the second part
of the split. The type of the model structure to be specified for the first part of the
split model in MultiChainLadder?2 is controlled by the type argument. It takes
one of the following values: "MCL"- the multivariate chain ladder with diagonal
development matrix; "MCL+int"- the multivariate chain ladder with additional in-
tercepts; "GMCL-int"- the general multivariate chain ladder without intercepts; and
"GMCL" - the full general multivariate chain ladder with intercepts and non-diagonal
development matrix.

For example, the following fits the SUR method to the first part (the first 11
columns) using the unbiased residual covariance estimator in [ ], and separate
chain ladders for the rest:

R> W1 <- MultiChainLadder2(liab, mse.method = "Independence",
+ control = systemfit.control (methodResidCov = "Theil"))
R> lapply(summary (W1)$report.summary, "[", 15, )

$° Summary Statistics for Triangle 1°
Latest Dev.To.Date Ultimate IBNR S.E Cv
Total 11343397 0.6483 17497403 6154006 427041 0.0694

$~Summary Statistics for Triangle 2°
Latest Dev.To.Date Ultimate IBNR S.E Ccv
Total 8759806 0.8095 10821034 2061228 162785 0.079

$ Summary Statistics for Triangle 1+2°

Latest Dev.To.Date Ultimate IBNR S.E CvV
Total 20103203 0.7099 28318437 8215234 505376 0.0615
Similary, the iterative residual covariance estimator in | ] can also be used, in

which we use the control parameter maxiter to determine the number of iterations:

R> for (i in 1:5)1
+ W2 <- MultiChainLadder2(liab, mse.method = "Independence",

+ control = systemfit.control (methodResidCov = "Theil", maxiter = 1))
+  print(format (summary (W2)@report.summary[[3]][15, 4:5],
+ digits = 6, big.mark = ","))
+ }
IBNR S.E

Total 8,215,234 505,376
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IBNR S.E
Total 8,215,357 505,443
IBNR S.E
Total 8,215,362 505,444
IBNR S.E
Total 8,215,362 505,444
IBNR S.E
Total 8,215,362 505,444

R> lapply (summary (W2)$report.summary, "[", 15, )

$ Summary Statistics for Triangle 1°
Latest Dev.To.Date Ultimate IBNR S.E Cv
Total 11343397 0.6483 17497526 6154129 427074 0.0694

$ Summary Statistics for Triangle 2°
Latest Dev.To.Date Ultimate IBNR S.E Cv
Total 8759806 0.8095 10821039 2061233 162790 0.079

$° Summary Statistics for Triangle 1+2°
Latest Dev.To.Date Ultimate IBNR S.E Cv
Total 20103203 0.7099 28318565 8215362 505444 0.0615

We see that the covariance estimate converges in three steps. These are very
similar to the results in [ |, the small difference being a result of the different
approaches used in the last three periods.

Also note that in the above two examples, the argument control is not defined in
the proptotype of the MultiChainLadder. It is an argument that is passed to the
systemfit function through the ... mechanism. Users are encouraged to explore
how other options available in systemfit can be applied.

3.3.5 Model with intercepts

Consider the auto triangles from [ ]. It includes three automobile insurance
triangles: personal auto paid, personal auto incurred, and commercial auto paid.

R> str(auto)

List of 3

$ PersonalAutoPaid : num [1:10, 1:10] 101125 102541 114932 114452 115597 ...
$ PersonalAutoIncurred: num [1:10, 1:10] 325423 323627 358410 405319 434065 ...

$ CommercialAutoPaid : num [1:10, 1:10] 19827 22331 22533 23128 25053 ...

It is a reasonable expectation that these triangles will be correlated. So we run a
MCL model on them:
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Figure 5: Residual plots for the MCL model (first row) and the GMCL (MCL+int)
model (second row) for the auto data.

R> fO <- MultiChainLadder2(auto, type = "MCL")

R> # show correlation- the last three columns have zero correlation
R> # because separate chain ladders are used

R> print(do.call(cbind, residCor(f0)), digits = 3)

[,1] (,21 [,3] [,4] (,61 [,6] [,7]1 [,8] [,9]
(1,2) 0.327 -0.0101 0.598 0.711 0.8565 0.928 0 0 O
(1,3) 0.870 0.9064 0.939 0.261 -0.0607 0.911 0 0 O
(2,3) 0.198 -0.3217 0.558 0.380 0.3586 0.931 0 0 O

However, from the residual plot, the first row in Figure 5, it is evident that the
default mean structure in the MCL model is not adequate. Usually this is a common
problem with the chain ladder based models, owing to the missing of intercepts.

We can improve the above model by including intercepts in the SUR fit as follows:
R> f1 <- MultiChainLadder2(auto, type = "MCL+int")

The corresponding residual plot is shown in the second row in Figure 5. We see
that these residuals are randomly scattered around zero and there is no clear pattern
compared to the plot from the MCL model.

The default summary computes the portfolio estimates as the sum of all the trian-
gles. This is not desirable because the first two triangles are both from the personal
auto line. We can overwrite this via the portfolio argument. For example, the
following uses the two paid triangles as the portfolio estimate:
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R> lapply(summary(f1,

$° Summary Statistics
Latest Dev.To
Total 3290539 0

$” Summary Statistics
Latest Dev.To
Total 3710614 0

$~Summary Statistics
Latest Dev.To
Total 1043851 0

$” Summary Statistics

.Date Ultimate
.8537 3854572 564033 19089 0.0338

.Date Ultimate
.9884 3754197 43583 18839 0.4323

.Date Ultimate
.7504

portfolio = "1+3")@report.summary, "[", 11, )

for Triangle 1°

IBNR S.E Cv

for Triangle 2°

IBNR S.E CV

for Triangle 3°
IBNR S.E Cv
1391064 347213 27716 0.0798

for Triangle 1+3°

.Date Ultimate IBNR S.E CvV
.8263 5245636 911246 38753 0.0425

Latest Dev.To
Total 4334390 0

3.3.6 Joint modeling of the paid and incurred losses

Although the model with intercepts proved to be an improvement over the MCL
model, it still fails to account for the structural relationship between triangles. In
particular, it produces divergent paid-to-incurred loss ratios for the personal auto
line:

R> ult <- summary(f1)$Ultimate
R> print(ult[, 1] /ult[, 2], 3)

1 2 3 4 5 6 7 8 9 10 Total
0.995 0.995 0.993 0.992 0.995 0.996 1.021 1.067 1.112 1.114 1.027

We see that for accident years 9-10, the paid-to-incurred loss ratios are more than
110%. This can be fixed by allowing the development of the paid/incurred triangles
to depend on each other. That is, we include the past values from the paid triangle
as predictors when developing the incurred triangle, and vice versa.

We illustrate this ignoring the commercial auto triangle. See the demo for a model
that uses all three triangles. We also include the MCL model and the Munich chain
ladder as a comparison:

R>
R>
R>
R>
R>

da <- auto[1:2]

# MCL with diagonal development

MO <- MultiChainLadder (da)

# non-diagonal development matrix with no intercepts
M1 <- MultiChainLadder2(da, type = "GMCL-int")
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R> # Munich Chain Ladder

R> M2 <- MunichChainLadder(da[[1]], dal[[2]])

R> # compile results and compare projected paid to incured ratios
R> r1 <- lapply(list(MO, M1), function(x){

+ ult <- summary(x)@Ultimate

ult[, 1] / ult[, 2]

+

+ 3

R> names(r1) <- c("MCL", "GMCL")

R> r2 <- summary(M2)[[1]]1[, 6]

R> r2 <- c(r2, summary(M2)[[2]][2, 3])

R> print(do.call(cbind, c(rl, list(MuCl = r2))) * 100, digits = 4)

MCL GMCL MuCl

1 99.50 99.50 99.50
2 99.49 99.49 99.55
3 99.29 99.29 100.23
4 99.20 99.20 100.23
5 99.83 99.56 100.04
6 100.43 99.66 100.03
7 103.53 99.76 99.95
8 111.24 100.02 99.81
9 122.11 100.20 99.67
10 126.28 100.18 99.69

Total 105.58 99.68 99.88

3.4 Clark’s methods

The ChainLadder package contains functionality to carry out the methods de-
scribed in the paper ® by David Clark | ] . Using a longitudinal analysis ap-
proach, Clark assumes that losses develop according to a theoretical growth curve.
The LDF method is a special case of this approach where the growth curve can
be considered to be either a step function or piecewise linear. Clark envisions a
growth curve as measuring the percent of ultimate loss that can be expected to
have emerged as of each age of an origin period. The paper describes two methods
that fit this model.

The LDF method assumes that the ultimate losses in each origin period are separate
and unrelated. The goal of the method, therefore, is to estimate parameters for the
ultimate losses and for the growth curve in order to maximize the likelihood of
having observed the data in the triangle.

The CapeCod method assumes that the apriori expected ultimate losses in each
origin year are the product of earned premium that year and a theoretical loss ratio.
The CapeCod method, therefore, need estimate potentially far fewer parameters:

6 This paper is on the CAS Exam 6 syllabus.
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for the growth function and for the theoretical loss ratio.

One of the side benefits of using maximum likelihood to estimate parameters is that
its associated asymptotic theory provides uncertainty estimates for the parameters.
Observing that the reserve estimates by origin year are functions of the estimated
parameters, uncertainty estimates of these functional values are calculated according
to the Delta method, which is essentially a linearisation of the problem based on a
Taylor series expansion.

The two functional forms for growth curves considered in Clark's paper are the
loglogistic function (a.k.a., the inverse power curve) and the Weibull function, both
being two-parameter functions. Clark uses the parameters w and € in his paper.
Clark’s methods work on incremental losses. His likelihood function is based on the
assumption that incremental losses follow an over-dispersed Poisson (ODP) process.

3.4.1 Clark’s LDF method
Consider again the RAA triangle. Accepting all defaults, the Clark LDF Method
would estimate total ultimate losses of 272,009 and a reserve (FutureValue) of

111,022, or almost twice the value based on the volume weighted average link
ratios and loglinear fit in section 3.2.1 above.

R> ClarkLDF (RAA)

Origin CurrentValue Ldf UltimateValue FutureValue StdError CV

1981 18,834 1.216 22,906 4,072 2,792 68.6
1982 16,704 1.251 20,899 4,195 2,833 67.5
1983 23,466 1.297 30,441 6,975 4,050 58.1
1984 27,067 1.360 36,823 9,756 5,147 52.8
1985 26,180 1.451 37,996 11,816 5,858 49.6
1986 15,852 1.591 25,226 9,374 4,877 52.0
1987 12,314 1.829 22,528 10,214 5,206 51.0
1988 13,112 2.305 30,221 17,109 7,568 44.2
1989 5,395 3.596 19,399 14,004 7,506 53.6
1990 2,063 12.394 25,569 23,506 17,227 73.3
Total 160,987 272,009 111,022 36,102 32.5

Most of the difference is due to the heavy tail, 21.6%, implied by the inverse power
curve fit. Clark recognizes that the log-logistic curve can take an unreasonably long
length of time to flatten out. If according to the actuary's experience most claims
close as of, say, 20 years, the growth curve can be truncated accordingly by using
the maxage argument:

R> ClarkLDF (RAA, maxage = 20)
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Origin CurrentValue Ldf UltimateValue FutureValue StdError CV

1981 18,834 1.124 21,168 2,334 1,765 75.
1982 16,704 1.156 19,314 2,610 1,893 72.
1983 23,466 1.199 28,132 4,666 2,729 58.
1984 27,067 1.257 34,029 6,962 3,569 b1.
1985 26,180 1.341 35,113 8,933 4,218 47.
1986 15,852 1.471 23,312 7,460 3,775 50.
1987 12,314 1.691 20,819 8,505 4,218 49.
1988 13,112 2.130 27,928 14,816 6,300 42.
1989 5,395 3.323 17,927 12,532 6,658 53.
1990 2,063 11.454 23,629 21,566 15,899 73.
Total 160,987 251,369 90,382 26,375 29.

The Weibull growth curve tends to be faster developing than the log-logistic:

R> ClarkLDF(RAA, G="weibull")

(]

N N~ 010 0N~ OO

Origin CurrentValue Ldf UltimateValue FutureValue StdError  CV%

1981 18,834 1.022 19,254 420 700 166
1982 16,704 1.037 17,317 613 855 139.
1983 23,466 1.060 24,875 1,409 1,401 99.
1984 27,067 1.098 29,728 2,661 2,037 76.
1985 26,180 1.162 30,419 4,239 2,639 62.
1986 15,852 1.271 20,151 4,299 2,549 b59.
1987 12,314 1.471 18,114 5,800 3,060 52.
1988 13,112 1.883 24,692 11,580 4,867 42.
1989 5,395 2.988 16,122 10,727 5,544 b1.
1990 2,063 9.815 20,248 18,185 12,929 T71.
Total 160,987 220,920 59,933 19,149 32.

It is recommend to inspect the residuals to help assess the reasonableness of the
model relative to the actual data.

Although there is some evidence of heteroscedasticity with increasing ages and fitted
values, the residuals otherwise appear randomly scattered around a horizontal line
through the origin. The g-q plot shows evidence of a lack of fit in the tails, but the
p-value of almost 0.2 can be considered too high to reject outright the assumption
of normally distributed standardized residuals’ .

3.4.2 Clark’s Cap Cod method

The RAA data set, widely researched in the literature, has no premium associated
with it traditionally. Let's assume a constant earned premium of 40000 each year,
and a Weibull growth function:

7As an exercise, the reader can confirm that the normal distribution assumption is rejected at
the 5% level with the log-logistic curve.
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R> plot(ClarkLDF(RAA, G="weibull"))

Standardized Residuals
Method: ClarkLDF; Growth function: weibull

Expected Value

R> ClarkCapeCod (RAA,

Origin CurrentValue

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
Total
StdError
692
912
1,188
1,523

1
1
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12,314
13,112
5,395
2,063
160,987
CV%
58.6
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Premium
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1,917 62.9
2,360 49.8
2,845 39.5
3,366 31.6
3,924 25.9
4,491 22.0
12,713 19.4

The estimated expected loss ratio is 0.566. The total outstanding loss is about 10%
higher than with the LDF method. The standard error, however, is lower, probably
due to the fact that there are fewer parameters to estimate with the CapeCod
method, resulting in less parameter risk.

A plot of this model shows similar residuals By Origin and Projected Age to those
from the LDF method, a better spread By Fitted Value, and a slightly better g-q
plot, particularly in the upper tail.

R> plot(ClarkCapeCod(RAA, Premium = 40000, G = "weibull"))

Standardized Residuals
Method: ClarkCapeCod; Growth function: weibull

By Origin By Projected Age
0 k)
[ ©
=) o =} o
% N e 8 % N e o
o o o ° o
5 e ° o o o ° e ° = e 8o o,
o 8 & © d o o 8 8 o o
N ? 8o o S J N S o o o T 5
B g8 ° 8 ° ° B g ° o ° ° °
8 7 o ° 4 g T A5 8 o o
-‘% ° g ° ° % o © o H °
g T T T T T g T T T T T
2 4 6 8 10 2 4 6 8 10
Origin Age
By Fitted Value Normal Q-Q Plot
0
] - @
.-é ~ ° . % ~ | Shapiro-Wilk p.value = 0.51569.
[} o o c
'E =7 o o 8° 8 ° g = 7
g g 8 g © i
S DANINNS T3 3
_rg T ‘ o o § ; o 8 E T
= ° o © X
g T T T T @ T T T T T
1000 3000 5000 -2 -1 0 1 2
Expected Value Theoretical Quantiles

41



3.5 Generalised linear model methods

Recent years have also seen growing interest in using generalised linear models
[GLM] for insurance loss reserving. The use of GLM in insurance loss reserving has
many compelling aspects, e.g.,

e when over-dispersed Poisson model is used, it reproduces the estimates from
Chain Ladder;

e it provides a more coherent modeling framework than the Mack method;

e all the relevant established statistical theory can be directly applied to perform
hypothesis testing and diagnostic checking;

The glmReserve function takes an insurance loss triangle, converts it to incremental
losses internally if necessary, transforms it to the long format (see as.data.frame)
and fits the resulting loss data with a generalised linear model where the mean
structure includes both the accident year and the development lag effects. The
function also provides both analytical and bootstrapping methods to compute the
associated prediction errors. The bootstrapping approach also simulates the full
predictive distribution, based on which the user can compute other uncertainty
measures such as predictive intervals.

Only the Tweedie family of distributions are allowed, that is, the exponential family
that admits a power variance function V(i) = pP. The variance power p is specified
in the var.power argument, and controls the type of the distribution. When the
Tweedie compound Poisson distribution 1 < p < 2 is to be used, the user has the
option to specify var.power = NULL, where the variance power p will be estimated
from the data using the cplm package [ ]

For example, the following fits the over-dispersed Poisson model and spells out the
estimated reserve information:

R> # load data

R> data(GenIns)

R> GenIns <- GenIns / 1000

R> # fit Poisson GLM

R> (fit1l <- glmReserve(GenIns))

Latest Dev.To.Date Ultimate IBNR S.E Cv
2 5339 0.98252 5434 95 110.1 1.1589
3 4909 0.91263 5379 470 216.0 0.4597
4 4588 0.86599 5298 710 260.9 0.3674
5 3873 0.79725 4858 985 303.6 0.3082
6 3692 0.72235 5111 1419 375.0 0.2643
7 3483 0.61527 5661 2178 495.4 0.2274
8 2864 0.42221 6784 3920 790.0 0.2015
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9 1363 0.24162 5642 4279 1046.5 0.2446
10 344 0.06922 4970 4626 1980.1 0.4280
total 30457 0.61982 49138 18681 2945.7 0.1577

We can also extract the underlying GLM model by specifying type = "model" in
the summary function:

R> summary(fitl, type = "model")

Call:
glm(formula = value ~ factor(origin) + factor(dev), family = fam,
data = ldaFit, offset = offset)

Deviance Residuals:
Min 1Q Median 3Q Max
-14.701 -3.913 -0.688 3.675 15.633

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 5.59865 0.17292 32.38 < 2e-16
factor(origin)2 0.33127 0.15354 2.16 0.0377
factor(origin)3 0.32112 0.15772 2.04 0.0492
factor(origin)4 0.30596 0.16074 1.90 0.0650
factor(origin)b 0.21932 0.16797 1.31 0.1999
factor(origin)6é  0.27008 0.17076 1.58 0.1225
factor(origin)7  0.37221 0.17445 2.13  0.0398
factor(origin)8 0.55333 0.18653 2.97 0.0053
factor(origin)9 0.36893 0.23918 1.54 0.1317
factor(origin)10 0.24203 0.42756 0.57 0.5749
factor(dev)?2 0.91253 0.14885 6.13 4.7e-07
factor(dev)3 0.95883 0.15257 6.28 2.9e-07
factor(dev)4 1.02600 0.15688 6.54 1.3e-07
factor(dev)5 0.43528 0.18391 2.37 0.0234
factor(dev)6 0.08006 0.21477 0.37 0.7115
factor(dev)7 -0.00638 0.23829 -0.03 0.9788
factor(dev)8 -0.39445 0.31029 -1.27 0.2118
factor(dev)9 0.00938 0.32025 0.03 0.9768
factor(dev)10 -1.37991 0.89669 -1.54 0.1326

(Dispersion parameter for Tweedie family taken to be 52.6)
Null deviance: 10699 on 54 degrees of freedom
Residual deviance: 1903 on 36 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 4
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Similarly, we can fit the Gamma and a compound Poisson GLM reserving model by
changing the var.power argument:

R> # Gamma GLM
R> (fit2 <- glmReserve(Genlns, var.power = 2))

Latest Dev.To.Date Ultimate IBNR S.E Ccv
2 5339 0.98288 5432 93 45.17 0.4857
3 4909 0.91655 5356 447 160.56 0.3592
4 4588 0.88248 5199 611 177.62 0.2907
5 3873 0.79611 4865 992 254.47 0.2565
6 3692 0.71757 5145 1453 351.33 0.2418
7 3483 0.61440 5669 2186 526.29 0.2408
8 2864 0.43870 6529 3665 941.32 0.2568
9 1363 0.24854 5485 4122 1175.95 0.2853
10 344 0.07078 4860 4516 1667.39 0.3692
total 30457 0.62742 48543 18086 2702.71 0.1494

R> # compound Poisson GLM (variance function estimated from the data):
R> #(fit3 <- glmReserve(GenIns, var.power = NULL))

By default, the formulaic approach is used to compute the prediction errors. We
can also carry out bootstrapping simulations by specifying mse.method = "boot-
strap" (note that this argument supports partial match):

R> set.seed(11)
R> (fitb5 <- glmReserve(GenIns, mse.method = "boot"))

Latest Dev.To.Date Ultimate IBNR S.E Cv
2 5339 0.98252 5434 95 105.4 1.1098
3 4909 0.91263 5379 470 216.1 0.4597
4 4588 0.86599 5298 710 266.6 0.3755
5 3873 0.79725 4858 985 307.5 0.3122
6 3692 0.72235 5111 1419 376.3 0.2652
7 3483 0.61527 5661 2178 496.1 0.2278
8 2864 0.42221 6784 3920 812.9 0.2074
9 1363 0.24162 5642 4279 1050.9 0.2456
10 344 0.06922 4970 4626 2004.1 0.4332
total 30457 0.61982 49138 18681 2959.4 0.1584

When bootstrapping is used, the resulting object has three additional components
- “sims.par”, “sims.reserve.mean”, and “sims.reserve.pred” that store the simulated
parameters, mean values and predicted values of the reserves for each year, respec-
tively.
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R> names (fit5)

[1] "call" "summary" "Triangle"
[4] "FullTriangle" "model" "sims.par"
[7] "sims.reserve.mean" "sims.reserve.pred"

We can thus compute the quantiles of the predictions based on the simulated sam-
ples in the “sims.reserve.pred” element as:

R> pr <- as.data.frame(fit5$sims.reserve.pred)

R> gv <- ¢(0.025, 0.25, 0.5, 0.75, 0.975)

R> res.q <- t(apply(pr, 2, quantile, qv))

R> print(format (round(res.q), big.mark = ","), quote = FALSE)

2.5% 25% 50% 75%  97.5%
2 0 34 82 170 376
3 136 337 470 615 987
4 279 666 719 917 1,302
5 506 797 972 1,197 1,674
6 774 1,159 1,404 1,666 2,203
7 1,329 1,877 2,210 2,547 3,303
8 2,523 3,463 3,991 4,572 5,713
9 2,364 3,593 4,310 5,013 6,531
10 913 3,354 4,487 5,774 9,165

The full predictive distribution of the simulated reserves for each year can be visu-
alized easily:

R> library(ggplot2)

R> library(reshape2)

R> prm <- melt(pr)

R> names(prm) <- c("year", "reserve")

R> gg <- ggplot(prm, aes(reserve))

R> gg <- gg + geom_density(aes(fill = year), alpha = 0.3) +
+ facet_wrap(“year, nrow = 2, scales = "free") +
+ theme (legend.position = "none")

R> print(gg)

4 Using ChainLadder with RExcel and SWord

The ChainLadder package comes with example files which demonstrate how its
functions can be embedded in Excel and Word using the statconn interface| ]

The spreadsheet is located in the Excel folder of the package. The R command
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R> system.file("Excel", package="ChainLadder")

will tell you the exact path to the directory. To use the spreadsheet you will need
the RExcel-Add-in | ]. The package also provides an example SWord file,
demonstrating how the functions of the package can be integrated into a MS Word
file via SWord [ ]. Again you find the Word file via the command:

R> system.file("SWord", package="ChainLadder")

The package comes with several demos to provide you with an overview of the
package functionality, see

R> demo (package="ChainLadder")

5 Further resources

Other useful documents and resources to get started with R in the context of
actuarial work:

e Introduction to R for Actuaries | I

e An Actuarial Toolkit [ ]

o Computational Actuarial Science with R | ]

e Modern Actuarial Risk Theory — Using R [ ]

e Actuar package vignettes: http://cran.r-project.org/web/packages/
actuar/index.html

e Mailing list R-SIG-insurance®: Special Interest Group on using R in actuarial
science and insurance

5.1 Other insurance related R packages

Below is a list of further R packages in the context of insurance. The list is by no-
means complete, and the CRAN Task Views 'Emperical Finance’ and Probability
Distributions will provide links to additional resources. Please feel free to contact
us with items to be added to the list.

e cplm: Likelihood-based and Bayesian methods for fitting Tweedie compound
Poisson linear models | ]

8https://stat.ethz.ch/mailman/listinfo/r-sig-insurance
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e lossDev: A Bayesian time series loss development model. Features include
skewed-t distribution with time-varying scale parameter, Reversible Jump
MCMC for determining the functional form of the consumption path, and
a structural break in this path [ ]

e favir: Formatted Actuarial Vignettes in R. FAVIR lowers the learning curve
of the R environment. It is a series of peer-reviewed Sweave papers that use
a consistent style [ ]

e actuar: Loss distributions modelling, risk theory (including ruin theory), sim-
ulation of compound hierarchical models and credibility theory [ ]

e fitdistrplus: Help to fit of a parametric distribution to non-censored or
censored data [ ]

e mondate: R packackge to keep track of dates in terms of months [ ]

e lifecontingencies: Package to perform actuarial evaluation of life contin-
gencies [ ]

5.2 Presentations

Over the years the contributors of the Chainladder package have given numerous
presentations and most of those are still available online:

e Bayesian Hierarchical Models in Property-Casualty Insurance, Wayne Zhang,
2011

e ChainlLadder at the Predictive Modelling Seminar, Institute of Actuaries,
November 2010, Markus Gesmann, 2011

e Reserve variability calculations, CAS spring meeting, San Diego, Jimmy Curcio
Jr., Markus Gesmann and Wayne Zhang, 2010

e The ChainLadder package, working with databases and MS Office interfaces,
presentation at the "R you ready?” workshop , Institute of Actuaries, Markus
Gesmann, 2009

e The ChainLadder package, London R user group meeting, Markus Gesmann,
2009

e Introduction to R, Loss Reserving with R, Stochastic Reserving and Modelling
Seminar, Institute of Actuaries, Markus Gesmann, 2008

e Loss Reserving with R, CAS meeting, Vincent Goulet, Markus Gesmann and
Daniel Murphy, 2008

e The ChainLadder package R-user conference Dortmund, Markus Gesmann,
2008
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5.3 Further reading

Other papers and presentations which cited ChainLadder : | I I 1

[ ], [Sehio], [ ], [Esc1l], [Spell]

6 Training and consultancy

Please contact us if you would like to discuss tailored training or consultancy.
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