
Cross-Platform Normalization Methods

Implemented in CONOR

Terminology and Notation
Before describing the different cross-platform normalization methods currently
available, it is necessary to define some terminology and notation that will be
used throughout the remainder of this work. The terminology required is that
associated with the levels of variation present in a microarray experiment:

Target A nucleic acid species of interest.

Gene Another commonly used term for target, especially when the target is
an mRNA species associated with a particular gene of interest.

Probe The component of a microarray designed to detect a particular target.
Usually, a probe is made up of identical oligonucleotides attached to a
small region of substrate.

Treatment The experimental protocols or natural conditions to which a bio-
logical specimen of interest has been subjected. For example, the control
and experimental sets in a biological experiment are treatment groups.

Sample A homogeneous solution of nucleic acids on which assays can be per-
formed. Generally a sample is extracted from a member of a treatment
group. If multiple samples are extracted from different members of the
same treatment group, those samples are considered biological replicates.

Assay A particular sample measured by a particular microarray. If multiple
assays are performed on the same sample, those assays are considered
technical replicates.

Platform A particular type of microarray. To be considered the same plat-
form, two microarrays must be the same model, produced by the same
manufacturer, and used and analyzed in the same manner on samples
originating from the same species.

Each cross-platform normalization method is designed to use data from assays
conducted on two platforms and produce data equivalent to the data that might
be produced by performing the same assays on a single platform. That is, the
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goal of cross-platform normalization is to remove all platform effects from a data
set while retaining all treatment and sample effects. For convenience, I will use
the same notation in describing all the methods. Let xgap be the expression
measurement produced by a particular gene, g; assay, a; and platform, p. The
matrix of all data for a particular platform and the vector of all data for a
particular platform and assay will be denoted x··p and x·ap, respectively. The
number of genes will be denoted m and the number of assays for each platform
will be denoted np. The cross-platform normalized expression corresponding
to xgap will be denoted ymethod

gap for the cross-platform normalization procedure
method, or simply ygap when the normalization method is unambiguous. The
gene ranking function will be denoted R (xgap), and will give the rank of xgap in
x·ap. The nth order statistic for a particular assay and platform will be denoted
On (x·ap). Note that the gene rank and order functions are inverses, such that
xgap = OR(xgap) (x·ap).

XPN
XPN [10] is the most recently developed cross-platform normalization technique
and the most complex. XPN is based on a block linear model of microar-
ray data, where the blocks are based on estimated gene and assay clusters.
The number of gene clusters, K, and assay clusters, L, must be determined
by the user. Clustering of genes and assays is performed using a modified k-
means algorithm, with the usual distance metric replaced with the value 1 −
cor ([xg1·p1 ;xg1·p2 ] , [xg2·p1 ;xg2·p2 ]) for gene clustering and 1−cor

�
x·a1p(a1), x·a2p(a2)

�

for assay clustering, where [W ;Z] represents the concatenation of the vectors
W and Z and p (a) is the platform associated with assay a. Let α (g) be the
gene cluster assigned to gene g and β (a) be the assay cluster assigned to assay
a. The XPN model is

xgap = Aα(g)β(a)pbgp + cgp + σgp�gap, (1)

where �gap ∼ Normal (0, 1) is a random variable. The parameters Aα(g)β(a)p,
bgp, cgp, and σgp are estimated by maximum likelihood under the constraints

L�

a=1

Aα(g)β(a)p = 0, (2)

L�

a=1

�
Aα(g)β(a)p

�2
= L, (3)

�

{i:α(g)=i}

> 0, (4)

to ensure identifiability. Once the parameters have been fitted, the normalized
data are generated according to

ygap = Âα(g)β(a)b̂g + ĉg + σ̂g

�
xgap − Âα(g)β(a)pb̂gp − ĉgp

σ̂gp

�
(5)
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where Âα(g)β(a), b̂g, ĉg, and σ̂g are weighted averages of the maximum likelihood
estimates Âα(g)β(a)p, b̂gp, ĉgp, and σ̂gp, respectively.

Distance Weighted Discrimination
DWD [1, 7] is based on the construction of a linear classifier between the assays
of one platform and assays of the other. A linear classifier is defined by a
hyperplane separating Rn into two regions. The orientation and position of
the separating hyperplane can be specified by a unit normal vector, w, and a
scalar, β. In DWD, the hyperplane is chosen as the solution to the optimization
problem

min
w,β,ξ

�

g,a,p

�
1

rap
+ cξap

�
,

s.t. �w�2 ≤ 1, (6)
ξ ≥ 0,

rap ≥ 0 (7)

where the residuals rap are given by

rap = (−1)p (�x·ap, w�+ β) + ξap, (8)

the operation �·, ·� is the vector inner product, and c is a scalar penalty pa-
rameter for the error factor ξap. The error factor is included to allow for the
possibility that the data sets for the two platforms are not linearly separable. In
such a case, the penalty factor c represents a sort of weight given to misclassi-
fication. It is assumed that platform indicators have been chosen such that one
is odd and the other even. For example, Affymetrix data may be assigned p = 1
while Illumina data are assigned p = 2. The penalty parameter is determined
based on the inverse of the median pairwise distance between the assays of the
two platforms. Specifically, the penalty is given by

c =
100

median {�x·ap1 − x·ap2� : p1 �= p2}
. (9)

Once w and β have been determined, the normalized data are produced by
shifting the data from each platform toward the separating hyperplane. The
magnitude of the location shift is determined by the average projection of the
assay vectors of each platform into the normal vector w. The normalized data
are

ygap = xgap + w
1

np

�

{j:∃x·jp}

�x·jp, w� . (10)

DWD can be thought of as defining an implicit model of platform effects as
location parameters, with

xgap = Γga + ηp, (11)

where ηp and Γga are platform effects and all other effects, respectively.
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Empirical Bayes
The EB method is based on a straight-forward model of microarray data given
by

xgap = αg +Dβg + γgp + δgp�gap, (12)

where �gap ∼ Normal
�
0, σ2

g

�
, D is a design matrix, and βg is a vector of re-

gression coefficients. The method makes use of distributional assumptions on
the parameters to borrow information across genes when estimating platform
effects, making the parameter estimation procedure much less straight-forward
than the model (12) would suggest. The method was not originally designed for
cross-platform normalization, but has been applied to cross-platform normal-
ization and is available for that purpose as part of the ArrayMining service. My
description here is based on re-interpreting the batch effects proposed by the
method’s original authors as platform effects. Because this work is concerned
with cross-platform normalization in the absence of treatment and sample in-
formation, the design matrix term is not used. The model used here is

xgap = αg + γgp + δgp�gap, (13)

which is identical to (12) except that the design term has been eliminated.
Estimation of the model parameters is a multi-step process. Initial esti-

mates α̂g and γ̂gp are calculated by a constrained least squares approach with�2
p=1 npγ̂gp = 0. The initial estimates are then used to produce a standardized

data set
zgap =

xgap − α̂g

σ̂2
g

, (14)

where σ̂2
g is a pooled variance estimate

σ̂
2
g =

1

N

2�

p=1

np�

a=1

(xgap − α̂g − γ̂gp)
2
, (15)

where N is the total number of assays from both platforms.
The standardized data are assumed to be distributed zgap ∼ Normal

�
γ̂gp, δ̂

2
gp

�
.

Based on this assumption, a second estimate, γ̃gp, is produced from the stan-
dardized data by

γ̃gp =
1

m

np�

a=1

zgap, (16)

and an estimate δ̃gp is produced by

δ̃gp =
1

np − 1

np�

a=1

(zgap − γ̃gp)
2
. (17)
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Prior distributions are assumed for the estimates thus produced:

γ̃gp ∼ Normal
�
Yp, τ

2
i

�
, (18)

δ̃
2
gp ∼ InverseGamma (λp, θp) . (19)

The hyper-parameters Yp, τ2p , λp, and θp are estimated using the method of
moments by

Ỹp =
1

m

m�

g=1

γ̃gp, (20)

τ̃
2
p =

1

m− 1

m�

g=1

�
Ỹp − γ̃gp

�2
, (21)

λ̃p =

1
m

�m
g=1 δ̃

2
gp +

2
m−1

�m
g=1

�
δ̃2gp − 1

m

�m
g=1 δ̃

2
gp

�2

1
m−1

�m
g=1

�
δ̃2gp − 1

m

�m
g=1 δ̃

2
gp

�2 , (22)

θ̃p =

�
1
m

�m
g=1 δ̃

2
gp

�3
+
�

1
m

�m
g=1 δ̃

2
gp

��
1

m−1

�m
g=1

�
δ̃2gp − 1

m

�m
g=1 δ̃

2
gp

�2
�

1
m−1

�m
g=1

�
δ̃2gp − 1

m

�m
g=1 δ̃

2
gp

�2 .(23)

Final estimates γ∗
gp and δ2∗gp are obtained by applying Bayes’ Theorem to the

assumed normal distribution of zgap to obtain a posterior distribution for γgp

conditioned on the standardized data and denoted by

γgp ∼ π
�
γgp | zgp, δ2gp

�
, (24)

which is shown to be normally distributed. That distribution is used to derive
the system defining the final estimators as





γ∗
gp =

npτ̃
2γ̃2

gp+δ2∗gpỸp

npτ̃2
p+δ2∗gp

,

δ2∗gp =
θ̃p+ 1

2

�np
a=1(zgap−γ∗

gp)
2

np
2 +λ̃p−1

.

(25)

Finally, the cross-platform normalized data is obtained by

ygap =
σ̂2
g

δ∗gp

�
zgap − γ

∗
gp

�
+ α̂g, (26)

after solution of the system (25).

Median Rank Scores
MRS [11] is a comparatively simple approach to cross-platform normalization
and is extremely similar to QN and DisTran. In MRS, the normalized data is
given by �

yga1 = xga1

yga2 = OR(xga2) (GeneMedians (x··1))
(27)
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where GeneMedians (x··1) is the vector of median expression values the genes in
the data matrix x··1. The outcome of MRS is that the distribution of each assay
for platform 2 is identical to the distribution of the gene medians of platform
1. Note that the distributions of expression values within each assay may still
differ within the platform 2 data, unless they have already been fixed by some
other pre-processing step as they have been in this study.

Quantile Discretization
QD [11] is similar to quantile normalization in that it results in an identical
distribution for each assay. Instead of generating a distribution for the assays
from the data, QD uses an equal frequency binning procedure to create a mod-
ified discrete uniform distribution. That modified distribution is given by the
probability mass function (pmf)

PZ (z | b) =
�

1
b I{1..b}

�
z + b+1

2

�
, b odd

1
b I{1..b}

�
z + b−1

2

�
+ 1

b I{1} (|z|) , b even,
(28)

where b is the number of bins and I{α..β} (z) is the identity function for the set
of integers from α to β, inclusive. The distribution is identical to a discrete
uniform distribution except that the middle two bins are merged when the
number of bins, b, is even. Let G (z | b) be the cumulative distribution function
(cdf) associated with PZ . The QD transformation is given by

ygap = G
−1

�
F̂a (xgap)

�
(29)

where F̂a is the empirical cdf for assay a. The result of QD is that data for each
assay are distributed into b bins, each containing the same number of genes,
except the middle bin in the case of b being even which contains twice as many.
The values of the bins are shifted so that the middle bin has the expression value
of 0 and the resulting expression values range from −

��
b
2

�
− 1

�
to

�
b
2

�
−1, where

�·� is the ceiling function.

Normalized Discretization
NorDi [8] was developed as part of the GenMiner program [9] and is available
as part of ArrayMining as a cross-study normalization technique (called cross-
platform normalization here). NorDi is based on a process of removing outliers
from each assay under the assumption of normality, determining the mean and
variance for each assay from the trimmed samples, and then discretizing all
expression values into {−1, 0, 1} based on a z-score cut-off derived from the
estimated mean and variance.

The presence of outliers is determined by the Grubb test [4] and confirmed
by the Jarque-Bera statistic [2]. Specifically, a trimmed data set is produced for
each assay by the following algorithm:

Let n := 0
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Let d0 := x·ap
Let JB0 be the Jarque-Bera statistic for dn

loop
Set n := n+ 1
Let p be the p-value of the Grubbs’ statistic for dn−1

if p < pvalue then
Let dn be a data set equivalent to dn−1 with the most outlying data point
removed

else
Let dn := dn−1

end if
Let JBn be the Jarque-Bera statistic for dn

if dn = dn−1 and JBn > JBn−1 then
return dn

else if JBn < JBn−1 then
Set dn := dn−1

end if
end loop

where pvalue is a pre-determined cut-off value, which for all my experiments
was set to 0.01, and the most outlying data point is defined as the point with
the greatest absolute distance from the sample mean.

The normalized data is then given by

ygap =






−1, xgap−µ̂ap

σ̂ap
≤ −Zα/2

1, xgap−µ̂ap

σ̂ap
≥ Zα/2

0, otherwise

(30)

where µ̂ap and σ̂ap are the sample mean and standard deviation from the
trimmed data from assay a and platform p, α is a pre-determined cut-off set at
0.05 for all of my work here, and Zα/2 is the z-score associated with the one-
sided p-value α/2. Note that the outlying values removed from the trimmed
set are still included in the transformation, and that they are scored based on
statistics estimated from the trimmed data set from which they were removed.

Distribution Transformation
DisTran [5] is quite similar to the MRS method. For DisTran the normalized
data are given by �

yga1 = xga1,

yga2 = OR(xga2) (z) ,
(31)

where
z =

1

L

�
GeneMeans (xiTi1) , (32)

where L is the total number of treatment groups and Ti is the set of all assays
belonging to treatment group ifor platform 1. Because I am studying normaliza-
tion in the absence of treatment information, treatment groups are estimated by
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k-means clustering as in the XPN method. For all of my experiments, the num-
ber of treatment groups to estimate, L, matched the true number of treatment
groups.

Gene Quantiles
GQ is not described in any publication, but is implemented as part of WebAr-
rayDB [12] for cross-platform normalization of microarray data. GQ is identical
to MRS but for the inclusion of a platform dependent location shift, which en-
sures that the median for each gene in platform 1 is equal to the median for the
corresponding gene in platform 2. Specifically, the transformation is given by
�
yga1 = xga1,

yga2 = OR(xga2) (GeneMedians (x··1))−GeneMedians (x··1) + GeneMedians (x··2) ,

(33)
where the GeneMedians function is defined as it is for MRS. The normalized
data produced by GQ do not satisfy the same distributional outcome as MRS
transformed data.

Quantile Normalization
QN [3] is a method for intra-platform normalization that has been applied to
cross-platform normalization [6]. The method is similar to MRS except that
the median is replaced with the mean as a measure of center, data are sorted
within each assay before gene summarization, and the normalization is per-
formed without regard to which of the two platforms produced each assay. The
transformation is

ygap = OR(xgap) (GeneMeans (AssaySort ([x··1;x··2]))) (34)

where GeneMeans is defined similarly to GeneMedians as the vector of mean ex-
pression values the genes in the data matrix x··1 and AssaySort gives the matrix
of expression values in which data have been sorted within each assay. When
applied to the sorted data, GeneMeans is assumed to calculate means based on
the rank of each gene, rather than the actual identity of each. That is, genes
are matched by rank before averaging. The outcome of quantile normalization
is that the distribution of expression values is identical for all assays.
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