
CARBayes: An R Package for Spatial Areal Unit

Modelling with Conditional Autoregressive Priors

Duncan Lee
University of Glasgow

Abstract

This is a vignette for the R package CARBayes version 4.1, and is an updated version
of a paper in the Journal of Statistical Software in 2013 Volume 55 Issue 13 by the same
author. This vignette describes the class of models that can be implemented in CARBayes,
and gives 3 worked examples of spatial data analysis using the package.
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1. Introduction

Data relating to a set of non-overlapping spatial areal units are prevalent in many fields, in-
cluding agriculture (Besag and Higdon (1999)), ecology (Brewer and Nolan (2007)), education
(Wall (2004)), epidemiology (Lee (2011)) and image analysis (Gavin and Jennison (1997)).
There are numerous motivations for modelling such data, including ecological regression (see
Wakefield (2007) and Lee et al. (2009)), disease mapping (see Green and Richardson (2002)
and Lee (2011)) and Wombling (see Lu et al. (2007), Ma and Carlin (2007)). The set of areal
units on which data are recorded can form a regular lattice or differ largely in both shape and
size, with examples of the latter including the set of electoral wards or census tracts corre-
sponding to a city or county. In either case such data typically exhibit spatial autocorrelation,
with observations from areal units close together tending to have similar values. A proportion
of this spatial autocorrelation may be modelled by known covariate risk factors in a regression
model, but it is common for spatial structure to remain in the residuals after accounting for
these covariate effects. This residual spatial autocorrelation can be induced by a number
of factors, and violates the assumption of independence that is common in many regression
models. One possible cause is unmeasured confounding, which occurs when an important
spatially autocorrelated covariate is either unmeasured or unknown. The spatial structure
in this covariate induces spatial autocorrelation into the response, which hence cannot be
accounted for in a regression model. Other possible causes of residual spatial autocorrelation
are neighbourhood effects, where subjects behaviour is influenced by that of neighbouring
subjects, and grouping effects, where subjects choose to be close to similar subjects.

The most common remedy for this residual autocorrelation is to augment the linear predictor
with a set of spatially autocorrelated random effects, as part of a Bayesian hierarchical model.
These random effects are typically represented with a Conditional AutoRegressive (CAR, Be-
sag et al. (1991)) prior, which induces spatial autocorrelation through the adjacency structure
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of the areal units. A number of CAR priors have been proposed in the literature, including
the intrinsic and Besag-York-Mollié (BYM) models (both Besag et al. (1991)), as well as
alternatives developed by Leroux et al. (1999) and Stern and Cressie (1999). However, the
CAR priors listed above force the random effects to exhibit a single global level of spatial
autocorrelation, ranging from independence through to strong spatial smoothness. Such a
uniform level of spatial autocorrelation for the entire region is unrealistic for real data, which
instead may exhibit sub-regions of spatial autocorrelation separated by discontinuities. Such
localised spatial autocorrelation may occur where rich and poor communities live side-by-side,
and in this context the response variable is likely to evolve smoothly within each community
with a sudden change in its value at the border where the two communities meet. However,
covariate data quantifying this localised strucure may not be available, meaning that it has
to be modelled by the random effects. A number of approaches have been proposed for ex-
tending the class of CAR priors to deal with localised spatial smoothing amongst the random
effects, including papers by Lawson and Clark (2002) (combining the intrinsic model with a
‘jump’ component for discontinuities), Brewer and Nolan (2007) (variable smoothing via a
spatially varying variance), Lu et al. (2007) (modelling the adjacency structure of the areal
units using logistic regression), Reich and Hodges (2008) (varible smoothing via a spatially
varying variance in a spatio-temporal setting), Lee and Mitchell (2012) (modelling the partial
correlation between random effects in adjacent areal units as a function of their dissimilarity),
and Lee et al. (2014) (localised smoothing in an ecological regression context).

The models described above are typically implemented in a Bayesian setting, where inference
is based on Markov chain Monte Carlo (McMC) simulation. The most commonly used soft-
ware to implement this class of models is the BUGS project (Lunn et al. (2009), WinBUGS
and OpenBUGS), which has in-built functions car.normal and car.proper to implement the
intrinsic, BYM and Stern and Cressie (1999) models, as well as allowing users to write code
to implement their own spatial random effects models. The intrinsic and BYM models can
also be implemented in BayesX (Belitz, C and Brezger, A and Kneib, T and Lang, S (2009)),
while the R software (R Core Team (2013)) has packages CARramps (for Gaussian data),
hSDM (for binomial data), spatcounts (for count data including Poisson and zero-inflated
Poisson distributions) and spdep (for Gaussian data) that can also implement a restricted set
of CAR models. CAR models can also be implemented in R using Integrated Nested Laplace
Approximations (INLA, http://www.r-inla.org/ ), using the package INLA.

However, each of these software packages either can only fit a limited set of CAR models or
require a degree of programming to implement them, which is the motivation for creating the
R package CARBayes. The main advantage of this package is its ease of use in fitting CAR
models, because: (1) the spatial adjacency information is easy to specify as a binary neigh-
bourhood matrix; and (2) given the neighbourhood matrix the models can be implemented
by a single function call in R. In addition, CARBayes can implement a much wider class of
spatial areal unit models than is possible using the R packages listed above, as the response
data can follow binomial, Gaussian or Poisson distributions, while a range of CAR priors have
been implemented for the random effects. We note that CARBayes is only designed to fit
CAR models (for a full list of models see Sections 2 and 3), and is in no way a competitor to
the general purpose BUGS software for Bayesian modelling.
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The aim of this vignette is to present the software CARBayes, by outlining the class of models
that it can implement and illustrating its use by means of 3 worked examples. The remainder
of this paper is organised as follows. Section two outlines the general Bayesian hierarchical
model that can be implemented in the CARBayes package, while Section three gives details
about the software. Sections four to six give two worked examples of using the software,
including how to create the neighbourhood matrix and produce spatial maps of the results.
Finally, Section 7 contains a concluding discussion, and outlines areas for future development.

2. Spatial generalised linear mixed models for areal unit data

This section outlines the class of spatial generalised linear mixed models for areal unit data
that can be implemented in the CARBayes software. Inference for all models is set in a
Bayesian framework, and is based on Markov chain Monte Carlo (McMC) simulation.

2.1. Level 1 - data likelihood

The study region S is partitioned into n non-overlapping areal units S = {S1, . . . ,Sn}, which
are linked to a corresponding set of responses Y = (Y1, . . . , Yn), and a vector of known offsets
O = (O1, . . . , On). The spatial pattern in the response is modelled by a matrix of covariates

X = (xT
1 , . . . ,x

T
n ) and a set of random effects φ = (φ1, . . . , φn), the latter of which are

included to model any spatial autocorrelation that remains in the data after the covariate
effects have been accounted for. The vector of covariates for areal unit Sk are denoted by
xT
k = (1, xk1, . . . , xkp), the first of which corresponds to an intercept term. The general model

class that CARBayes can implement is a generalised linear mixed model for spatial areal unit
data which is given by

Yk|µk ∼ f(yk|µk, ν2) for k = 1, . . . , n, (1)

g(µk) = xT
k β + φk +Ok.

The responses Yk come from an exponential family of distributions f(yk|µk, ν2), and in CAR-
Bayes these can be the binomial, Gaussian or Poisson families. The expected value of Yk
is denoted by E[Yk] = µk, while ν2 is an additional scale parameter that is required if the
Gaussian family is used. The expected values of the responses are related to the linear pre-
dictor via an invertible link function g(.), which in this software is one of the logit (binomial
family), identity (Gaussian family) and natural log (Poisson family) functions. The vector of
regression parameters are denoted by β = (β0, . . . , βp), and non-linear covariate effects can
be incorporated into the above model by including natural cubic spline or polynomial basis
functions of the covariates in X.

2.2. Level 2 - prior distributions

An independent Gaussian prior is specified for each regression parameter βj , that is βj ∼
N(mj , vj) for j = 0, . . . , p, and the default values specified by the software are (mj = 0, vj =
1000). The scale parameter ν2 for the Gaussian likelihood is assigned a conjugate inverse-
gamma prior distribution, where the default specification is ν2 ∼ Inverse-Gamma(0.001, 0.001).
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CARBayes can implement a number of different random effects models, and they are sum-
marised below.

Independence priors

The simplest prior for the random effects that can be specified is the independence prior:

θk ∼ N(0, σ2), (2)

σ2 ∼ Inverse-Gamma(a, b),

where θk replaces φk in the data likelihood (1). The variance parameter is assigned a conjugate
inverse-gamma prior distribution, where the default specification is σ2 ∼ Inverse-Gamma(0.001, 0.001).
This random effects prior is appropriate if the covariates included in model (1) have removed
all of the spatial structure in the response, leaving the random effects to account for the
possible effects of over-dispersion (for binomial and Poisson models). However, for most data
sets there is likely to be residual spatial autocorrelation, in which case one of the global or
local CAR priors described below is more appropriate.

Global smoothing CAR priors

Three different globally smooth conditional autoregressive priors for modelling spatial au-
tocorrelation are available in the CARBayes package, the intrinsic and BYM models (both
Besag et al. (1991)), as well as the alternative developed by Leroux et al. (1999). Each model
is a special case of a Gaussian Markov Random Field (GMRF), and can be written in the
general form φ ∼ N(0, τ2Q−1), where Q is a precision matrix that may be singular (intrinsic
model). This matrix controls the spatial autocorrelation structure of the random effects, and
is based on a non-negative symmetric n × n neighbourhood or weight matrix W. A binary
specification based on geographical contiguity is most commonly used, where wkj = 1 if areal
units (Sk,Sj) share a common border (denoted k ∼ j), and is zero otherwise. This specifi-
cation forces (φk, φj) relating to geographically adjacent areas (that is where wkj = 1) to be
autocorrelated, whereas random effects relating to non-contiguous areal units are condition-
ally independent given the values of the remaining random effects. A binary specification is
not necessary in CARBayes, as the only requirement is that W is non-negative and symmetric.

CAR priors are commonly specified as a set of n univariate full conditional distributions
f(φk|φ−k) for k = 1, . . . , n (where φ−k = (φ1, . . . , φk−1, φk+1, . . . , φn)), rather than via the
multivariate specification described above. The first CAR prior to be proposed was the
intrinsic model (Besag et al. (1991)), which is given by

φk|φ−k,W, τ2 ∼ N

(∑n
i=1wkiφi∑n
i=1wki

,
τ2∑n

i=1wki

)
, (3)

τ2 ∼ Inverse-Gamma(a, b).

The conditional expectation is the average of the random effects in neighbouring areas, while
the conditional variance is inversely proportional to the number of neighbours. The latter
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is appropriate because if the random effects are strongly spatially autocorrelated, then the
more neighbours an area has the more information there is from its neighbours about the
value of its random effect. In common with the other variance parameters the default prior
specification for τ2 has a = b = 0.001. The limitation with this model is that it can only
represent strong spatial autocorrelation, and is well known to produce random effects that
are overly smooth. Therefore, the same authors proposed an extension to allow for both weak
and strong spatial autocorrelation, by replacing φk in (1) with θk +φk, which are respectively
defined by (2) and (3). This model is known as the BYM or convolution model, and is the
most commonly used conditional autoregressive model in practice. However, it requires two
random effects to be estimated for each data point, whereas only their sum is identifiable
from the data. Therefore in CARBayes only McMC samples for the sum rek = φk + θk are
returned to the user.

As a result of this limitation Leroux et al. (1999) proposed an alternative CAR prior for
modelling varying strengths of spatial autocorrelation, using only a single set of random
effects. Their model is given by

φk|φ−k,W, τ2, ρ ∼ N

(
ρ
∑n

i=1wkiφi
ρ
∑n

i=1wki + 1− ρ
,

τ2

ρ
∑n

i=1wki + 1− ρ

)
, (4)

τ2 ∼ Inverse-Gamma(a, b),

ρ ∼ Uniform(0, 1),

where ρ is a spatial autocorrelation parameter, with ρ = 0 corresponding to independence,
while ρ = 1 corresponds to strong spatial autocorrelation. A uniform prior on the unit interval
is specified for ρ while the usual inverse gamma prior is adopted for τ2. For (4) when ρ = 1 the
intrinsic model give by (3) is obtained, while when ρ = 0 the random effects are independent
and have the prior given by (2). These global CAR models were compared in a review by
Lee (2011), who concluded that the model proposed by Leroux et al. (1999) was the most
appealing from both theoretical and practical standpoints.

Localised smoothing CAR priors

The CAR priors described above enforce a single global level of spatial smoothing for the set
of random effects, which for model (4) is controlled by ρ. This is illustrated by the partial
autocorrelation structure implied by that model, which for (φk, φj) is given by

COR(φk, φj |φ−kj ,W, ρ) =
ρwkj√

(ρ
∑n

i=1wki + 1− ρ)(ρ
∑n

i=1wji + 1− ρ)
. (5)

For non-neighbouring areal units (where wkj = 0) the random effects are conditionally in-
dependent, while for neighbouring areal units (where wkj = 1) their partial autocorrelation
is controlled by ρ. However, this representation of spatial smoothness is likely to be overly
simplistic in practice, as the random effects surface is likely to include sub-regions of smooth
evolution as well as boundaries where abrupt step changes occur. A number of approaches
have been proposed for modelling this localised spatial autocorrelation, and CARBayes can
implement the proposals of Lee and Mitchell (2012) and Lee and Sarran (2014) which are
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both summarised below.

The paper by Lee and Mitchell (2012) proposes a method for capturing such localised spa-
tial autocorrelation, including the identification of boundaries in the random effects surface.
The underlying idea is to model the elements of W corresponding to geographically adja-
cent areal units as binary random quantities, rather than assuming they are fixed at one.
Conversely, if areal units (Sk,Sj) do not share a common border then wkj is fixed at zero.
From (5), it is straightforward to see that if wkj is estimated as one then (φk, φj) are spa-
tially autocorrelated, and are smoothed over in the modelling process. In contrast, if wkj

is estimated as zero then no smoothing is imparted between (φk, φj), as they are modelled
as conditionally independent. In this case a boundary is said to exist in the random effects
surface between areal units (Sk,Sj). We note that if covariates are excluded from (1) then
any boundaries identified also relate to the mean surface µ = (µ1, . . . , µn) in the absence of an
offset term, because it has the same spatial structure as the random effects as g(µk) = β0+φk.

The model proposed by Lee and Mitchell (2012) is based on the Poisson log-linear specification
of (1) and the CAR prior (4), with the restriction that ρ is fixed at 0.99 (CARBayes can also
fit binomial and Gaussian specifications). This restriction on ρ was made by Lee and Mitchell
(2012) to ensure that the random effects exhibit strong spatial smoothing globally, which can
be altered locally by estimating {wkj |k ∼ j}. They model each wkj as a function of the
dissimilarity between areal units (Sk,Sj), because large differences in the response are likely
to occur where neighbouring populations are very different. This dissimilarity is captured
by q non-negative dissimilarity metrics zkj = (zkj1, . . . , zkjq), which could include social or
physical factors, such as the absolute difference in smoking rates, or the proportion of the
shared border that is blocked by a physical barrier (such as a river or railway line) and cannot
be crossed. Using these measures of dissimilarity, {wkj |k ∼ j} are collectively modelled as

wkj(α) =

{
1 if exp(−

∑q
i=1 zkjiαi) ≥ 0.5 and k ∼ j

0 otherwise
, (6)

αi ∼ Uniform(0,Mi) for i = 1, . . . , q.

The q regression parameters α = (α1, . . . , αq) determine the effects of the dissimilarity met-
rics on {wkj |k ∼ j}, and if αi < − ln(0.5)/max{zkji}, then the ith dissimilarity metric has
not solely identified any boundaries because exp(−αizkji) > 0.5 for all k ∼ j. The aim of Lee
and Mitchell (2012) was to identify the locations of any boundaries (abrupt step changes) in
disease risk surfaces, so the available covariates were used to construct dissimilarity metrics
rather than being incorporated into the linear predictor. In contrast, if the aim of the analysis
was to explain the spatial pattern in the response, then covariates would be included in (1),
and only metrics directly describing the dissimilarity between two areas, such as the existence
of a physical boundary or the distance between the areas centroids, would be included in (6).

The above approch allows for localised spatial autocorrelation by modelling the elements in
W, which can reduce the partial autocorrelations between certain pairs of adjacent random
effects. An alternative is to augment a set of spatially smooth random effects with a piecewise
constant intercept or cluster model, thus allowing large jumps in the mean surface between
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adjacent areal units in different clusters. One such model was proposed by Lee and Sarran
(2014), and partitions the n areal units into a maximum of G clusters each with their own
intercept term (λ1, . . . , λG). The mean function for this model is given by

g(µk) = xT
k β + φk + λZk

+Ok, (7)

φk|φ−k,W, τ2, ρ ∼ N

(
ρ
∑n

i=1wkiφi
ρ
∑n

i=1wki + 1− ρ
,

τ2

ρ
∑n

i=1wki + 1− ρ

)
,

τ2 ∼ Inverse-Gamma(0.001, 0.001),

ρ ∼ Uniform(0, 1),

λi ∼ Uniform(λi−1, λi+1) for i = 1, . . . , G,

f(Zk) =
exp(−δ(Zk −G∗)2)∑G
r=1 exp(−δ(r −G∗)2)

,

δ ∼ Uniform(0,M = 100).

(8)

The cluster means (λ1, . . . , λG) are ordered so that λ1 < λ2 < . . . < λG, which prevents
the label switching problem common in mixture models. Thus in the above λ0 = −∞ and
λG+1 = ∞. Area k is assigned to one of the G intercepts by Zk ∈ {1, . . . , G}, and G is the
maximum number of different intercept terms. Here we penalise Zk towards the middle inter-
cept value, so that the extreme intercept classes (e.g. 1 or G) may be empty. This is achieved
by the penalty term δ(Zk −G∗)2 in the prior for Zk, where G∗ = (G+ 1)/2 is the middle of
the intercept terms. A weakly informative uniform prior with a large range is specified for
the penalty parameter δ, so that the data play the dominant role in estimating its value. We
note that we do not put any spatial smoothing constraints on the indicator vector Z, because
similar random effect values can occur at opposite ends of the study region. The clustering
is thus inherently non-spatial, and the spatial autocorrelation is accounted for by the CAR
prior for φ. The CARBayes package can fit binomial, Gaussian and Poisson variants of this
model.

The Poisson variant of this model has the option to allow for ecological bias, by changing the
form of the mean function. Assume that one of the covariates (now called the exposure) is
spatially misaligned with the response data (counts), as the former is available at more than
one (point) location within each areal unit. Therefore, areal unit k has qk different values
(exposures) wk = (wk1, . . . , wkqk), and hence there is variation within an areal unit for which
only a single response variable (count) exists. Furthermore, the population may be unevenly
distributed within each areal unit, and the proportions of the population corresponding to
each of the qk expospures within areal unit k are denoted by pk = (pk1, . . . , pkqk), where∑qk

i=1 pki = 1. Then an appropriate model is given by:

µk = exp(xT
k β + φk + λZk

+Ok)

qk∑
i=1

pki exp(wkiα), (9)

and further details can be found in Lee and Sarran (2014).
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3. CARBayes

3.1. Obtaining the software

CARBayes is an add-on package to the statistical software R (≥ 2.10.0), and is freely available
to download from CRAN (http://cran.r-project.org/). The package can be downloaded for
Windows, Linux and Apple platforms, and in addition to the base implementation of R, it
requires the coda, MASS, Rcpp, sp, spam and truncdist packages. Once R and the required
packages have been installed, CARBayes can be loaded using the following code.

> library(CARBayes)

Note, the packages listed in the previous paragraph are automatically loaded upon loading
CARBayes, as they are the only ones required for CARBayes to implement the Bayesian
spatial models described in the previous section. However, a complete spatial analysis will
typically also include the creation of the neighbourhood matrix W from a shapefile, the
production of spatial maps of the fitted values and residuals, and tests for the presence of
spatial autocorrelation. To achieve these tasks the following additional packages are also
required, which need to be loaded into R using the code:

> library(shapefiles)

> library(sp)

> library(maptools)

> library(spdep)

Note, that the sp package is only loaded for use with CARBayes functions, and needs to be
loaded again for general use in R, such as drawing maps. Finally, to run the examples in the
next three sections of this vignette the data package CARBayesdata is required, which can
be loaded using the command:

> library(CARBayesdata)

3.2. Functionality

CARBayes can fit the general exponential family Bayesian hierarchical model outlined in the
previous section, where the response data can be binomial, Gaussian or Poisson. The models
listed below can be implemented by the software.

1. S.independent() - the independent random effects model given by (2), with the like-
lihood model (1).

2. S.CARiar() - the intrinsic autoregressive model proposed by Besag et al. (1991) and
given by (3), with the likelihood model (1).

3. S.CARbym() - the BYM model proposed by Besag et al. (1991) and given by a linear
combination of (2) and (3), with the likelihood model (1).
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4. S.CARleroux() - the CAR prior proposed by Leroux et al. (1999) and given by (4),
with the likelihood model (1).

5. S.CARdissimilarity() - the local spatial smoothing model proposed by Lee and Mitchell
(2012) and given by (4) and (6), with the likelihood model (1).

6. S.CARcluster() - the CAR model with a cluster component given by (7).

The linear predictor for each of the Bayesian hierarchical models is specified as an R formula

object, in common with the glm() and gam() functions. To fit non-linear functions the func-
tion ns() can be used in the formula object, but the splines library needs to be loaded.
The spatial neighbourhood information required to run the CAR models needs to be pro-
vided as an n × n neighbourhood matrix W, which is simpler to construct than the series
of list objects required by the BUGS software. A full list of arguments for each function can
be found in the manual accompanying the package. CARBayes contains two further func-
tions combine.data.shapefile() and highlight.borders(), which aid in plotting spatial
maps of the data, and their use is illustrated below. Additionally, two further functions al-
low the posterior samples (summarise.samples()) and linear combinations of the covariate
component (summarise.lincomb()), for example to summarise non-linear relationships, to
be summarised.

3.3. Inference

Inference for all of the Bayesian hierarchical models is based on McMC simulation, using a
combination of Gibbs sampling and Metropolis steps. The variance parameters are Gibbs
sampled from their full conditional truncated inverse gamma distributions, while the remain-
ing parameters are updated using Metropolis steps with univariate or multivariate random
walk proposal distributions. The exception to this is for Gaussian response data, where the
covariate regression parameters and the random effects can also be Gibbs sampled. The soft-
ware updates the user on its progress to the R console, which allows the user to monitor the
function’s progress. However, using the verbose=FALSE option will disable this feature. Once
a model has been fitted the print() function can be applied to the model object to print out
a summary results table to the console, which includes details of the model fitted, parameter
estimates and uncertainty intervals.

4. Example 1 - Scottish lip cancer data

The first example is the famous Scottish lip cancer data set, which is included purely to illus-
trate how to combine a data frame and shapefile together into a "SpatialPolygonsDataFrame"
object. The creation of this object allows spatial maps to be produced of variables of inter-
est, as well as allowing the neighbourhood matrix W to be created for use in the models
implemented in CARBayes. The Scottish lip cancer data are contained in the CARBayesdata
package, and can be loaded (assuming the CARBayesdata, shapefiles and sp packages have
been loaded) using the commands:

> data(lipdata)

> data(lipdbf)

> data(lipshp)
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For other data sets not inlcuded in an R package, you essentially need two types of data. The
first is a dataframe, containing the data you wish to model. If this is a comma separated
variable (csv) file then it can be read into R using the command read.csv(). The second
data type is a shapefile, which comprises two components: shapefile.shp containing the
polygons, and shapefile.dbf containing a unique identifier linking each row in the dataframe
to a polygon in the shapefile.shp file. These can be read in to R using the read.shp()

and read.dbf() functions. These three data sets can be combined together to create a
"SpatialPolygonsDataFrame" object using the following function:

> lipdbf$dbf <- lipdbf$dbf[ ,c(2,1)]

> data.combined <- combine.data.shapefile(data=lipdata, shp=lipshp, dbf=lipdbf)

For this function to work the rownames of the dataframe (lipdata) must be contained in the
first column of the .dbf (lipdbf$dbf) object, which is the reason for re-ordering the columns in
the first line of the above code. The data.combined object is a "SpatialPolygonsDataFrame"
object, and the data it contains can be mapped using the spplot() function. A binary neigh-
bourhood matrix W can be constructed for the data from this object using the code:

> W.nb <- poly2nb(data.combined, row.names = rownames(lipdata))

> W.mat <- nb2mat(W.nb, style="B")

This example was included purely to illustrate this process, and in the next two examples full
spatial analyses using the CARBayes software will be undertaken.

5. Example 2 - property prices in Greater Glasgow

The utility of the CARBayes software is illustrated by modelling the spatial pattern in average
property prices across Greater Glasgow, Scotland, in 2008. This is an ecological regression
analysis, whose aim is to identify the factors that affect property prices and quantify their
effects.

5.1. Data and exploratory analysis

The data come from the Scottish Neighbourhood Statistics (SNS) database (http://www.sns.gov.uk/ ),
but are also included with the CARBayesdata software. The study region is the Greater Glas-
gow and Clyde health board, which is split into 270 intermediate geographies (IG). These IGs
are small areas that have a median area of 124 hectares and a median population of 4,239.
Assuming the CARBayesdata and sp packages have been loaded these data can be loaded
into R using the data() function as shown below:

> data(propertydata.spatial)

> propertydata <- propertydata.spatial@data

This data set is a SpatialPolygonsDataFrame object (from the sp package), which is a
merger of a dataframe and spatial polygon data. The dataframe is extracted into the ob-
ject propertydata using the second line of code above. These data are summarised in Table
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Variable Percentiles
0% 25% 50% 75% 100%

Property price (in thousands) 50.0 95.0 122.0 158.4 372.8
Crime rate (per 10,000) 85.0 303.5 519.0 733.0 8009.0
Number of rooms (median) 3.0 3.0 4.0 4.0 6.0
Property sales (%) 0.2 2.3 3.1 4.1 10.6
Drive time to a shop (minutes) 0.3 0.9 1.3 1.9 8.5

Table 1: Summary of the distribution of the data.

1, which displays the percentiles of their distribution. The response variable in this study
is the median price (in thousands) of all properties sold in 2008 in each IG, with that year
being chosen because covariate data for later years are not available. The table shows large
variation in this variable, with average prices ranging between £50, 000 and £372, 800 across
the study region. The first covariate in this study is the crime rate in each IG, because areas
with higher crime rates are likely to be less desirable to live in. Crime rate is measured as the
total number of recorded crimes in each IG per 10,000 people that live there, and the values
range between 85 and 1994. Other covariates included in this study are the median number
of rooms in a property, the percentage of properties that sold in a year, and the average
time taken to drive to the nearest shopping centre. Finally, a categorical variable measuring
the most prevalent property type in each area is available, with levels; ‘flat’ (68% of areas),
‘terraced’ (7%), ‘semi-detached’ (13%) and ‘detached’ (12%).

A spatial map of this response variable can be plotted using the functionality of the sp package,
using the following R code.

> northarrow <- list("SpatialPolygonsRescale", layout.north.arrow(),

offset = c(220000,647000), scale = 4000)

> scalebar <- list("SpatialPolygonsRescale", layout.scale.bar(),

offset = c(225000,647000), scale = 10000, fill=c("transparent","black"))

> text1 <- list("sp.text", c(225000,649000), "0")

> text2 <- list("sp.text", c(230000,649000), "5000 m")

> spplot(spatialhousedata, c("price"), sp.layout=list(northarrow, scalebar, text1, text2),

scales=list(draw = TRUE), at=seq(min(housedata$price)-1, max(housedata$price)+1,

length.out=8), col.regions=hsv(0,seq(0.05,1,length.out=7),1), col="transparent")

The plotting is achieved by the spplot() function, with the preceding lines adding a north
arrow, a scale bar and accompanying text. The resulting plot is shown in Figure 1, which
suggests that Glasgow has a number of property sub-markets, whose prices are not related
to those in neighbouring areas. An example of this is the two groups of darker red regions
(more expensive properties) north of the river Clyde (the thin white line running south east),
which are the highly sought after Westerton / Bearsden (northerly cluster) and Dowanhill /
Hyndland (central cluster) districts.

5.2. Non-spatial modelling

The natural log of the median property price variable is treated as the response and assumed
to be Gaussian, and an initial covariate only model is built in a frequentist framework using
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Figure 1: Map displaying median property prices in Greater Glasgow (in thousands).
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linear models. Initial plots of the data using the pairs() command suggest that the natural
log of drive time to a shopping centre is linearly related to the response, and that crime rate
has a non-linear relationship to the response. The log transformation of price and drive time
to a shop are created using the following commands.

> propertydata$logprice <- log(propertydata$price)

> propertydata$logdriveshop <- log(propertydata$driveshop)

A model with all the covariates is fitted to the data, where the crime rate variable is modelled
as non-linear using a natural cubic spline with 3 degrees of freedom. This is achieved using
the following R code:

> library(splines)

> form <- logprice~ns(crime,3)+rooms+sales+factor(type) + logdriveshop

> model <- lm(formula=form, data=propertydata)

where the first line loads the splines library that contains the ns() function. Applying the
summary(model) command to this model shows that all of the numeric covariates are signif-
icantly related to the response at the 5% level, suggesting they all play an important role
in explaining the spatial pattern in median property price. The predominant property type
variable also appears to be important, with areas where the level is ‘detached’ (the baseline
level) having significantly higher property prices than the other three levels.

A Moran’s I permutation test for spatial autocorrelation was then applied to the residu-
als from this model based on 10,000 random permutations, using the functionality of the
spdep package. Code to implement the test is shown below. The first two lines turn the
"SpatialPolygonsDataFrame" object spatialhousedata into an "nb" and then a "listw"

"nb" object, which is required by the moran.mc() function.

> W.nb <- poly2nb(propertydata.spatial, row.names = rownames(propertydata))

> W.list <- nb2listw(W.nb, style="B")

> resid.model <- residuals(model)

> moran.mc(x=resid.model, listw=W.list, nsim=1000)

Monte-Carlo simulation of Moran's I

data: resid.model

weights: W.list

number of simulations + 1: 1001

statistic = 0.2733, observed rank = 1001, p-value = 0.000999

alternative hypothesis: greater

The Moran’s I statistic equals 0.2768 with a corresponding p-value of 0.000099, which suggests
that the residuals contain substantial positive spatial autocorrelation.
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5.3. Spatial modelling with CARBayes

The residual spatial autocorrelation can be accounted for by adding a set of random effects to
the model, using the functions outlined in the previous section. We illustrate this by applying
model (1) and (4) to the data. The code to implement this model in CARBayes is shown
below, where the first line creates the binary neighbourhood matrix W.mat from the W.nb

object.

W.mat <- nb2mat(W.nb, style="B")

model.spatial <- S.CARleroux(formula=form, data=propertydata, family="gaussian",

W=W.mat, burnin=20000, n.sample=120000, verbose=FALSE, thin=10)

print(model.spatial)

Inference for this model is based on 10,000 McMC samples, following a burnin period of 10,000
and the remaining 100,000 samples being thinned by 10 to reduced their autocorrelation. The
output from the model can be summarised by the print(model.spatial) command. The
first part of the output is a description of the model that was fitted, including the likelihood
and random effects specifications, as well as the covariates included in the linear predictor.
The second part summarises the parameters (except the random effects) by means of posterior
medians, 95% credible intervals, and acceptance rates.

Model output

In addition to producing the summary table above, fitting the model returns a list object
with the following components:

> summary(model.spatial)

Length Class Mode

summary.results 65 -none- numeric

samples 6 -none- list

fitted.values 270 -none- numeric

residuals 270 -none- numeric

modelfit 3 -none- numeric

accept 5 -none- numeric

localised.structure 0 -none- NULL

formula 3 formula call

model 2 -none- character

X 2700 -none- numeric

The first element of this list is a summary table of results, which is what is printed by
the print() function. The next element is a list containing matrices of the thinned and post
burnin-in McMC samples for each set of parameters. For example, model.spatial$samples$beta
is a matrix containing the McMC samples for all the regression parameters. The next two ele-
ments in the list fitted.values and residuals are vectors of fitted values and residuals from
the model, while modelfit gives a selection of model fit criteria. These criteria include the
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Deviance Information Criterion (DIC, Spiegelhalter et al. (2002)) and the Log Marginal Pre-
dictive Likelihood (LMPL, Choi et al. (2012)). For further details about Bayesian modelling
and model fit criteria see Gelman et al. (2003). The item accept contains the acceptance rates
for the model, while localised.structure is NULL for this model and is used for compata-
biltiy with the other functions in the package. Finally, the formula and model are text strings
describing the formula used and the model fit, while X gives the design matrix corresponding
to the formula object.

5.4. Inference

The summary table above gives posterior medians and 95% credible intervals for a selection
of model parameters, but these can be re-created (or similar summarise created for other
parameters) using the function

> summarise.samples(model.spatial$samples$beta, quantiles=c(0.5, 0.025, 0.975))

$quantiles

0.5 0.025 0.975

[1,] 4.239360710 3.974538478 4.533852882

[2,] -0.246804128 -0.399486648 -0.099706192

[3,] -0.397501364 -0.687444914 -0.116832230

[4,] -0.195872093 -0.400359980 0.007575266

[5,] 0.220290725 0.167046337 0.270358098

[6,] 0.002274724 0.001621726 0.002877815

[7,] -0.252926021 -0.374373889 -0.124341749

[8,] -0.168015426 -0.268187198 -0.064834537

[9,] -0.294361624 -0.426330175 -0.152823205

[10,] -0.005722209 -0.063584780 0.049366172

$exceedences

NULL

which here has summarised posterior medians and 95% credible intervals for the covariate ef-
fects. However, for the crime variable its relationship is non-linear and summarised by the re-
sults for all 3 basis functions ns(crime, 3)1, ns(crime, 3)2, ns(crime, 3)3. Therefore
to summarise the entire linear relationship we can use the summarise.lincomb() function,
which allows us to compute the posterior distribution and quantiles of a linear combination
of the covariates. This can be achieved using the code:

> crime.effect <- summarise.lincomb(model=model.spatial, columns=c(2,3,4),

+ quantiles=c(0.5, 0.025, 0.975), distribution=FALSE)

The non-linear relationship can be plotted using the code below, and the resulting plot is
shown in Figure 2.
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Figure 2: Plot showing the estimated non-linear relationship between crime rate and log-price.

ord <- order(propertydata$crime)

plot(propertydata$crime[ord], crime.effect$quantiles[ord ,1], pch=19, ylim=c(-0.55,0.05),

xlab="Number of crimes", ylab="Effect of crime", type="l")

rug(propertydata$crime)

lines(propertydata$crime[ord], crime.effect$quantiles[ord ,2], pch=19, col="red")

lines(propertydata$crime[ord], crime.effect$quantiles[ord ,3], pch=19, col="red")

Acceptance rates for the McMC algorithm

The acceptance rate for ρ quantifies the proportion of times the value proposed by the
Metropolis updating step was accepted as the new value of the Markov chain. In contrast, due
to the conjugacy between the Gaussian likelihood and the prior distributions for (β,φ, ν2, τ2),
Gibbs sampling is employed for updating these parameters, which is the reason for the 100%
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acceptance rate. If the likelihood was either binomial or Poisson then Metropolis updating
steps would be used for (β,φ) instead, and the acceptance rates would then be of interest to
the analyst. The obvious acceptance rate of 100% is shown here for consistency of presentation
with the summary output across different models.

6. Example 3 - identifying high-risk disease clusters

The third example illustrates the utility of the localised spatial autocorrelation model pro-
posed by Lee and Mitchell (2012), which can identify boundaries that represent step changes
in the (random effects) response surface between geographically adjacent areal units. The aim
of this analysis is to identify boundaries in the risk surface of respiratory disease in Greater
Glasgow, Scotland in 2010, so that the spatial extent of high-risk clusters can be identified.
The identification of boundaries in spatial data is affectionately known as Wombling, after
the seminal paper by Womble (1951).

6.1. Data and exploratory analysis

The data again relate to the Greater Glasgow and Clyde health board, and are also freely
available to download from http://www.sns.gov.uk/ (and are included with the CARBayes-
data software). However, the river Clyde partitions the study region into a northern and a
southern sub-region, and no areal units on opposite banks of the river border each other. This
means that boundaries could not be identified across the river, and therefore here we only
consider those areal units that are on the northern side of the study region. This leaves 134
areal units in the new smaller study region, and the data on respiratory disease risk (included
in CARBayesdata) and can be loaded with the commands:

> data(respiratorydata.spatial)

> respiratorydata <- respiratorydata.spatial@data

> head(respiratorydata)

observed2010 expected2010 incomedep2010 SIR2010

S02000618 105 105.12944 15 0.9987687

S02000613 85 69.41011 22 1.2246054

S02000623 37 87.85767 8 0.4211357

S02000626 90 89.41669 26 1.0065235

S02000636 41 97.55097 8 0.4202931

S02000645 47 84.86336 8 0.5538315

where the second line extracts the dataframe as in example 2, and the head() function
displays the first 6 rows of the dataframe. The data set contains the numbers of hospital
admissions in 2010 in each IG due to respiratory disease (International Classification of Disease
tenth revision codes J00-J99), which is stored in the observed2010 column. However, these
observed numbers will depend on the size and demographic structure of the populations living
in each IG, and these factors need to be adjusted for before estimating disease risk. This is
typically achieved by computing the expected numbers of hospital admissions in each IG
based on this demographic information, using either internal or external standardisation. For
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these data we use external standardisation, based on age and sex standardised rates for the
whole of Scotland. These expected numbers are stored in the expected2010 column, and the
simplest measure of disease risk is the Standardised Incidence Ratio (SIR), which is the ratio
of the observed to the expected numbers of hospital admissions. The SIR is added to the
respiratorydata and respiratorydata.spatial objects using the code below, which also
creates the spatial objects that are required for the analysis.

> respiratorydata$SIR2010 <- respiratorydata$observed2010 / respiratorydata$expected2010

> respiratorydata.spatial@data$SIR2010 <- respiratorydata$SIR2010

> W.nb <- poly2nb(respiratorydata.spatial, row.names = rownames(respiratorydata))

> W.mat <- nb2mat(W.nb, style="B")

A map of the SIR for these data is displayed in Figure 3, which was created using similar code
to that provided in Section 5 for mapping the median property price data. Values of the SIR
above one relate to areas exhibiting above average risks, while values below one correspond
to below average risks. The figure shows evidence of localised spatial structure in these
disease data, with numerous different locations where high and low risk areas border each
other. This in turn suggests that boundaries are likely to be present in these data, and their
identification is the goal of this analysis. The method proposed by Lee and Mitchell (2012)
identifies these boundaries using dissimilarity metrics, which are non-negative measures of
the dissimilarity between all pairs of adjacent areas. In this example we use the absolute
difference in the percentage of people in each IG who are defined to be income deprived (are
in receipt of a combination of means tested benefits), because it is well known that socio-
economic deprivation plays a large role in determining people’s health. The income data for
each IG are contained in the incomedep2010 column in respdata.

6.2. Spatial modelling with CARBayes

Let the observed and expected numbers of hospital admissions be denoted by Y = (Y1, . . . , Yn)
and E = (E1, . . . , En) respectively. Then as the observed numbers of hospital admissions
are counts, a Poisson likelihood model given by Yk ∼ Poisson(EkRk) is appropriate, where
Rk represents disease risk in areal unit Sk. A log-linear model is specified for Rk, that is,
ln(Rk) = β0 +φk, and for a general review of disease mapping see Wakefield (2007). We note
that in fitting this model in CARBayes, the offset is specified on the linear predictor scale
rather than the expected value scale, so in this analysis the offset is log(E) rather than E.
The dissimilarity metric used here is the absolute difference in the level of income deprivation,
which can be created from the vector of area level income deprivation scores using the following
code.

> Z.incomedep <- as.matrix(dist(cbind(respiratorydata$incomedep2010,

+ respiratorydata$incomedep2010), method="manhattan", diag=TRUE, upper=TRUE)) *

+ W.mat / 2

The function to implement the localised CAR model is called S.CARdissimilarity(), and
it takes the same arguments as the global CAR models except that it additionally requires
the dissimilarity metrics. These are required in the form of a list of n× n matrices, and the
model is run using the following code.



Duncan Lee 19

665000

670000

675000

680000

685000

240000 250000 260000 270000

5000 m

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 3: Map displaying Standardised Incidence Ratio for the northern part of Greater
Glasgow.
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formula <- observed2010 ~ offset(log(expected2010))

model.dissimilarity <- S.CARdissimilarity(formula=formula, data=respiratorydata,

family="poisson", W=W.mat, Z=list(Z.incomedep=Z.incomedep), burnin=20000,

n.sample=40000, verbose=FALSE)

print(model.dissimilarity)

The first line of the above code specifies the formula with an offset (the natural log of the ex-
pected numbers of cases) but no covariates, the latter being required so that boundaries identi-
fied in the random effects surface can also be interpreted as boundaries in the risk surface (that
is R = (R1, . . . , Rn)). When the function finishes, typing in print(model.dissimilarity)

as above produces summary output similar to that produced for the property price data in the
previous example. The main difference between this and the corresponding output from the
property price analysis is the addition of a column in the parameter summary table headed
alpha.min. This column only applies to the dissimilarity metrics, which is why it is NA for
the remaining parameters. The value of alpha.min is the threshold value for the regression
parameter α, below which the dissimilarity metric has had no effect in identifying boundaries
in the response (random effects) surface. A brief description is given in Section 2.2, while full
details are given in Lee and Mitchell (2012). For these data the posterior median and 95%
credible interval lie completely above this threshold, suggesting that the income deprivation
dissimilarity metric has identified a number of boundaries.

The number and locations of these boundaries are summarised in the element of the output
list called model.dissimilarity$localised.structure$W.posterior, which is an n × n
symmetric matrix containing the posterior median for the set {wkj |k ∼ j}. Values equal to
zero represent a boundary, values equal to one correspond to no boundary, while NA values
correspond to non-adjacent areas. The locations of these boundaries can be overlaid on a map
of the estimated disease risk (that is the posterior median of R) using the following code. The
first line saves the matrix of border locations, while the second and third add the estimated
risk values to the data.combined object. The next two lines identify the boundary points
(using the CARBayes function highlight.borders()), and format them to enable plotting.
The remaining commands relate to the plotting, and are similar to those used to produce the
earlier spatial maps.

border.locations <- model.dissimilarity$localised.structure$W.posterior

risk.estimates <- model.dissimilarity$fitted.values / respiratorydata$expected2010

respiratorydata.spatial@data$risk.estimates <- risk.estimates

boundary.final <- highlight.borders(border.locations=border.locations,

spdata=respiratorydata.spatial)

boundaries = list("sp.points", boundary.final, col="black", pch=19, cex=0.2)

northarrow <- list("SpatialPolygonsRescale", layout.north.arrow(),

offset = c(220000,647000), scale = 4000)

scalebar <- list("SpatialPolygonsRescale", layout.scale.bar(),

offset = c(225000,647000), scale = 10000, fill=c("transparent","black"))

text1 <- list("sp.text", c(225000,649000), "0")

text2 <- list("sp.text", c(230000,649000), "5000 m")

spplot(respiratorydata.spatial, c("risk.estimates"), sp.layout=list(northarrow,

scalebar, text1, text2, boundaries), scales=list(draw = TRUE),
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at=seq(min(risk.estimates)-0.1, max(risk.estimates)+0.1, length.out=8),

col.regions=hsv(0,seq(0.05,1,length.out=7),1), col="transparent")

The result of these commands are displayed in Figure 4, which shows the fitted risk surface
and the locations of the boundaries (denoted by black dots). The model has identified 103
boundaries in the risk surface, which is 28.6% of the total number of borders in the study
region. The majority of these visually seem to correspond to sizeable changes in the risk
surface, suggesting that the model has the power to distinguish between boundaries and non-
boundaries. The notable boundaries are the demarkation between the low risk city centre /
west end of Glasgow in the middle of the region and the deprived neighbouring areas on both
sides, which include Easterhouse / Parkhead in the east and Knightswood / Drumchapel in
the west. The other interesting feature of this map is that the boundaries are not closed,
suggesting that the spatial pattern in risk is more complex than being partitioned into groups
of non-overlapping areas of similar risk.

7. Discussion

This vignette has illustrated the R package CARBayes, which can fit a number of commonly
used conditional autoregressive models to spatial areal unit data, as well as the localised
spatial smoothing model proposed by Lee and Mitchell (2012). The response data can be
binomial, Gaussian or Poisson, with the canonical link functions logit, the identity and nat-
ural log respectively. The availability of areal unit data has grown dramatically in recent
times, due to the launch of freely available online databases such as Neighbourhood Statis-
tics in the UK (see http://www.neighbourhood.statistics.gov.uk and http://www.sns.gov.uk/ ),
and Surveillance Epidemiology and End Results (SEER, http://seer.cancer.gov/ ) in the USA.
This increased availability of spatial data has fuelled a growth of modelling in this area, lead-
ing to the need for user friendly software such as CARBayes for use by both statisticians and
non-statisticians alike.

A number of other software packages can also fit conditional autoregressive models to spatial
data, including BUGS, BayesX and R packages CARramps, hSDM, INLA, spatcounts and
spdep. However, these software packages either can only fit a limited selection of CAR mod-
els, or require a degree of programming which may be beyond some users of spatial data.
Thus a gap in the market exists for user friendly software that can fit a wide class of CAR
models, which was the motivation behind the CARBayes software. The user friendly features
of CARBayes have been illustrated by the two worked examples presented in Sections 4 and
5, which include: (i) models can be implemented using a single function call; (ii) the spatial
information required by the models is straightforward to create from a shapefile; (iii) only
a small number of arguments are required to run a default analysis; and (iv) the software
reports on the progress of model fitting, and produces a summary table of the results when
it has finished.

Future development for the software will focus on moving into the spatio-temporal domain,
because there is relatively little existing software (especially in R) that can fit spatio-temporal
models for areal unit data (an example for geostatistical data is spTimer). The development
of statistical modelling techniques for such data is also in its infancy, with prominent early
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Figure 4: Map displaying estimated risk and locations of the boundaries for the northern part
of Greater Glasgow.
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examples being Bernardinelli et al. (1995) and Knorr-Held (2000).
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