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1 Parameter of interest
Let consider two independent real valued random variables X and Y . We are interested in:

∆ = P [Y > X]− P [X > Y ]

In the examples we will use a sample size of:

n <- 1e4

and use the following R packages

library(BuyseTest)
library(riskRegression)
library(survival)
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2 Binary variable
2.1 Relationship between ∆ and the prevalence

P [Y > X] = P [Y = 1, X = 0]

Using the independence between Y and X:

P [Y > X] = P [Y = 1]P [X = 0] = P [Y = 1] (1− P [X = 1]) = P [Y = 1]− P [Y = 1]P [X = 1]

By symmetry:

P [X > Y ] = P [X = 1]− P [Y = 1]P [X = 1]

So

∆ = P [Y = 1]− P [X = 0]

2.2 In R
Settings:

prob1 <- 0.4
prob2 <- 0.2

Simulate data:

set.seed(10)
df <- rbind(data.frame(tox = rbinom(n, prob = prob1, size = 1), group = "C"),

data.frame(tox = rbinom(n, prob = prob2, size = 1), group = "T"))

Buyse test:

BuyseTest(group ∼ bin(tox), data = df, method.inference = "none", trace = 0)

endpoint threshold delta Delta
tox 0.5 -0.1981 -0.1981

Expected:

prob2 - prob1

[1] -0.2
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3 Continuous variable
3.1 Relationship between ∆ and Cohen’s d
Let’s consider two independent normally distributed variables with common variance:

• X ∼ N
(
µX , σ

2)
• Y ∼ N

(
µY , σ

2)
Denoting d = µY −µX

σ :

• X∗ ∼ N (0, 1)

• Y ∗ ∼ N (d, 1)

P [Y > X] = E [1Y >X ] = E [1Y ∗>X∗] = E [1Z>0]

where Z ∼ N (d, 2) so P [Y > X] = Φ( d√
2 )

By symmetry

∆ = 2 ∗ Φ( d√
2

)− 1

3.2 In R
Settings:

meanX <- 0
meanY <- 2
sdXY <- 1

Simulate data:
set.seed(10)
df <- rbind(data.frame(tox = rnorm(n, mean = meanX, sd = sdXY), group = "C"),

data.frame(tox = rnorm(n, mean = meanY, sd = sdXY), group = "T"))

Buyse test:
BuyseTest(group ∼ cont(tox), data = df, method.inference = "none", trace = 0)

endpoint threshold delta Delta
tox 1e-12 0.8359 0.8359

Expected:
d <- (meanY-meanX)/sdXY
2*pnorm(d/sqrt(2))-1

[1] 0.8427008
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4 Survival
4.1 Relationship between ∆ and the hazard ratio
For a given cumulative density function F (x) and a corresponding probability density function f(x)
we define the hazard by:

λ(t) = P [t ≤ T ≤ t+ h|T ≥ t]
h

∣∣∣∣
h→0+

= P [t ≤ T ≤ t+ h]
P [T ≥ t]h

∣∣∣∣
h→0+

= f(t)
1− F (t)

Let now consider two times to events following an exponential distribution:

• X ∼ Exp(α1). The corresponding hazard function is λ(t) = α1.

• Y ∼ Exp(α2). The corresponding hazard function is λ(t) = α2.

So the hazad ratio is HR = λ2
λ1
. Note that if we use a cox model we will have:

λ(t) = λ0(t) exp(β1group)

where exp(β) is the hazard ratio.

P [Y > X] =
∫ ∞

0
α1 exp(−α1x)

∫ ∞
x

α2 exp(−α2y)dydx

=
∫ ∞

0
α1 exp(−α1x)[exp(−α2y)]x∞dx

=
∫ ∞

0
α1 exp(−α1x) exp(−α2x)dx

= α1

α1 + α2
[exp(−(α1 + α2)x)]0∞

= α1

α1 + α2

= 1
1 +HR

So:

∆ = 2 1
1 +HR

− 1 = 1−HR
1 +HR
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4.2 Scoring rule in presence of censoring
Let’s consider the following random variables:

• X the time to the occurrence of the event of interest in the treatment group.

• CX the censoring time in the treatment group.

• X∗ = X ∧ CX the observed event time in the treatment group.

• εX = 1X≤CX
the event time indicator in the treatment group.

• Y the time to the occurrence of the event of interest in the control group.

• CY the censoring time in the control group.

• Y ∗ = Y ∧ CY the observed event time in the control group.

• εY = 1Y≤CY
the event time indicator in the control group.

We observe one realization (x∗, y∗, eX , eY ) of the random variables (X∗, Y ∗, εX , εY ). We use
the short notation x ∧ y = min(x, y) and x ∨ y = max(x, y).

4.2.1 Case: eX = 0, eY = 1

Probability in favor of the treatment:

P [x ≥ y + τ |x ≥ x∗, y = y∗] = P [x ≥ y∗ + τ, x ≥ x∗]
P [x ≥ x∗]

= P [x ≥ max(y∗ + τ, x∗)]
P [x ≥ x∗]

= SX(y∗ + τ ∨ x∗)
SX(x∗)

In the case where x∗ < y∗ + τ , we need an estimate of SX(y∗ + τ) to compute the probability
in favor of the treatment. If we can only have an estimate of SX up to xmax < y∗ + τ then we can
use the following inequality:

SX(y∗ + τ) ≥ 0
P [x ≥ y + τ |x ≥ x∗, y = y∗] ≥ 0

Probability in favor of the control:

P [y ≥ x+ τ |x ≥ x∗, y = y∗] = 1− P [x ≥ y∗ − τ, x ≥ x∗]
P [x ≥ x∗]

= 1− P [x ≥ max(y∗ − τ, x∗)]
P [x ≥ x∗]

= 1− SX(y∗ − τ ∨ x∗)
SX(x∗)
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In the case where x∗ < y∗ − τ , we need an estimate of SX(y∗ − τ) to compute the probability
in favor of the control. If we can only have an estimate of SX up to xmax < y∗− τ then we can use
the following inequality:

SX(xmax) ≥ SX(y∗ − τ)

P [x ≥ y − τ |x ≥ x∗, y = y∗] ≥ 1− SX(xmax)
SX(x∗)

Probability of being neutral:

P [|x− y| ≤ τ |x ≥ x∗, y = y∗] = 1− P [x ≥ y + τ |x ≥ x∗, y = y∗]− P [y ≥ x+ τ |x ≥ x∗, y = y∗]

= SX(y∗ − τ ∨ x∗)− SX(y∗ + τ ∨ x∗)
SX(x∗)

Consider the case x∗ If xmax > y∗ − τ then

P [|x− y| ≤ τ |x ≥ x∗, y = y∗] ≥ SX(y∗ − τ)− SX(xmax)
SX(x∗)

otherwise

P [|x− y| ≤ τ |x ≥ x∗, y = y∗] ≥ 0

Probability of being uninformative: It is computed as the complement to 1 of the sum of
the probability of being in favor of the treatment, in favor of the control, and neutral.

Example:

• when x∗ > y∗ + τ , the probability of being favorable is 1 so the probability of being uninfor-
mative is 0.

• when |x∗ − y∗| < τ , the probability of being in favor of the control is 0. If we know the
survival in the treatment group up to time y∗, then we can only say that the probability of
being favorable is bounded below by 0. The probability of being neutral bounded below by
1 − ST (y∗)/ST (x∗). The probability of being uninformative is then ST (y∗)/ST (x∗). Clearly
this probability becomes small when ST (y∗) is small. The approximation by the lower bound
becomes exact when ST (y∗) tends to 0.

4.3 In R
Settings:

alphaX <- 2
alphaY <- 1

Simulate data:
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set.seed(10)
df <- rbind(data.frame(time = rexp(n, rate = alphaX), group = "C", event = 1),

data.frame(time = rexp(n, rate = alphaY), group = "T", event = 1))

Buyse test:

BuyseTest(group ∼ tte(time, censoring = event), data = df,
method.inference = "none", trace = 0, method.tte = "Gehan")

endpoint threshold delta Delta
time 1e-12 0.3403 0.3403

Expected:

e.coxph <- coxph(Surv(time,event)∼group,data = df)
HR <- as.double(exp(coef(e.coxph)))
c("HR" = alphaY/alphaX, "Delta" = 2*alphaX/(alphaY+alphaX)-1)
c("HR.cox" = HR, "Delta" = (1-HR)/(1+HR))

HR Delta
0.5000000 0.3333333

HR.cox Delta
0.4918256 0.3406392
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5 Competing risks
5.1 Theory
5.1.1 General case (no censoring)

Let consider:

• X∗E the time to the occurrence of the event of interest in the control group.

• Y ∗E the time to the occurrence of the event of interest in the treatment group.

• X∗CR the time to the occurrence of the competing event of interest in the control group.

• Y ∗CR the time to the occurrence of the competing event of interest in the treatment group.

Let denote εX = 1+1X∗
E
>X∗

CR
the event type indicator in the control group and εY = 1+1Y ∗

E
>Y ∗

CR

the event type indicator in treatment group (= 1 when the cause of interest is realised first and 2
when the competing risk is realised first).

For each subject either the event of interest or the competing event is realized. We now define:

X =
{
X∗E if εX = 1
+∞ if εX = 2 and Y =

{
Y ∗E if εY = 1
+∞ if εY = 2

i.e. when the event of interest is not realized we say that the time to event is infinite.

We thus have:

P [Y > X] =P [Y > X|εX = 1, εY = 1]P [εX = 1, εY = 1]
+ P [Y > X|εX = 1, εY = 2]P [εX = 1, εY = 2]
+ P [Y > X|εX = 2, εY = 1]P [εX = 2, εY = 1]
+ P [Y > X|εX = 2, εY = 2]P [εX = 2, εY = 2]

=P [Y > X|εX = 1, εY = 1]P [εX = 1, εY = 1]
+ 1 ∗ P [εX = 1, εY = 2]
+ 0 ∗ P [εX = 2, εY = 1]
+ 0 ∗ P [εX = 2, εY = 2]

So P [X > Y ] = P [X > Y |εX = 1, εY = 1]P [εX = 1, εY = 1] + P [εX = 1, εY = 2] and:

∆ =
(
P [X > Y |εX = 1, εY = 1]− P [X < Y |εX = 1, εY = 1]

)
P [εX = 1, εY = 1]

+ P [εX = 1, εY = 2]− P [εX = 2, εY = 1]
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5.1.2 General case (censoring, method: Gehan)

In case of censoring we can use an inverse probability weighting approach. Let denote δc,X (resp.
δc,Y ) the indicator of no censoring relative to X̃ (resp Ỹ ), X̃E and ỸE the censored event time. We
can use inverse probability weighting to compute the net benefit:

∆IPW =
δc,X̃δc,Ỹ

P
[
δc,X̃

]
P
[
δc,Ỹ

] (1Ỹ >X̃ − 1Ỹ <X̃)

=
{

1
P[δc,X̃ ]P[δc,Ỹ ] (1Y >X − 1Y <X), if no censoring
0, if censoring

This is equivalent to weight the informative pairs (i.e. favorable, unfavorable and neutral) by
the inverse of the complement of the probability of being uninformative. This is what is done by
the argument correction.tte of BuyseTest. This works whenever the censoring mechanism is
independent of the event times and we have a consistent estimate of P [δc] since:

E
[
∆IPW

]
= E

E
 δc,X̃δc,Ỹ

P
[
δc,X̃

]
P
[
δc,Ỹ

] (1Ỹ >X̃ − 1Ỹ <X̃)
∣∣∣∣∣X̃, Ỹ


= E

E
 δc,X̃δc,Ỹ

P
[
δc,X̃

]
P
[
δc,Ỹ

]∣∣∣∣∣X̃, Ỹ
E [1Y >X − 1Y <X ]

=
E
[
δc,X̃δc,Ỹ

]
P
[
δc,X̃

]
P
[
δc,Ỹ

]∆ =
E
[
δc,X̃

]
E
[
δc,Ỹ

]
P
[
δc,X̃

]
P
[
δc,Ỹ

]∆

= ∆

where we used the law of total expectation (first line) and the independence between the censoring
mecanisms.

5.1.3 Exponential distribution (no censoring)

Now let’s assume that:
• XE ∼ Exp(αE,X).

• YE ∼ Exp(αE,Y ).

• XCR ∼ Exp(αCR,X).

• YCR ∼ Exp(αCR,Y ).
Then:

P [YE > XE ] = P [YE > XE |εX = 1, εY = 1]P [εX = 1, εY = 1] + P [εX = 1, εY = 2]

= 1
(αE,X + αCR,X)(αE,Y + αCR,Y )

(
αE,XαE,Y

αE,X
αE,X + αE,Y

+ αE,XαCR,Y

)
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Just for comparison let’s compare to the cumulative incidence. First we only consider one group
and two competing events whose times to event follow an exponential distribution:

• TE ∼ Exp(αE). The corresponding hazard function is λ(t) = αE .

• TCR ∼ Exp(αCR). The corresponding hazard function is λ(t) = αCR.

The cumulative incidence function can be written:

CIF1(t) =
∫ t

0
λ1(s)S(s−)ds

=
∫ t

0
αE exp(−(αE + αCR) ∗ s−)ds

= αE
αE + αCR

[exp(−(αE + αCR) ∗ s−)]0t

= αE
αE + αCR

(1− exp(−(αE + αCR) ∗ t−))

where S(t) denote the event free survival and s− denotes the right sided limit.

Then applying this formula in the case of two groups gives:

CIF1(t|group = X) = αE,X
αE,X + αCR,X

(1− exp(−(αE,X + αCR,X) ∗ t−))

CIF1(t|group = Y ) = αE,Y
αE,Y + αCR,Y

(1− exp(−(αE,Y + αCR,Y ) ∗ t−))

5.2 In R
5.2.1 BuyseTest (no censoring)

Setting:

alphaE.X <- 2
alphaCR.X <- 1
alphaE.Y <- 3
alphaCR.Y <- 2

Simulate data:

set.seed(10)
df <- rbind(data.frame(time1 = rexp(n, rate = alphaE.X), time2 = rexp(n, rate = alphaCR

.X), group = "1"),
data.frame(time1 = rexp(n, rate = alphaE.Y), time2 = rexp(n, rate = alphaCR

.Y), group = "2"))
df$time <- pmin(df$time1,df$time2) ## first event
df$event <- (df$time2<df$time1)+1 ## type of event

BuyseTest:
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e.BT <- BuyseTest(group ∼ tte(time, censoring = event), data = df,
method.inference = "none", method.tte = "Gehan",
trace = 0)

summary(e.BT, percentage = TRUE)

Generalized pairwise comparison with 1 prioritized endpoint

> statistic : net chance of a better outcome (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> treatment groups: 1 (control) vs. 2 (treatment)
> censored pairs : uninformative pairs

> results
endpoint threshold total favorable unfavorable neutral uninf delta Delta

time 1e-12 100 41.6 45.12 13.28 0 -0.0352 -0.0352

Note that without censoring one can get the same results by treating time as a continuous
variable that take value ∞ when the competing risk is observed:

df$timeXX <- df$time
df$timeXX[df$event==2] <- max(df$time)+1
e.BT.bis <- BuyseTest(group ∼ cont(timeXX), data = df,

method.inference = "none", trace = 0)
summary(e.BT.bis, percentage = TRUE)

Generalized pairwise comparison with 1 prioritized endpoint

> statistic : net chance of a better outcome (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> treatment groups: 1 (control) vs. 2 (treatment)
> results
endpoint threshold total favorable unfavorable neutral uninf delta Delta

timeXX 1e-12 100 41.6 45.12 13.28 0 -0.0352 -0.0352

Expected:

weight <- (alphaE.X+alphaCR.X)*(alphaE.Y+alphaCR.Y)
exp <- list()
exp$favorable <- 1/weight*(alphaE.X*alphaE.Y*alphaE.X/(alphaE.X+alphaE.Y)+(alphaE.X*

alphaCR.Y))
exp$unfavorable <- 1/weight*(alphaE.X*alphaE.Y*alphaE.Y/(alphaE.X+alphaE.Y)+(alphaE.Y*

alphaCR.X))
exp$neutral <- alphaCR.X*alphaCR.Y/weight

100*unlist(exp)

favorable unfavorable neutral
42.66667 44.00000 13.33333
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5.2.2 BuyseTest (with censoring)

Simulate data:

df$eventC <- df$event
df$eventC[rbinom(n, size = 1, prob = 0.2)==1] <- 0

BuyseTest (biased):

e.BTC <- BuyseTest(group ∼ tte(time, censoring = eventC), data = df,
method.inference = "none", method.tte = "Gehan",
trace = 0)

summary(e.BTC, percentage = TRUE)

Generalized pairwise comparison with 1 prioritized endpoint

> statistic : net chance of a better outcome (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> treatment groups: 1 (control) vs. 2 (treatment)
> censored pairs : uninformative pairs

> results
endpoint threshold total favorable unfavorable neutral uninf delta Delta

time 1e-12 100 31.1 35.15 8.65 25.1 -0.0406 -0.0406

BuyseTest (unbiased):

e.BTCC <- BuyseTest(group ∼ tte(time, censoring = eventC), data = df,
method.inference = "none", method.tte = "Gehan corrected",
trace = 0)

summary(e.BTCC, percentage = TRUE)

Generalized pairwise comparison with 1 prioritized endpoint

> statistic : net chance of a better outcome (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> treatment groups: 1 (control) vs. 2 (treatment)
> censored pairs : uninformative pairs

IPW for uninformative pairs

> results
endpoint threshold total favorable unfavorable neutral uninf delta Delta

time 1e-12 100 41.52 46.94 11.54 0 -0.0542 -0.0542

5.2.3 Cumulative incidence

Settings:

alphaE <- 2
alphaCR <- 1
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Simulate data:

set.seed(10)
df <- data.frame(time1 = rexp(n, rate = alphaE), time2 = rexp(n, rate = alphaCR), group

= "1", event = 1)
df$time <- pmin(df$time1,df$time2)
df$event <- (df$time2<df$time1)+1

Cumulative incidence (via risk regression):

e.CSC <- CSC(Hist(time, event) ∼ 1, data = df)
vec.times <- unique(round(exp(seq(log(min(df$time)),log(max(df$time)),length.out = 12))

,2))
e.CSCpred <- predict(e.CSC, newdata = data.frame(X = 1), time = vec.times , cause = 1)

Expected vs. calculated:

cbind(time = vec.times,
CSC = e.CSCpred$absRisk[1,],
manual = alphaE/(alphaE+alphaCR)*(1-exp(-(alphaE+alphaCR)*(vec.times)))
)

time CSC manual
[1,] 0.00 0.0000 0.00000000
[2,] 0.01 0.0186 0.01970298
[3,] 0.02 0.0377 0.03882364
[4,] 0.05 0.0924 0.09286135
[5,] 0.14 0.2248 0.22863545
[6,] 0.42 0.4690 0.47756398
[7,] 1.24 0.6534 0.65051069
[8,] 3.70 0.6703 0.66665659

Could also be obtained treating the outcome as binary:

mean((df$time<=1)*(df$event==1))

[1] 0.6375
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