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Abstract

We introduce an R package BDgraph which performs Bayesian structure learning in
high-dimensional graphical models with either continuous or discrete variables. The pack-
age efficiently implements recent improvements in the Bayesian literature, including Mo-
hammadi and Wit (2015b) and Mohammadi, Abegaz Yazew, van den Heuvel, and Wit
(2015). The core of the BDgraph package consists of two main MCMC sampling algo-
rithms efficiently implemented in C++ to maximize computational speed. In this paper,
we give a brief overview of the methodology and illustrate the package’s functionality in
both toy examples and applications.
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1. Introduction

Graphical models (Lauritzen 1996) can be used to describe the conditional independence
relationships among large numbers of variables. In graphical models, each random variable
is associated with a node in a graph and links represent conditional dependency between
variables, whereas the absence of a link implies that the variables are independent conditional
on the rest of the variables (called the pairwise Markov property).

In recent years, significant progress has been made to design efficient algorithms to discover
graph structures from high-dimensional multivariate data (Dobra, Lenkoski, and Rodriguez
2011; Jones, Carvalho, Dobra, Hans, Carter, and West 2005; Mohammadi and Wit 2015b;
Mohammadi et al. 2015; Friedman, Hastie, and Tibshirani 2008; Meinshausen and Buhlmann
2006; Murray and Ghahramani 2004). In this regard, Bayesian approaches provide a princi-
pled alternative to various penalized approaches.

In this paper, we describe the BDgraph package (Mohammadi and Wit 2015a) in R (R Core

http://www.jstatsoft.org/
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Team 2013) for Bayesian structure learning in undirected graphical models. The package can
deal with Gaussian, non-Gaussian, discrete and mixed data sets. The package includes several
functional modules, including data generation for simulation, a search algorithm, a graph
estimation routine, a convergence check and a visualization tool; see Figure 1. The package
efficiently implements recent improvements in the Bayesian literature, including Mohammadi
and Wit (2015b); Mohammadi et al. (2015); Lenkoski (2013); Uhler, Lenkoski, and Richards
(2014); Hoff (2007). For a Bayesian framework of Gaussian graphical models, we implement
the method developed by Mohammadi and Wit (2015b) and for Gaussian copula graphical
models we use the method described by Mohammadi et al. (2015). To make our Bayesian
methods computationally feasible for high-dimensional data, we efficiently implement the
BDgraph package in C++ linked to R. To make the package easy to use, we use the S3 class.
The package is available under the general public license (GPL ≥ 3) from the Comprehensive
R Archive Network (CRAN) at http://cran.r-project.org/packages=BDgraph.

In the Bayesian literature, the BDgraph is the only R package which is available online for
Gaussian graphical models and Gaussian copula graphical models. On the other hand, in
frequentest literature, existing packages are huge (Zhao, Liu, Roeder, Lafferty, and Wasserman
2014), glasso (Friedman, Hastie, and Tibshirani 2014), bnlearn (Scutari 2010), pcalg (Kalisch,
Mächler, Colombo, Maathuis, and Bühlmann 2012) and gRain (Højsgaard 2012). We compare
the performance to several packages.

The article is organized as follows. In Section 2 we illustrate the user interface of BDgraph
package. In Section 3 we explain some methodological background of the package. In this
regard, in Section 3.1, we briefly explain the Bayesian framework for Gaussian graphical
models for continuous data. In Section 3.2 we briefly describe the Bayesian framework in the
Gaussian copula graphical models for the data that not follow the Gaussianity assumption,
such as non-Gaussian continuous, discrete or mixed data. In Section 4 we describe the main
functions implemented in the BDgraph package. In Section 5 by a simple simulation example,
we explain the user interface and the performance of the package and we compare it with huge
package. In Section 6, by using the functions implemented in the BDgraph package, we study
two real data sets.

2. User interface

In R environment, we can access and load the BDgraph package by suing the following com-
mands

R> install.packages( "BDgraph" )

R> library( "BDgraph" )

Loading the package automatically loads igraph (Csardi and Nepusz 2006) and Matrix (Bates
and Maechler 2014) packages, since BDgraph package depends on these two packages. These
packages are available on the Comprehensive R Archive Network (CRAN) at http://CRAN.

R-project.org. We use igraph package for graph visualization and Matrix package for
memory-optimization using sparse matrix output. In our package, all the functions operate
on or return Matrix objects.

To maximize computational speed, we efficiently implement the BDgraph package with C++
code linked to R. For C++ code, we used the highly optimized LAPACK (Anderson, Bai,

http://cran.r-project.org/packages=BDgraph
http://CRAN.R-project.org
http://CRAN.R-project.org
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Bischof, Blackford, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling, McKenney, and
Sorensen 1999) and BLAS (Lawson, Hanson, Kincaid, and Krogh 1979) linear algebra li-
braries on systems that provide them. We significantly improve program speed by using these
libraries.

We design the BDgraph package to provide a Bayesian framework for high-dimensional undi-
rected graph estimation for different types of data sets such as continuous, discrete or mixed
data. The package facilitates a flexible pipeline for analysis by three functional modules; see
Figure 1. These modules are as follows:

Figure 1: Configuration of the BDgraph package which includes three main parts: (M1) data
generation, (M2) algorithm for sampling from joint posterior distribution and (M3) several
functions to check convergence of BDMCMC algorithm, estimate the true graph, compare
and model check and graph visualization.

Module 1. Data simulation: Function bdgraph.sim simulates multivariate Gaussian, dis-
crete and mixed data with different undirected graph structures, including“random”,“cluster”,
“hub”, “scale-free”, “circle”and “fixed”graphs. Users can set the sparsity of the graph struc-
ture. Users can generate mixed data, including “count”, “ordinal”, “binary”, “Gaussian”and
“non-Gaussian”variables.

Module 2. Method: The function bdgraph provides two estimation methods with two
different algorithms for sampling from the posterior distributions:

1. Graph estimation for normally distributed data which is based on the Gaussian graphical
models (GGMs) by using the birth-death MCMC sampling algorithm, described in
Mohammadi and Wit (2015b).

2. Graph estimation for non-Gaussian, discrete, and mixed data, which is based on Gaus-
sian copula graphical models (GCGMs) by using the birth-death MCMC sampling al-
gorithm, described in Mohammadi et al. (2015).

Module 3. Result: This module includes four types of functions as follow

� Convergence check: The functions plotcoda and traceplot provide several visual-
ization plots to monitor the convergence of the sampling algorithms.

� Graph selection: The functions select, phat, prob, provide selected graph, the pos-
terior link inclusion probabilities and posterior probability of each graph, respectively.
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� Comparison and goodness-of-fit: The functions compare and plotroc provide sev-
eral comparison measures and ROC plot for model comparison.

� Visualization: The plotting functions plot.bdgraph and plot.simulate provide
visualizations of the simulated data and estimated graphs.

3. Methodological background

In Section 3.1, we briefly explain the Gaussian graphical model for normal data. Then we
explain the birth-death MCMC algorithm for sampling from the joint posterior distribution
in the Gaussian graphical models; for more detail see Mohammadi and Wit (2015b). In
Section 3.2, we briefly describe the Gaussian copula graphical model, which can deal with
non-Gaussian, discrete or mixed data. Then we explain the Birth-death MCMC algorithm
which is designed for the Gaussian copula graphical models; for more detail see Mohammadi
et al. (2015).

3.1. Bayesian Gaussian graphical models

In graphical models, each variable is associated with a node and conditional dependence
relationships among random variables are presented as a graph G = (V,E) in which V =
{1, 2, ..., p} specifies a set of nodes and a set of existing links E ⊂ V × V (Lauritzen 1996).
Our focus here is on undirected graphs in where (i, j) ∈ E is equivalent with (j, i) ∈ E. The
absence of a link between two nodes specifies the pairwise conditional independence of these
two variables given the remaining variables, while a link between two variables determines
their conditional dependence.

In the Gaussian graphical models (GGMs), we assume the observed data follow a multivariate
Gaussian distribution Np(µ,K

−1), here we assume µ = 0. Let Z = (Z(1), ..., Z(n))T be the
observed data of n independent samples, then the likelihood function is

Pr(Z|K,G) ∝ |K|n/2 exp

{
−1

2
tr(KU)

}
, (1)

where U = Z′Z.

In GGMs, the conditional independence is implied by the form of the precision matrix. Based
on pairwise Markov property, variables i and j are conditionally independence given the
remaining variables, if and only if Kij = 0. This property implies that the links in graph
G = (V,E) correspond with the nonzero elements of precision matrix K, it means E =
{(i, j)|Kij 6= 0}. Given graph G, the precision matrix K is constrained to the cone PG of
symmetric positive definite matrices with elements Kij equal to zeros for all (i, j) /∈ E.

We consider the G-Wishart distribution WG(b,D) as a prior distribution for the precision
matrix K with density

Pr(K|G) =
1

IG(b,D)
|K|(b−2)/2 exp

{
−1

2
tr(DK)

}
1(K ∈ PG), (2)

where b > 2 is the degree of freedom, D is a symmetric positive definite matrix, IG(b,D) is
the normalizing constant with respect to the graph G and 1(x) evaluates to 1 if x holds and
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to 0 otherwise. The G-Wishart distribution is a well-known prior for the precision matrix,
since it represents the conjugate prior for normally distributed data.

When G is complete the G-Wishart distribution reduces to the standard Wishart distribu-
tion, hence, its normalizing constant has an explicit form (Muirhead 1982). Also, for de-
composable graphs, the normalizing constant has an explicit form (Roverato 2002). But, for
non-decomposable graphs, the normalizing constant does not have an explicit form.

Since the G-Wishart prior is a conjugate prior to the likelihood (1), the posterior distribution
of K is

Pr(K|Z, G) =
1

IG(b∗, D∗)
|K|(b∗−2)/2 exp

{
−1

2
tr(D∗K)

}
,

where b∗ = b+ n and D∗ = D + S, that is, WG(b∗, D∗).

Direct sampler from G-Wishart

Several sampling methods from G-Wishart distribution have been proposed; to review existing
methods see Wang and Li (2012). More recently, Lenkoski (2013) have developed an exact
sampling algorithm to sample from G−Wishart distribution, which borrows an idea from
Hastie, Tibshirani, and Friedman (2009). The algorithm is as follows.

Algorithm 1 Given a graph G = (V,E) with precision matrix K and Σ = K−1

1: Set Ω = Σ
2: repeat
3: for i = 1, ..., p do
4: Let Ni ⊂ V be the neighbors set of node i in G. Form ΩNi and ΣNi,i and solve

β̂∗i = Ω−1Ni
ΣNi,i

5: Form β̂i ∈ Rp−1 by padding the elements of β̂∗i to the appropriate locations and zeros
in those locations not connected to i in G

6: Update Ωi,−i and Ω−i,i with Ω−i,−iβ̂i
7: end for
8: until convergence
9: return K = Ω−1

In the BDgraph package, we use Algorithm 1 to sample from the posterior distribution of the
precision matrix. Besides, we implement the algorithm for general purposes in our package
as a function rgwish; see the R code below for an illustration.

R> graph <- toeplitz( c( 0, 1, rep( 0, 2 ) ) )

R> graph

[,1] [,2] [,3] [,4]

[1,] 0 1 0 0

[2,] 1 0 1 0

[3,] 0 1 0 1

[4,] 0 0 1 0
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R> sample <- rgwish( n = 1, G = graph, b = 3, D = diag(4) )

R> round( sample, 2 )

[,1] [,2] [,3] [,4]

[1,] 2.10 0.88 0.00 0.00

[2,] 0.88 2.75 0.23 0.00

[3,] 0.00 0.23 4.14 0.81

[4,] 0.00 0.00 0.81 4.22

BDMCMC algorithm for GGMs

Consider the joint posterior distribution of K and the graph G given by

Pr(K,G | Z) ∝ Pr(Z | K) Pr(K | G) Pr(G). (3)

For the graph-prior, as a non-informative prior, we consider a uniform distribution over all
graph space, pr(G) ∝ 1. For the prior distribution of K condition on graph G we consider a
G-Wishart WG(b,D).

Here, we consider a computationally efficient birth-death MCMC sampling algorithm pro-
posed by Mohammadi and Wit (2015b) for the Gaussian graphical models. The algorithm is
based on a continuous time birth-death Markov process in which the algorithm explores over
the graph space by adding/removing a link in a birth/death event.

In the birth-death process, at a particular pair of graph G = (V,E) with precision matrix K,
each link dies independently of the rest as a Poisson process with death rate δe(K). Since the
links are independent, the overall death rate is δ(K) =

∑
e∈G δe(K). Birth rates βe(K) for

e /∈ G are defined similarly. Thus the overall birth rate is β(K) =
∑

e/∈G βe(K).

Since the birth and death events are independent Poisson processes, the time between two
successive events exponentially distributed with mean 1/(β(K) + δ(K)). The time between
successive events can be considered as support for any particular instance of graph G. The
probability of the death and death events are

Pr(birth of link e) =
βe(K)

β(K) + δ(K)
, for each e /∈ G, (4)

Pr(death of link e) =
δe(K)

β(K) + δ(K)
, for each e ∈ G. (5)

The birth and death rates of links occur in continuous time with the rates determined by
the stationary distribution of the process. The algorithm is designed in such a way that
the stationary distribution equals the target joint posterior distribution of the graph and the
precision matrix (3).

Mohammadi and Wit (2015b, Section 3) prove by considering the birth and death rates as
ratios of joint posterior distributions, as below, the birth-death MCMC sampling algorithm
converges to the target joint posterior distribution of the graph and the precision matrix, if

βe(K) =
Pr(G+e,K+e|Z)

Pr(G,K|Z)
, for each e /∈ G, (6)
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δe(K) =
Pr(G−e,K−e|Z)

Pr(G,K|Z)
, for each e ∈ G, (7)

in which G+e = (V,E ∪ {e}) and K+e ∈ PG+e and similarly G−e = (V,E \ {e}) and K−e ∈
PG−e . Based on the above rates, we determine our BDMCMC algorithm as below.

Algorithm 2 Given a graph G = (V,E) with a precision matrix K

for N iteration do
1. Sample from the graph. Based on birth and death process

1.1. Calculate the birth rates by (6) and β(K) =
∑

e∈/∈G βe(K)
1.2. Calculate the death rates by (7) and δ(K) =

∑
e∈G δe(K)

1.3. Calculate the waiting time by W (K) = 1/(β(K) + δ(K))
1.4. Simulate the type of jump (birth or death) by (4) and (5)

2. Sample from the precision matrix. By using Algorithm 1.
end for

We design our BDMCMC sampling algorithm in such a way that, we sample from (G,K) in
each steep of jumping to the new state, e.g., {t1, t2, ...} in Figure 2. For efficient inference, we
compute the sample means based on the Rao-Blackwellized estimator (Cappé, Robert, and
Rydén 2003, Section 2.5); see e.g., (12).

Note, our main aim is to estimate the posterior distribution of the graphs based on the data,
Pr(G|data). By using the Rao-Blackwellized estimator the estimated posterior distribution
of the graphs are proportion to the total waiting times of each graph; see Figure 2.

Figure 2: This image visualizes the Algorithm 2. Left side is a continuous time BDMCMC
sampling algorithm where {W1,W2, ...} denote waiting times and {t1, t2, ...} denote jumping
times. Right side denotes the estimated posterior probability of the graphs which are propor-
tional to the total of their waiting times, according to the Rao-Blackwellized estimator.
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3.2. Gaussian copula graphical models

In practice, we encounter both discrete and continuous variables; Gaussian copula graphical
modelling has been proposed to describe dependencies between such heterogeneous variables.
Let Y (as an observed data) be a collection of continuous, binary, ordinal or count variables
with the marginal distribution Fj of Yj and F−1j its pseudo inverse. Towards constructing a
joint distribution of Y, we introduce a multivariate Gaussian latent variable as follows

Z1, ..., Zn
iid∼ N (0,Γ(K)),

Yij = F−1j (Φ(Zij)), (8)

where Γ(K) is the correlation matrix for a given precision matrix K. The joint distribution
of Y is given by

Pr (Y1 ≤ Y1, . . . , Yp ≤ Yp) = C(F1(Y1), . . . , Fp(Yp) | Γ(K)), (9)

where C(·) is the Gaussian copula given by

C(u1, . . . , up | Γ) = Φp

(
Φ−1(u1), . . . ,Φ

−1(up) | Γ
)
,

with uv = Fv(Yv) and Φp(·) is the cumulative distribution of multivariate Gaussian and Φ(·)
is the cumulative distribution of univariate Gaussian distributions. It follows that Yv =
F−1v (Φ(Zv)) for v = 1, ..., p. If all variables are continuous then the margins are unique; thus
zeros in K imply conditional independence, as in Gaussian graphical models (Hoff 2007). For
discrete variables, the margins are not unique but still well-defined (Nelsen 2007).

In semiparametric copula estimation, the marginals are treated as nuisance parameters and es-
timated by the rescaled empirical distribution. The joint distribution in (9) is then parametrized
only by the correlation matrix of the Gaussian copula. We are interested to infer the underly-
ing graph structure of the observed variables Y implied by the continuous latent variables Z.
Since Z are unobservable we follow the idea of Hoff (2007) to associate them to the observed
data as follows.

Given the observed data Y from a sample of n observations, we constrain the latent samples
Z to belong to the set

D(Y) = {Z ∈ Rn×p : Lr
j(Z) < z

(r)
j < U r

j (Z), r = 1, . . . , n; j = 1, . . . , p},

where

Lr
j(Z) = max

{
Z

(k)
j : Y

(s)
j < Y

(r)
j

}
and U r

j (Z) = min
{
Z

(s)
j : Y

(r)
j < Y

(s)
j

}
. (10)

Following Hoff (2007) we infer on the latent space by substituting the observed data Y with
the event D(Y) and defined the likelihood as

Pr(Y | K,G,F1, ..., Fp) = Pr(Z ∈ D(Y) | K,G) Pr(Y | Z ∈ D(Y),K,G, F1, ..., Fp).

The only part of the observed data likelihood relevant for inference on K is Pr(Z ∈ D(Y) |
K,G). Thus, the likelihood function is given by

Pr(Z ∈ D(Y) | K,G) = Pr(Z ∈ D(Y) | K,G) =

∫
D(Y)

Pr(Z | K,G)dZ (11)
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where Pr(Z | K,G) is defined in (1).

BDMCMC algorithm for GCGMs

The joint posterior distribution of the graph G and precision matrix K for our Gaussian
copula graphical model is as follow

Pr(K,G|Z ∈ D(Y)) ∝ Pr(K,G)Pr(Z ∈ D(Y)|K,G).

Sampling from this posterior distribution can be done by using the birth-death MCMC al-
gorithm. Mohammadi et al. (2015) have developed and extended the birth-death MCMC
algorithm for more general case of GCGMs. We summarize their algorithm as follows.

Algorithm 3 Given a graph G = (V,E) with a precision matrix K

for N iteration do
1. Sample the latent data. For each r ∈ V and j ∈ {1, ..., n}, we update the latent
values from its full conditional distribution as follows

Z(j)
r |ZV \{r} = z

(j)
V \{r},K ∼ N(−

∑
r′

Krr′z
(j)
r′ /Krr, 1/Krr),

truncated to the interval
[
Lj
r(Z), U j

r (Z)
]

in (10).

2. Sample from the graph. Same as Step 1 in the Algorithm 2.
3. Sample from the precision matrix. By using Algorithm 1.

end for

In each iteration of the Algorithm 3, first conditional on the observed data (Y) we sample
from the latent variables (Z). The other steps are the same as the Algorithm 2.

Remark. For the cases that all variables are continuous, we do not need to sample from
latent variables in each iteration of the Algorithm 2, since all margins in Gaussian copula are
unique. Therefore, for these cases, first based on Gaussian copula approach, we transfer our
non-Gaussian data to Gaussian then we run the Algorithm 2.

4. The BDgraph environment

The BDgraph package provides a set of comprehensive tools related to Bayesian graphical
models; here, we describe the essential functions available in the package.

4.1. Description of the bdgraph function

The main function of the package is bdgraph, which includes two Bayesian frameworks (GGMs
and GCGMs). This function is based on an underlying sampling engine (Algorithms 2 and
3) takes the model definition and returns a sequence of samples from the joint posterior
distribution of the graph and precision matrix (3), given the supplied data. By using the
following function

bdgraph( data, n = NULL, method = "ggm", iter = 5000, burnin = iter / 2,

b = 3, D = NULL, Gstart = "empty" )
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we can sample from our target joint posterior distribution. bdgraph returns an object of S3
class type “bdgraph”. The functions plot, print and summary are working with the object
“bdgraph”. The input data can be a matrix or a data.frame ( n× p) or a covariance matrix;
it can also be an object of class “simulate”, which is output of the function bdgraph.sim.

The argument method determines the type of BDMCMC algorithm (Algorithms 2 and 3).
Option “ggm”implements the BDMCMC algorithm based on the Gaussian graphical mod-
els (Algorithm 2). It is designed for the data that follow Gaussianity assumption. Option
“gcgm”implements the BDMCMC algorithm based on the Gaussian copula graphical models
(Algorithm 3). It is designed for the data that do not follow the Gaussianity assumption such
as non-Gaussian continuous, discrete or mixed data. This option can deal with missing data.

4.2. Description of the bdgraph.sim function

The function bdgraph.sim is designed to simulate different types of data sets with different
graph structures. The function

bdgraph.sim( n = 2, p = 10, graph = "random", size = NULL, prob = 0.2,

class = NULL, type = "Gaussian", cut = 4, b = 3, D = diag(p),

K = NULL, sigma = NULL, mean = 0, vis = FALSE )

can simulate multivariate Gaussian, non-Gaussian, discrete and mixed data with different
undirected graph structures, including “random”, “cluster”, “hub”, “scale-free”, “circle”and
“fixed”graphs. Users can determine the sparsity level of the obtained graph by option prob. By
this function, users can generate mixed data from “count”, “ordinal”, “binary”, “Gaussian”and
“non-Gaussian”distributions. bdgraph.sim returns an object of the S3 class type “simulate”.
The plot, print and summary functions are working with this object type.

4.3. Description of the plotcoda and traceplot functions

In general, convergence in MCMC approaches can be difficult to evaluate. From a theoretical
point of view, the sampling distribution will converge to the target joint posterior distribution
as the number of iteration increases to infinity. We normally have little theoretical insight
about how quickly convergence “KICKS IN”; therefore we rely on post hoc testing of the
sampled output. In general, the sample is divided into two parts: a “burn-in”part of sample
and the remainder, in which the chain is considered to have converged sufficiently close to the
target posterior distribution. Two questions then arise: How many samples are sufficient?
How long should the burn-in period be?

The plotcoda and traceplot are two visualization functions in the BDgraph package for
checking the convergence of the BDMCMC algorithm. The function

plotcoda( output, thin = NULL, main = NULL, links = TRUE, ... )

provides the trace of posterior inclusion probability of all possible links to check convergence
of the BDMCMC algorithm. The function

traceplot ( output, acf = FALSE, pacf = FALSE, main = NULL, ... )
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provides the trace of graph size to check convergence of the BDMCMC algorithm. The input
of these two functions is the output of bdgraph function, which is the sample drawn from the
joint posterior distribution of graph and precision matrix.

4.4. Description of the phat and select functions

In the BDgraph package, the functions phat and select provide the potential tools to do
statistical inference from the samples drawn from the joint posterior distribution. The function

phat( output, round = 3 )

provides the estimated posterior link inclusion probabilities for all possible links. These
probabilities, for all possible link e = (i, j) in graph G, can be calculated by using the
Rao-Blackwellization (Cappé et al. 2003, Section 2.5) as

Pr(e ∈ G|data) =

∑N
t=1 1(e ∈ G(t))W (K(t))∑N

t=1W (K(t))
, (12)

where N is the number of iteration and W (K(t)) are the weights of the graph G(t) with the
precision matrix K(t).

The function

select( output, cut = NULL, vis = FALSE )

provides the inferred graph, which is the graph with the highest posterior probability as a
default. By option cut, users can select the inferred graph based on the estimated posterior
link inclusion probabilities.

4.5. Description of the compare and plotroc functions

The function compare and plotroc are designed to check and compare the performance of the
selected graph. This function is particularly useful for simulation studies. With the function

compare( G, est, est2 = NULL, colnames = NULL, vis = FALSE )

we can check the performance of our BDMCMC algorithm and compare it with other alterna-
tive approaches. This function provides several measures such as balanced F -score measure
(Baldi, Brunak, Chauvin, Andersen, and Nielsen 2000) which is defined as follows

F1-score =
2TP

2TP + FP + FN
, (13)

where TP, FP and FN are the number of true positives, false positives and false negatives,
respectively. The F1-score lies between 0 and 1, where 1 is for perfect identity and 0 for worst
case.

The function

plotroc( G, prob, prob2 = NULL, cut = 20, smooth = FALSE )
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provides a ROC plot for visualization comparison based on the estimated posterior link in-
clusion probabilities (12).

5. User interface by toy example

In this section, we illustrate the user interface of the BDgraph package with a simple simula-
tion example. We perform all the computations on an Intel(R) Core(TM) i5 CPU 2.67GHz
processor. By using the function bdgraph.sim we simulate 60 observations (n = 60) from a
multivariate Gaussian distribution with 8 variables (p = 8) and “scale-free”graph structure,
as below

R> data.sim <- bdgraph.sim( n = 60, p = 8, graph = "scale-free",

type = "Gaussian" )

R> round( head( data.sim $ data, 4), 2 )

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] -0.74 1.40 -0.85 0.56 -0.37 0.15 0.93 0.25

[2,] 0.67 -0.53 0.08 0.24 0.30 0.77 -0.44 -0.41

[3,] -0.94 -1.74 1.25 -0.86 -0.25 -1.54 0.14 0.08

[4,] 0.34 -0.45 -0.53 -0.33 -0.28 -0.54 0.32 2.90

5.1. Running the BDMCMC algorithm

Since the generated data follow Gaussianity assumption, we run the BDMCMC algorithm
which is based on the Gaussian graphical models. Therefore, we choose method = "ggm", as
follow

R> output.ggm <- bdgraph( data = data.sim, method = "ggm", iter = 50000 )

Running this function takes around 5 second which is computationally fast as main sampling
part is in C++. Since the function bdgraph returns an object of class S3, users can see the
summary result of BDMCMC algorithm as follows

R> summary( output.ggm )

$selected_graph

1 2 3 4 5 6 7 8

1 . . . 1 . . . 1

2 . . 1 1 1 . . 1

3 . 1 . . . . . .

4 1 1 . . . . 1 1

5 . 1 . . . 1 . .

6 . . . . 1 . 1 .

7 . . . 1 . 1 . .

8 1 1 . 1 . . . .
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$phat

1 2 3 4 5 6 7 8

1 . 0.01 . 1.0 0.03 . . 0.83

2 . . 1 1.0 0.98 . 0.10 1.00

3 . . . 0.1 0.14 . . 0.12

4 . . . . 0.04 . 0.60 0.95

5 . . . . . 1 . 0.16

6 . . . . . . 0.94 .

7 . . . . . . . .

8 . . . . . . . .

$Khat

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 3.247 -0.002 0.000 -1.324 0.016 0.000 0.000 0.309

[2,] -0.002 3.910 1.497 -2.749 -1.082 0.000 -0.046 0.746

[3,] 0.000 1.497 5.275 0.099 -0.061 0.000 0.000 0.044

[4,] -1.324 -2.749 0.099 8.281 0.013 -0.001 -0.506 -0.730

[5,] 0.016 -1.082 -0.061 0.013 4.979 -1.432 0.000 0.065

[6,] 0.000 0.000 0.000 -0.001 -1.432 2.349 0.587 0.000

[7,] 0.000 -0.046 0.000 -0.506 0.000 0.587 3.091 0.000

[8,] 0.309 0.746 0.044 -0.730 0.065 0.000 0.000 0.667

The summary result are the adjacency matrix of the graph with the highest posterior proba-
bility (selected_graph), the estimated posterior probabilities of all possible links (phat) and
the estimated precision matrix (Khat).

In addition, function summary reports a visualization summary of the results as we can see in
Figure 3. In the top-left is the graph with the highest posterior probability. In the top-right
is the estimated posterior probabilities of all the graphs which are visited by the BDMCMC
algorithm. It indicates our algorithm visits more than 600 different graphs and the posterior
probability of the selected graph is around 0.22. In the bottom-left is the estimated posterior
probabilities of the size of graphs. It indicates our algorithm visited mainly graphs with size
between 6 and 14 links. In the bottom-right is the trace of our algorithm based on the size
of the graphs.

5.2. Convergence check

In our simulation example, we run the BDMCMC algorithm for 50, 000 iteration, 25, 000 of
which as burn-in. To check whether the number of iteration is enough or not, we run

R> plotcoda( output.ggm )

The results in Figure 4 indicates that our BDMCMC algorithm, roughly speaking, converges
after 20, 000 iteration and that burn-in of 25, 000 is sufficient.

5.3. Comparison and goodness-of-fit

The function compare provides several measures for checking the performance of our al-
gorithms and compared with other alternative approaches, with respect to the true graph
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Figure 3: Visualization summary of the simulation data based on the output of bdgraph
function. Figure in the top-left is the inferred graph with the highest posterior probability.
Figure in the top-right is the estimated posterior probabilities of all visited graphs. Figure in
the bottom-left is the estimated posterior probabilities of all visited graphs based on the size
of the graph. Figure in the bottom-right is the trace of our algorithm based on the size of the
graphs.

structure. To check the performance of our both algorithms (Algorithms 2 and 3), we also
run the Algorithms 3 with the same condition as bellow

R> output.gcgm <- bdgraph( data = data.sim, method = "gcgm", iter = 50000 )

where output.ggm is 50, 000 samples from the joint posterior distribution which are generated
based on the Gaussian copula graphical models.

Users can compare the performance of these two algorithms by using the code

R> plotroc( data.sim, output.ggm, output.gcgm )
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Figure 5: ROC plot to compare the performance of the GGM and GCGM approachs.

As expected, the result indicates that the “GGM”approach performs slightly better than the
“GCGM”, since the data is generated from a Gaussian graphical model.

Here, we also compare our approach to the Meinshausen-Buhlmann approach mb (Meinshausen
and Buhlmann 2006) by using the huge package (Zhao et al. 2014). We consider the following
code

R> install.packages( "huge" )

R> library( "huge" )
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R> huge <- huge( data.sim $ data, method = "mb" )

R> output.huge <- huge.select( mb )

R> compare( data.sim, output.ggm, output.gcgm, output.huge, vis = TRUE,

colnames = c("True graph", "BDgraph(ggm)", "BDgraph(gcgm)",

"huge(mb)") )

True graph BDgraph(ggm) BDgraph(gcgm) huge(mb)

true positive 7 5 4 5

true negative 21 16 17 14

false positive 0 5 4 7

false negative 0 2 3 2

true positive rate 1 0.71 0.57 0.71

false positive rate 0 0.24 0.19 0.33

accuracy 1 0.75 0.75 0.68

balanced F-score 1 0.59 0.53 0.53

positive predictive 1 0.50 0.50 0.41

This result indicates that the huge package based on the mb discovers 5 true links, in addition,
it finds 7 extra links which are not in the true graph. See Figure 6 for visualization. For more
comparison see Mohammadi and Wit (2015b, Section 4).

6. Application to real data sets

In this section, we analyze two data sets from biology and sociology, by using the functions
that are available in the BDgraph package. In Section 6.1, we analyze a Labor force survey
data set, which are mixed data. In Section 6.2, we analyze Human gene expression data,
which are high-dimensional data that do not follow the Gaussianity assumption. Both data
sets are available in our package.

6.1. Application to labor force survey data

Hoff (2007) analyzes the multivariate dependencies among income, eduction and family back-
ground, by using data concerning 1002 males in the U.S labor force. The data is available in
our package. Users can call the data via

R> data( "surveyData" )

R> dim( surveyData )

[1] 1002 7

R> head( surveyData, 5 )

income degree children pincome pdegree pchildren age

[1,] NA 1 3 3 1 5 59

[2,] 11 0 3 NA 0 7 59
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Figure 6: Comparing the performance of the BDgraph with huge packages. The graph
in the top-left is the true graph. The graph in the top-right is the selected graph based
on Gaussian grapical models. The graph in the bottom-left is the selected graph based on
Gaussian copula grapical models. The graph in the bottom-right is the selected graph based
on the mb approach in the huge package.

[3,] 8 1 1 NA 0 9 25

[4,] 25 3 2 NA 0 5 55

[5,] 100 3 2 4 3 2 56

Missing data are indicated by NA and in general the rate of missing data is around 0.09 with
higher rates for variables income and pincome. In this data set, we have seven observed
variables as follows

income: An ordinal variable indicating the respondent’s income in 1000s of dollars.
degree: An ordinal variable with five categories indicating the respondent’s highest educa-

tional degree.
children: A count variable indicating the number of children of the respondent.
pincome: An ordinal variable with five categories indicating financial status of respondent’s

parents.
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pdegree: An ordinal variable with five categories indicating the highest educational degree
of the respondent’s parents.

pchildren: A count variable indicating the number of children of the respondent’s parents.
age: A count variable indicating the respondent’s age in years.

Since those variables are measured on various scales, the marginal distributions are hetero-
geneous, which makes the study of their joint distribution very challenging. However, we
can apply our Bayesian framework based on the Gaussian copula graphical models to this
data set. Thus, we run the function bdgraph with option method = "gcgm". For the prior
distributions of the graph and precision matrix, as default of the function bdgraph, we place
a uniform distribution as a uninformative prior on the graph and a G-Wishart WG(3, I7) on
the precision matrix. We run our function for 50, 000 iteration with 25, 000 as burn-in.

R> output <- bdgraph( data = surveyData, method = "gcgm", iter = 50000 )

R> summary( output )

$selected_graph

income degree children pincome pdegree pchildren age

income . 1 1 . . . 1

degree 1 . . . 1 1 .

children 1 . . . 1 1 1

pincome . . . . 1 1 .

pdegree . 1 1 1 . 1 1

pchildren . 1 1 1 1 . .

age 1 . 1 . 1 . .

$phat

income degree children pincome pdegree pchildren age

income . 1 1.00 0.27 0.12 0.05 1.00

degree . . 0.53 0.03 1.00 0.84 0.11

children . . . 0.14 0.88 1.00 1.00

pincome . . . . 1.00 0.53 0.07

pdegree . . . . . 0.99 1.00

pchildren . . . . . . 0.03

age . . . . . . .

$Khat

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 3.546 -1.707 -0.949 -0.104 -0.041 0.019 -1.219

[2,] -1.707 4.127 0.321 0.009 -1.853 0.413 -0.056

[3,] -0.949 0.321 8.875 0.086 0.737 -1.074 -4.392

[4,] -0.104 0.009 0.086 5.686 -2.050 0.355 0.036

[5,] -0.041 -1.853 0.737 -2.050 6.510 1.029 1.028

[6,] 0.019 0.413 -1.074 0.355 1.029 7.826 0.022

[7,] -1.219 -0.056 -4.392 0.036 1.028 0.022 9.250

The result of the function summary are the adjacency matrix of the graph with the highest
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posterior probability (selected_graph), estimated posterior probabilities of all possible links
(phat) and estimated precision matrix (Khat).
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Figure 7: Graph with the highest posterior probability for the labor force survey data based
on the output from bdgraph. Sign “+”represents a positively correlated relationship between
associated variables and “-”represents a negatively correlated relationship.

Figure 7 shows the selected graph which is a graph with the highest posterior probability.
Links in the graph are indicated by signs “+”and “-”, which represents a positively and nega-
tively correlated relationship between associated variables, respectively.

The result indicate that education, fertility and age determinate income, since there are
highly positively correlated relationships between income and those three variables, with
posterior probability equal to one for all. It shows that respondent’s education and fertility
are negatively correlated with posterior probability equal to 0.67. The respondent’s education
is certainly related to his parent’s education, since there is positively correlated relationship
with posterior probability equal to one. Moreover, the result indicate that relationships
between income, education and fertility hold across generations.

For this data set, Hoff (2007) estimated the conditional independence between variables by
inspecting whether the 95% credible intervals for the associated regression parameters do not
contain zero. Our result is the same with Hoff’s result except for one link. Our result indicate
there is a strong relationship between parent’s education (pdegree) and fertility (child),
which is not selected by Hoff.

6.2. Application to human gene expression

Here, by using the functions that are available in the BDgraph package, we study the structure
learning of the sparse graphs applied to the large-scale human gene expression data which was
originally described by Stranger, Nica, Forrest, Dimas, Bird, Beazley, Ingle, Dunning, Flicek,
Koller et al. (2007). They collected the data to measure gene expression in B-lymphocyte
cells from Utah individuals of Northern and Western European ancestry. They consider 60
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individuals whose genotypes are available online at ftp://ftp.sanger.ac.uk/pub/genevar.
Here the focus is on the 3125 Single Nucleotide Polymorphisms (SNPs) that have been found
in the 5’ UTR (untranslated region) of mRNA (messenger RNA) with a minor allele frequency
≥ 0.1. Since the UTR (untranslated region) of mRNA (messenger RNA) has been subject
to investigation previously, it should have an important role in the regulation of the gene
expression. The raw data were background corrected and then quantile normalized across
replicates of a single individual and then median normalized across all individuals. Following
Bhadra and Mallick (2013), among the 47, 293 total available probes, we consider the 100
most variable probes that correspond to different Illumina TargetID transcripts. The data
for these 100 probes are available in our package. To see the data, users can run the code

R> data( "geneExpression" )

R> dim( geneExpression )

[1] 60 100

The data consist of only 60 observations (n = 60) across 100 genes (p = 100). This data set
is an interesting case study for graph structure learning, as it has been used in (Bhadra and
Mallick 2013; Mohammadi and Wit 2015b; Gu, Cao, Ning, and Liu 2015).

In this data set, all the variables are continuous but they do not follow the Gaussianity
assumption, as you can see in Figure 8. Thus, we apply the Gaussian copula graphical
models. Therefore, we run function bdgraph with option method = "gcgm". For the prior
distributions of the graph and precision matrix, as default of the function bdgraph, we place
a uniform distribution as a uninformative prior on graph and the G-Wishart WG(3, I100) on
the precision matrix.

We run our function for 100, 000 iteration with 50, 000 as burn-in as follows

R> output <- bdgraph( data = geneExpression, method = "ggm", iter = 100000 )

R> select( output )

This function takes around 13 hours. The function select gives as a default the graph with
the highest posterior probability, which has 991 links. We use the following code to visualize
the ones that we believe have posterior probabilities larger than 0.995.

R> select( output, cut = 0.995, vis = TRUE )

By using option vis = TRUE, this function plots the selected graph. Figure 9 shows the
selected graph with 266 links, for which the posterior inclusion probabilities (12) are greater
than 0.995.

The function phat reports the estimated posterior probabilities of all possible links in the
graph. For our data the output of this function is a 100× 100 matrix. Figure 10 reports the
visualization of that matrix.

Most of the links in our selected graph (graph with the highest posterior probability) conform
the results in previous studies. For instance, Bhadra and Mallick (2013) found 54 significant
interactions between genes, most of which are covered by our method. In addition, our
approach indicates additional gene interactions with high posterior probabilities that are

ftp://ftp.sanger.ac.uk/pub/genevar
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Figure 8: Univariate histograms of first 6 genes in human gene data set.

missed by previous work; thus our method may complement the analysis of human gene
interaction networks.

7. Conclusion

The BDgraph package aims to help researchers in two ways. Firstly, the package provides a
Bayesian framework which potentially can be extended, customized and adapted to address
different requirements, in graphical models. Secondly, it is currently the only R package that
provides a simple and complete range of tools for conducting Bayesian inference for graphical
modelling based on conditional independence graph estimation.

We plan to maintain and develop the package in the future. Future versions of the package
will contain more options for prior distributions of graph and precision matrix. On possible
extension of our package, is to deal with outliers, by using robust Bayesian graphical modelling
using Dirichlet t-Distributions (Finegold and Drton 2014; Mohammadi and Wit 2014). An
implementation of this method would be desirable in real applications.
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Figure 9: The inferred graph for the human gene expression data using Gaussian copula
graphical models. This graph consists of links with posterior probabilities (12) larger than
0.995.
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