
Statistics Netherlands

Discussion paper (09046)

Automatic correction of simple
typing errors in numerical data
with balance edits

The views expressed in this paper are those of the author(s)
and do not necessarily refl ect the policies of Statistics Netherlands

The Hague/Heerlen, 2009

800
o
s
e08080808
orrection of simple ction of sction of sction of s
s in numerical data in numerical data in numerical data in numerical data
e editse editse editse edits

Sander Scholtus

Explanation of symbols

. = data not available
* = provisional fi gure
x = publication prohibited (confi dential fi gure)
– = nil or less than half of unit concerned
– = (between two fi gures) inclusive
0 (0,0) = less than half of unit concerned
blank = not applicable
2007–2008 = 2007 to 2008 inclusive
2007/2008 = average of 2007 up to and including 2008
2007/’08 = crop year, fi nancial year, school year etc. beginning in 2007 and ending in 2008
2005/’06–2007/’08 = crop year, fi nancial year, etc. 2005/’06 to 2007/’08 inclusive

Due to rounding, some totals may not correspond with the sum of the separate fi gures.

Publisher
Statistics Netherlands
Henri Faasdreef 312
2492 JP The Hague

Prepress
Statistics Netherlands - Grafi media

Cover
TelDesign, Rotterdam

Information
Telephone +31 88 570 70 70
Telefax +31 70 337 59 94
Via contact form: www.cbs.nl/information

Where to order
E-mail: verkoop@cbs.nl
Telefax +31 45 570 62 68

Internet
www.cbs.nl

ISSN: 1572-0314

© Statistics Netherlands, The Hague/Heerlen, 2009.
Reproduction is permitted. ‘Statistics Netherlands’ must be quoted as source.

6008309046 X-10

Automatic correction of simple typing errors
in numerical data with balance edits

Sander Scholtus

Summary: Data collected for the production of structural business statis-
tics consist of a large number of numerical variables, with many mathe-
matical relations between them. These relations are specified in the form
of consistency checks, called edit rules or edits. Edits are used to detect
errors that occur in the data set. One of the purposes of the editing pro-
cess is to remove these errors. For the sake of efficiency, it is desirable to
automate the detection and correction of errors as much as possible, and
this need has led to the development of general methods for automatic
error localisation. In this paper, we present a simple device for the cor-
rection of inconsistencies in balance edits (linear equalities) due to simple
typing errors, such as interchanged digits. The occurrence of these par-
ticular errors can be predicted accurately from the unedited data. Since
general methods for automatic error localisation do not use this informa-
tion, it seems advantageous to correct simple typing errors automatically
in a separate step.

Keywords: automatic editing, deductive correction, typing errors, struc-
tural business statistics

3

1 Introduction

In the theory of editing, a distinction is often made between systematic errors and ran-
dom errors. Systematic errors are made consistently by different respondents, because
of a structural cause. The best-known example is the unity measure error, where the
respondent reports amounts that are too high by a constant factor, usually a power of
ten. Other examples of systematic errors are presented in Scholtus (2008). Deductive
algorithms can often be used to detect and correct these errors automatically. Random
errors are caused by non-structural problems during data collection, such as simple
typing errors.

Because of these errors, an unedited record may violate one or several consistency
checks, known as edit rules or edits. Two examples of edits are:

turnover− costs = profit (1)

and
number of employees≥ 0. (2)

A common approach to resolve random errors is to search for a minimal set of vari-
ables that can be changed such that all edits become satisfied simultaneously. This
is known as the Fellegi-Holt paradigm; cf. Fellegi and Holt (1976). The paradigm is
often used in a generalised form, where each variable is given a reliability weight and
the objective becomes to minimise the sum of reliability weights of the variables to be
changed. Algorithms for data editing based on the generalised Fellegi-Holt paradigm
have been implemented in various software packages, such as Statistics Canada’s GEIS
and Banff, the U.S. Bureau of the Census’s SPEER and DISCRETE, and Statistics
Netherlands’ SLICE.

A typical editing process may contain two automatic error localisation steps. In the
first step, errors are treated that are known to occur frequently and that can be resolved
by a tailor-made deductive algorithm. For instance, unity measure errors can be treated
in this step. In the second step, all remaining errors are removed by solving a math-
ematical optimisation problem based on the Fellegi-Holt paradigm. Thus, it is tacitly
assumed that all systematic errors have been removed in the first step. In particular,
the editing process for structural business statistics at Statistics Netherlands contains
these two steps; cf. De Jong (2002). Of the two, the second localisation step is by far
the most computationally intensive.

An edit in the form of a linear equality, such as (1), is called a balance edit. Van de
Pol et al. (1997) observe that if a random error produces a violated balance edit, the
unedited data may contain information on the nature of the error that is not used by
the Fellegi-Holt paradigm. In particular, this may happen if the error only causes a
small perturbation in a true value, for instance when two digits are interchanged. For
example, suppose that a record contains the following values:

turnover costs profit
353 283 115

and thus violates edit (1). Assuming that this is the only edit, and that all variables
have the same reliability weight, an application of the Fellegi-Holt paradigm yields

4

three equivalent solutions, namely that one of the variables should be changed to obtain
consistency. That is, either turnover is changed to 283+115 = 398, or costs is changed
to 353− 115 = 238, or profit is changed to 353− 283 = 70. From these values, it
appears that changing costs to 238 is probably the correct solution, since it has the
nice interpretation that two digits in the true value were interchanged by accident. The
other solutions do not have a clear interpretation. However, the Fellegi-Holt paradigm
does not use this information.

For the case that the data should satisfy exactly one balance edit, Van de Pol et al.
(1997) describe a method to incorporate this kind of information in the reliability
weights. In the example above, the reliability weight of the variable costs would
be lowered by a certain factor. Applying the generalised Fellegi-Holt paradigm then
yields the desired solution. The practical use of this method is limited, because in real-
world applications with numerical data, the Fellegi-Holt paradigm is usually applied
with a much larger set of edits, including more than one balance edit. Hence, to our
best knowledge this method has not been applied in practice.

The purpose of the present paper is to extend the method of Van de Pol et al. (1997) to
the more general situation where records have to satisfy a system of inter-related edits.
Moreover, we describe how automatic corrections can be generated, which makes it
possible to apply the method in the first localisation step mentioned above rather than
the second. This decreases the amount of computational work needed in the second
step. The remainder of this paper is organised as follows: Section 2 introduces the
types of errors we hope to treat with our method; Section 3 describes the method; an
example is discussed in Section 4; some refinements are suggested in Section 5; a prac-
tical application of the method is discussed in Section 6; finally, Section 7 concludes
the paper.

2 Simple typing errors

We shall consider the following simple typing errors in this paper: (a) interchanging
two adjacent digits; (b) adding a digit; (c) omitting a digit; (d) replacing a digit. In this
section, we give a formal description of these four errors. A common feature of these
types of errors is that they always affect one variable at a time. This is not true of errors
in general; consider for instance the unity measure error. Another common feature of
these types of errors is that they result in an observed erroneous value, which is related
to the unobserved correct value in an easily recognisable way. Again, the same cannot
be said of general errors.

To formally describe the errors introduced above, we first have to choose a numerical
system to represent survey values. We take a pragmatic view and assume that the
decimal system is used, although this restriction is not necessary. We also assume
throughout this paper that all variables are integer-valued. Thus, every observed value
can be written in the form

x =±
M

∑
j=0

ξ j ·10 j, (3)

where ξ j denotes the j-th digit of x. Note that digits are numbered from right to left in
the standard notation and that the rightmost digit is called the 0-th digit. In (3), M is a

5

positive integer such that |x| < 10M+1 for all observed values. Although a theoretical
interpretation is lacking, it is not difficult to find a suitable value of M in practice,
because observed values are stored in computer memory using a limited number of
bits.

A simple typing error can be seen as a function f : Z→ Z acting on the true value x.
Because of a random error, the value f (x) is observed instead of x. We can write down
explicit expressions for the functions that describe the four types of errors mentioned
above.

(a) Interchanging two adjacent digits: this is described by the family of functions
fic(x;k), with

fic(x;k) = x+ξk · (10k+1−10k)+ξk+1 · (10k−10k+1), (4)

for k = 0, . . . ,M−1. The function fic(x;k) interchanges the digits ξk and ξk+1.
For instance: fic(4627;1) = 4267.

(b) Adding a digit: this is described by the family of functions fa(x;k,ξ), with

fa(x;k,ξ) =
k−1

∑
j=0

ξ j ·10 j +ξ ·10k +
M

∑
j=k+1

ξ j−1 ·10 j, (5)

for k = 0, . . . ,M and ξ = 0, . . . ,9. The function fa(x;k,ξ) adds a digit ξ at the
k-th position. For instance: fa(4627;1,8) = 46287. Applying this function to x
only makes sense if ξM = 0.

(c) Omitting a digit: this is described by the family of functions fo(x;k), with

fo(x;k) =
k−1

∑
j=0

ξ j ·10 j +
M

∑
j=k+1

ξ j ·10 j−1, (6)

for k = 0, . . . ,M. The function fo(x;k) omits the digit ξk from x. For instance:
fo(4627;1) = 467.

(d) Replacing a digit: this is described by the family of functions fr(x;k,ξ), with

fr(x;k,ξ) = x+(ξ −ξk) ·10k, (7)

for k = 0, . . . ,M and ξ = 0, . . . ,9. The function fr(x;k,ξ) replaces the k-th digit
of x by ξ . For instance: fr(4627;1,8) = 4687.

We remark that the parameter k has the interpretation that f (x;k) shares its first digits
with x up to and including ξk−1, but possibly has a different digit in the k-th position.
Also, to interpret the outcome of fic(x;k) as a typing error, it has to hold that x≥ 10k+1.
To interpret the outcome of fa(x;k,ξ) as a typing error, it has to hold that x ≥ 10k−1.
Finally, to interpret the outcome of fo(x;k) or fr(x;k,ξ) as a typing error, it has to hold
that x≥ 10k.

We assume that for each respondent there exists an unobserved true record y, which
satisfies all edits. Several error mechanisms act on the values in this record, produc-
ing an observed record x, which is available in digital form at the statistical institute,
but possibly contains errors. We assume that these error mechanisms operate indepen-
dently of each other, and that each variable is affected by at most one error mechanism.

6

3 Theory for automatic correction of simple typing errors

3.1 Analysing violated and satisfied edits

For now, we assume that the variables x = [x1, . . . ,xn]
′ have to satisfy only balance

edits e1, . . . ,em. The r-th balance edit er states that

ar,1x1 + · · ·+ar,nxn = 0, (8)

where all coefficients ar,i are integers. Together, these edits can be written as Ax = 0,
where A is an m×n-matrix of coefficients and 0 is the m-vector of zeros. We discuss
an extension of the method that also handles other types of edits in Section 5.

Each edit defines a three-way partition of {1, . . . ,n}:

I(r)
1 = {i : ar,i > 0} , I(r)

2 = {i : ar,i < 0} , I(r)
3 = {i : ar,i = 0} , (9)

for r = 1, . . . ,m. Edit er can be written as

∑
i∈I(r)

1

ar,ixi =− ∑
i∈I(r)

2

ar,ixi. (10)

When i∈ I(r)
3 , we say that xi is not involved in edit er. The complement Ī(r)

3 = I(r)
1 ∪ I(r)

2

contains the indices of all variables involved in edit er.

Similarly, each variable defines a partition of {1, . . . ,m}:

R(i)
1 = {r : ar,i > 0} , R(i)

2 = {r : ar,i < 0} , R(i)
3 = {r : ar,i = 0} , (11)

for i = 1, . . . ,n. The complement R̄(i)
3 = R(i)

1 ∪R(i)
2 contains the indices of all edits that

involve xi. We assume throughout that each variable is involved in at least one edit,
i.e. R̄(i)

3 6= /0 for all i, since a variable that is not involved in any edits can be ignored
during editing.

Given an observed record x, it is possible to compute, for each edit, two partial sums:

s(r)
1 = ∑

i∈I(r)
1

ar,ixi, s(r)
2 =− ∑

i∈I(r)
2

ar,ixi, r = 1, . . . ,m. (12)

The record violates edit er, and we write φ(r) = 1, if s(r)
1 6= s(r)

2 (see (10)). Otherwise,
the record satisfies edit er and we write φ(r) = 0. Thus, the set of edits is split into two
groups:

E1 = {r : φ(r) = 1} , E2 = {r : φ(r) = 0} . (13)

The edits with indices in E1 are violated by the current record, whereas the edits with
indices in E2 are satisfied.

Finally, we define the following subset of the variables:

I0 =
⋂

r∈E2

I(r)
3 =

{
i : E2 ⊆ R(i)

3

}
. (14)

This subset has the following interpretation: it is the index set of variables that are not
involved in any edit that is satisfied by the current record. In other words, all edits

7

that involve a variable from I0 are violated by the current record. When searching for
simple typing errors, we only want to perform corrections that increase the number
of satisfied edits, without causing previously satisfied edits to become violated. This
provision implies that the only variables we can safely change are those in I0. The
equivalence between the two definitions in (14) is trivial.

3.2 Generating automatic corrections

As observed in the introduction, a record can be made to satisfy a violated balance edit
by changing one of the variables involved in that edit. In particular, if i ∈ Ī(r)

3 and er is
currently violated, then the edit becomes satisfied if we change the value of xi to

x̃(r)
i =

1
ar,i

(
s(r)

2 − s(r)
1 +ar,ixi

)
. (15)

Namely, if i ∈ I(r)
1 then this operation changes the value of s(r)

1 to

s̃(r)
1 = s(r)

1 −ar,ixi +ar,ix̃
(r)
i = s(r)

2 , (16)

and if i ∈ I(r)
2 then this operation changes the value of s(r)

2 to

s̃(r)
2 = s(r)

2 +ar,ixi−ar,ix̃
(r)
i = s(r)

1 . (17)

In both cases, the edit is no longer violated.1

For each i ∈ I0, a list of values x̃(r)
i can be generated by computing (15) for all r ∈ R̄(i)

3 .
Next, we check, for each value on the list, whether a simple typing error could have
produced the observed value xi if the true value were x̃(r)

i . This is the case if

xi = f (x̃(r)
i) (18)

for one of the functions introduced in Section 2. If a function can be found such that
(18) holds, it seems plausible that a simple typing error has changed the true value
yi = x̃(r)

i to the observed value xi. Before drawing any conclusions, however, it is
important to examine all other possible corrections. For now, we keep the value x̃(r)

i

on the list. On the other hand, if no function is found such that (18) holds, then x̃(r)
i is

removed from the list, because no simple typing error could have changed this value
into the observed value xi.

After discarding some of the values from the list, it is possible that only an empty list
remains. In that case, we do not consider this variable anymore. On the other hand, the
reduced list may contain duplicate values, if the same value of xi can be used to satisfy
more than one edit. We denote the unique values that occur on the reduced list by
x̃i,1, . . . , x̃i,Ti , and we denote the number of times that value x̃i,t occurs by κi,t . If Ti = 1,
we drop the second index and simply write x̃i and κi. We remark that κi,t represents

1In the case that |ar,i| > 1 (which we have not actually encountered in practice at Statistics Nether-
lands), it is possible that formula (15) yields a non-integer value. As an example, consider a record with
x2 = 4 and x3 = 11, where we want to find the value of x1 such that 2x1 + x2 = x3 holds. Using (15), we
obtain x1 = 7/2. For our present purpose, a non-integer x̃(r)

i can be immediately discarded, because it is
never explained by a simple typing error.

8

the number of currently violated edits that become satisfied when xi is changed to x̃i,t .
By construction, it holds that κi,t ≥ 1.

The above procedure is performed for each i∈ I0. For each variable, we find a (possibly
empty) list of potential changes that can be explained by simple typing errors and that,
when considered separately, cause one or more violated edits to become satisfied. The
question now remains how to make an optimal selection from these potential changes.
Ideally, the optimal selection should return the true values of all variables affected
by simple typing errors. Since we do not know the true values, a more pragmatic
solution is to select the changes that together lead to a maximal number of satisfied
edits. In the simple case that exactly one potential change is found for exactly one
variable, the choice is straightforward. If more than one potential change is found
and/or if more than one variable can be changed, the choice requires more thought,
because clearly, we cannot change the same variable twice and we should not change
two variables involved in the same edit. On the other hand, a record might contain
several independent typing errors, and we do want to resolve as many of these errors
as possible.

The selection problem from the previous paragraph can be formulated as a mathemat-
ical optimisation problem:

maximise ∑i∈I0 ∑Ti
t=1 κi,tδi,t , such that:

∑i∈Ī(r)
3 ∩I0

∑Ti
t=1 δi,t ≤ 1, for r ∈ E1,

δi,t ∈ {0,1} , for i ∈ I0 and t ∈ {1, . . . ,Ti} .

(19)

The binary variable δi,t equals 1 if we choose to replace xi with the value x̃i,t , and 0
otherwise. Note that the criterion function in (19) counts the number of resolved edit
violations. We seek values for δi,t that maximise this number, under the inequality
constraints in (19). These constraints state that at most one change is allowed for
each i ∈ I0, and that at most one variable may be changed per violated edit. Here, the
assumption is used that each variable is involved in at least one edit.

To solve problem (19), we may apply a standard branch and bound algorithm, con-
structing a binary tree to enumerate all choices of δi,t . Branches of the binary tree may
be pruned if they do not lead to a feasible solution with respect to the inequality con-
straints. Note that in this case many branches can be pruned because the constraints
are quite strict: once we set δi,t = 1 for a particular (i, t), all other δ -values that occur
in the same constraint must be set to zero. This helps to speed up the algorithm.

Once a solution to (19) has been found, the value of xi is changed to x̃i,t if δi,t = 1.
If δi,t = 0 for all t = 1, . . . ,Ti, then the value of xi is not changed. Formally, for each
i ∈ I0 the new value x̂i is given by

x̂i =
Ti

∑
t=1

x̃i,tδi,t + xi

(
1−

Ti

∑
t=1

δi,t

)
. (20)

In the next section, we work out a small-scale example to illustrate the method.

9

4 Example

Suppose that the unedited data consist of records with n = 11 numerical variables that
should conform to m = 5 balance edits:





e1 : x1 + x2 = x3

e2 : x2 = x4

e3 : x5 + x6 + x7 = x8

e4 : x3 + x8 = x9

e5 : x9− x10 = x11

(21)

The corresponding partitions (9) and (11) are displayed in two tables in Appendix A.

Throughout this section, we use the following correct but unobserved record y:

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

1452 116 1568 116 323 76 12 411 1979 1842 137

This record satisfies all edits (21). Below, we consider four different observed versions
of y that contain simple typing errors.

4.1 A record with one simple typing error

The first record x we consider has the following observed values:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1452 116 1568 161 323 76 12 411 1979 1842 137

Edit e2 is the only violated edit, because x2 = 116 and x4 = 161. This means that
E1 = {2} and E2 = {1,3,4,5}. Using (14), we find that I0 = {4}; x4 is the only variable
not involved in any satisfied edit. Since x4 is only involved in edit e2, formula (15)
yields one possible value: x̃(2)

4 = 116. From this value, the observed value x4 = 161
can be explained by a simple typing error, namely the interchanging of two adjacent
digits in the true value. Formally, fic(116;0) = 161. Since there is only one potential
change to consider in this example, we do not have to set up an optimisation problem,
but simply replace x4 = 161 with the new value x̂4 = 116. Comparing the resulting
record with y, we see that the true value y4 = 116 has been recovered.

4.2 A record with two simple typing errors

Next, we consider the following observed record:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1452 116 1568 161 323 76 12 411 19979 1842 137

This record violates edits e2, e4 and e5. Thus E1 = {2,4,5}, E2 = {1,3} and I0 =
I(1)
3 ∩ I(3)

3 = {4,9,10,11}; the variables x4, x9, x10 and x11 are only involved in violated
edits. Just like in the previous example, we find the potential new value x̃4 = 116.

10

Choosing this value only changes the status of edit e2 from violated to satisfied, so
κ4 = 1. Variable x9 is involved in edits e4 and e5. According to (15),

x̃(4)
9 =−(19979−1979−19979) = 1979, and

x̃(5)
9 = 1979−19979+19979 = 1979.

so both edits become satisfied by the same choice of x̃9. Moreover, the observed value
can be explained by a simple typing error, since fa(1979;3,9) = 19979. Thus, we find
x̃9 = 1979 with κ9 = 2. Variables x10 and x11 are only involved in edit e5, and we find:

x̃(5)
10 =−(1979−19979−1842) = 19842, and

x̃(5)
11 =−(1979−19979−137) = 18137.

Changing 19842 to 1842 can be explained by a simple typing error (fo(19842;3) =
1842), so x̃10 = 19842 with κ10 = 1. Changing 18137 to 137 requires multiple typing
errors, so we do not consider variable x11 anymore.

Since several potential changes have been found, we set up problem (19) to determine
the optimal choice. We obtain:

max{δ4 +2δ9 +δ10} , such that:
δ4 ≤ 1,

δ9 ≤ 1,

δ9 +δ10 ≤ 1,

δ4,δ9,δ10 ∈ {0,1} .

It is easy to see that the optimal solution is: {δ4 = 1, δ9 = 1, δ10 = 0}. This solution
yields the following changes in the observed record: x̂4 = 116 and x̂9 = 1979. The
resulting record satisfies all edits and is identical to y.

4.3 A record with multiple errors

Now, suppose that the observed record contains the two simple typing errors from the
previous example, as well as a different kind of error:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1452 116 1568 161 0 0 0 411 19979 1842 137

The only non-violated edit is e1, so I0 = I(1)
3 = {4,5,6,7,8,9,10,11}. The reader may

verify that we find the same potential changes as before for x4, x9, x10 and x11. Variable
x5 is only involved in edit e3. In order to satisfy this edit, the value of x5 should be
changed from 0 to 411. Clearly, this cannot be explained by a simple typing error.
The same result holds for x6 and x7. Finally, variable x8 is involved in two edits, and
formula (15) yields:

x̃(3)
8 =−(411−0−411) = 0, and

x̃(4)
8 = 19979−1979+411 = 18411.

Neither of these changes can be explained by a simple typing error.

11

Since the same potential changes are found for this record as for the previous example,
the same optimisation problem is constructed and the same optimal solution is found.
The resulting record is:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1452 116 1568 116 0 0 0 411 1979 1842 137

All simple typing errors have been successfully removed, but edit e3 remains violated.
A more advanced method is needed to resolve the remaining error, e.g. an implemen-
tation of the Fellegi-Holt paradigm. The point to be made here is that the error local-
isation problem has been substantially simplified for this record, because a number of
errors have been resolved by our deductive method.

4.4 Another record with multiple errors

In the previous example, it was possible to correct all simple typing errors, despite the
presence of other errors. Unfortunately, this is not always true, as the next example
demonstrates. The following observed record has (by now familiar) simple typing
errors in x4 and x9, and in addition the value of x8 is reported erroneously:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1452 116 1568 161 323 76 12 0 19979 1842 137

Again, the only non-violated edit is e1, so all variables from x4 to x11 should be
checked.

The reader may verify that the interchanged digits in x4 are still found (x̃4 = 116 with
κ4 = 1), and that the potential changes in x5, x6, x7, x8 and x11 are not simple typing
errors. For x9, formula (15) yields:

x̃(4)
9 =−(19979−1568−19979) = 1568, and

x̃(5)
9 = 1979−19979+19979 = 1979.

The first value cannot be explained by a simple typing error and is discarded. The
second value is the same as before, but in this example it only makes edit e5 become
satisfied: x̃9 = 1979 and κ9 = 1. Finally, we find x̃10 = 19842 with κ10 = 1 as before.

This time, the following instance of problem (19) is constructed:

max{δ4 +δ9 +δ10} , such that:
δ4 ≤ 1,

δ9 ≤ 1,

δ9 +δ10 ≤ 1,

δ4,δ9,δ10 ∈ {0,1} .

The optimal value of the objective function equals 2, and there are two optimal so-
lutions: {δ4 = 1, δ9 = 1, δ10 = 0} and {δ4 = 1, δ9 = 0, δ10 = 1}. Corresponding to
these solutions are two corrected versions of the observed record:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1452 116 1568 116 323 76 12 0 1979 1842 137 solution 1
1452 116 1568 116 323 76 12 0 19979 19842 137 solution 2

12

In this example, we can compare these records with the true record y and see that the
first solution is the best match. In practice of course, the true record is unobserved and
there is no way to choose the correct solution. However, it should be noted that x̂4 has
the same value in both solutions, so we can safely perform this deductive correction.
In general, if problem (19) yields more than one optimal solution, we can still perform
deductive corrections for variables that have the same value in all solutions.

5 Refinements

In this section, we describe several improvements to the basic method of Section 3.
These refinements were mostly developed while reviewing early results of the practical
application discussed in the next section.

5.1 Rounding errors

Quite often, a balance edit of the form a′x = 0 is violated by a small amount. We
call such violations rounding errors if they are small enough, say |a′x| ≤ δ . For more
information on rounding errors and a heuristic method to correct them, see Scholtus
(2008). When searching for other types of errors, it is convenient to ignore rounding
errors, that is: treat edits that are violated by a small amount as though they were
satisfied. With this in mind, we define φ(r) = 0 if

−δ ≤ s(r)
1 − s(r)

2 ≤ δ

for the current record, and φ(r) = 1 otherwise. Thus, using this definition in (13), E2 is
the index set of edits that are either satisfied or merely violated because of a rounding
error, and E1 is the index set of edits that are truly violated by the current record.

5.2 Extension to other types of edits

We have assumed until now that only balance edits are specified. In practice, numerical
data often also have to satisfy inequalities, such as (2), and conditional edits, such as

if wages > 0, then number of employees > 0. (22)

There is an obvious way to extend the method to this more general situation. First,
all non-balance edits are ignored and a list of possible corrected values is constructed
using formula (15), as before. Now, when reducing the list to x̃i,1, . . . , x̃i,Ti , we use an
additional criterion: a potential correction should not introduce any new edit violations
in the set of inequalities and conditional edits. If a potential correction does lead to
new edit violations, it is removed from the list. The rest of the method remains the
same.

13

5.3 Assigning weights

Finally, we suggest a theoretical refinement which has not yet been implemented or
tested in practice. Consider the following generalisation of optimisation problem (19):

maximise ∑i∈I0 ∑Ti
t=1 wi,tδi,t , such that:

∑i∈Ī(r)
3 ∩I0

∑Ti
t=1 δi,t ≤ 1, for r ∈ E1,

δi,t ∈ {0,1} , for i ∈ I0 and t ∈ {1, . . . ,Ti} .

(23)

Here, weights wi,t are used to incorporate other information into the problem besides
κi,t , the number of edits that become satisfied by setting δi,t = 1. We suggest taking
wi,t = κi,tgi,t , where the factor gi,t is based on other information.

For example, weights could be chosen that increase with the number of digits of x̃i,t ,
since typing errors are more likely to occur in large values, for the simple reason
that most people find it “difficult” to handle large numbers. Also, we can assign a
zero weight to cases that we do not accept as simple typing errors. For instance, if
the observed value xi = 10 can be replaced by x̃i,t = 0 to satisfy an edit, this is a
simple typing error according to the method of Section 3 (adding ‘1’ in the first digit
position). We may be reluctant to accept this, if we feel that this is not really an
example of a simple typing error. Thus, more convenient results can be obtained by
automatically assigning zero weights to certain cases, in particular those cases where
either the observed value or the suggested value has only one digit.2

We could also assign different weights to values that are explained by different typing
errors, if we believe that some typing errors are more likely to occur than others. For
instance, if we believe that interchanging two digits occurs more often in practice than
adding a digit, a value x̃i,t that explains the observed value by interchanging two digits
can be given a higher weight than a value that explains the observed value by adding
a digit. This is mainly a theoretical possibility, because to quantify the difference we
need empirical evidence on the occurrence of simple typing errors under real-world
conditions. Collecting and analysing such information is probably too costly in prac-
tice.

6 Practical application

A prototype implementation of the algorithm was written in the R programming lan-
guage. This implementation searches for all four simple typing errors introduced in
Section 2 simultaneously. Rounding errors are taken into account as discussed in Sec-
tion 5.1. If more than one optimal solution to (19) exists, the algorithm returns the
corrections that are common to all optimal solutions, as we did in the example of
Section 4.4.

The prototype was tested using survey data from the Dutch wholesale structural busi-
ness statistics of 2007. The data file contains 4,381 records with 97 variables each.

2In our practical application (see Section 6), the same goal was achieved more bluntly by dropping all
suggested corrections with either xi < 10 or x̃i,t < 10.

14

Each record should conform to 123 hard edits3, including 19 balance edits. The ori-
ginal captured data cause 2,026 violations of balance edits. If rounding errors (with
δ = 2) are ignored, 1,758 balance edit violations remain.

Applying our method revealed 152 simple typing errors, occurring in 143 records.
Table 1 shows the number of hits for each type of error. By correcting these simple
typing errors, 195 violations of balance edits are removed. Thus, nearly ten percent of
all balance edit violations in this data set can be explained by one of the four simple
typing errors of Section 2.

Table 1: Number of simple typing errors in the wholesale data

type of number of
error corrections

interchanged digits 14
added digit 11

omitted digit 15
replaced digit 112

total 152

Table 2: Results on the wholesale data by questionnaire type

number of number of violated balance violated balance
medium records corrections edits (before) edits (after)

paper 570 96 1,069 930
electronic 3,811 56 957 901

total 4,381 152 2,026 1,831

The collection of survey data for the Dutch structural business statistics of 2007 was
conducted partly using a paper questionnaire and partly using an electronic question-
naire. To obtain a digital file of all survey data, information from paper questionnaires
needs to be keyed in at the statistical office. Since this introduces an extra source of
simple typing errors, we expect that such errors occur more frequently in data from
paper questionnaires than data from electronic questionnaires. Moreover, most of the
balance edits were built into the electronic questionnaire, because subtotals were au-
tomatically computed from the corresponding items; cf. Giesen (2007). Therefore, we

3An edit is called a hard edit (or fatal edit) if it identifies errors with certainty. An edit which can
sometimes be violated by correct values is called a soft edit (or query edit).

15

expect that few balance edit violations occur in data that were collected electronically.

Table 2 shows the results of the application on wholesale data, differentiated by ques-
tionnaire medium. These results are in line with our expectations: relatively speaking,
both the number of violated balance edits and the number of corrected simple typing
errors are much higher among data from the paper questionnaire than data from the
electronic questionnaire.

7 Conclusion

In this paper, we have described a method to correct simple typing errors in numerical
data, such as interchanged digits, automatically. The method was developed with the
microdata of the Dutch structural business statistics in mind, but it can be used in any
application where numerical data should conform to balance edits.

The list of simple typing errors given in Section 2 is not exhaustive. The method from
this paper can be used for the automatic detection of any error that only affects one
variable at a time and has a distinct, easily recognisable effect on the value of that vari-
able. In itself, the detection of such an error is almost trivial. The only complication
derives from the fact that the data have to satisfy many inter-related edits, so that if a
variable is changed to satisfy one edit, this may cause a new violation of another edit.
Our method describes a way to take all edits into account simultaneously.

References

De Jong, A. (2002), ‘Uni-Edit: Standardized Processing of Structural Business Statis-
tics in The Netherlands’. Paper presented at the UN/ECE Work Session on Statisti-
cal Data Editing, 27-29 May 2002, Helsinki, Finland.

Fellegi, I. P. and Holt, D. (1976), ‘A Systematic Approach to Automatic Edit and
Imputation’, Journal of the American Statistical Association 71, pp. 17–35.

Giesen, D. (2007), ‘Does Mode Matter? First Results of the Comparison of the Re-
sponse Burden and Data Quality of a Paper Business Survey and an Electronic Busi-
ness Survey’. Paper presented at QUEST 2007, 24-26 April 2007, Ottawa, Canada.

Scholtus, S. (2008), ‘Algorithms for Correcting Some Obvious Inconsistencies and
Rounding Errors in Business Survey Data’. Discussion Paper 08-015, Statistics
Netherlands, The Hague.

Van de Pol, F., Bakker, F. and De Waal, T. (1997), ‘On Principles for Automatic Edit-
ing of Numerical Data with Equality Checks’. Report 7141-97-RSM, Statistics
Netherlands, Voorburg.

16

Appendix A Tables

The following tables display the partitions I(r)
1 , I(r)

2 , I(r)
3 and R(i)

1 ,R(i)
2 ,R(i)

3 for the exam-
ple from Section 4.

r I(r)
1 I(r)

2 I(r)
3

1 {1,2} {3} {4,5,6,7,8,9,10,11}
2 {2} {4} {1,3,5,6,7,8,9,10,11}
3 {5,6,7} {8} {1,2,3,4,9,10,11}
4 {3,8} {9} {1,2,4,5,6,7,10,11}
5 {9} {10,11} {1,2,3,4,5,6,7,8}

i R(i)
1 R(i)

2 R(i)
3

1 {1} /0 {2,3,4,5}
2 {1,2} /0 {3,4,5}
3 {4} {1} {2,3,5}
4 /0 {2} {1,3,4,5}
5 {3} /0 {1,2,4,5}
6 {3} /0 {1,2,4,5}
7 {3} /0 {1,2,4,5}
8 {4} {3} {1,2,5}
9 {5} {4} {1,2,3}
10 /0 {5} {1,2,3,4}
11 /0 {5} {1,2,3,4}

17

