
Package ‘doMIsaul’
July 20, 2021

Title Do Multiple Imputation-Based Semisupervised and Unsupervised
Learning

Version 1.0.0

Description Algorithms for (i) unsupervised learning for dataset with
missing data and/or left-censored data, using multiple imputation and
consensus clustering ; (ii) semisupervised learning with a survival
endpoint (right-censored) for complete or incomplete datasets, using
multiple imputation and consensus clustering in the latter case.

License GPL (>= 3)

URL https://github.com/LilithF/doMIsaul

BugReports https://github.com/LilithF/doMIsaul/issues

Imports aricode,
arules,
clusterCrit,
clusteval,
dplyr,
ggplot2,
Gmedian,
graphics,
MASS,
methods,
mice,
NbClust,
ncvreg,
plyr,
scales,
stats,
survival,
utils,
withr

Suggests censReg,
cluster,
CPE,
dbscan,
e1071,
ggpubr,
Hmisc,

1

https://github.com/LilithF/doMIsaul
https://github.com/LilithF/doMIsaul/issues

2 cleanUp_partition

igraph,
mclust,
parallel,
RColorBrewer,
reshape2,
testthat (>= 3.0.0),
timeROC,
truncnorm

Remotes github::cran/clusteval

Config/testthat/edition 3

Encoding UTF-8

Language en-US

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

R topics documented:

cleanUp_partition . 2
CVE_LP . 3
evaluate_partition_semisup . 4
evaluate_partition_unsup . 5
initiate_centers . 6
mice.impute.cens . 7
MImpute . 8
MultiCons . 10
partition_generation . 11
plot_boxplot . 12
plot_frequency . 13
plot_MIpca . 14
seMIsupcox . 15
table_categorical . 18
table_continuous . 19
unsupMI . 20

Index 23

cleanUp_partition Remove small clusters (i.e. unclassified observations for which no
consensus was obtained)

Description

Remove small clusters (i.e. unclassified observations for which no consensus was obtained)

CVE_LP 3

Usage

cleanUp_partition(
partition,
min.cluster.size = 10,
level.order = NULL,
Unclassified = c(NA, "Unclassified")

)

Arguments

partition the partition to clean (vector).
min.cluster.size

Minimum cluster size (i.e., smaller clusters will be discarded)

level.order optional. If you supply a variable the cluster levels will be ordinated according
to the mean values for the variable

Unclassified string for the label of the unclassified observations. defaults value is NA.

Value

The cleaned up partition (factor).

Examples

part <- factor(kmeans(iris[, 1:4], 8)$cluster)
summary(part)
part.clean <- cleanUp_partition(part, Unclassified = "Unclassified")

CVE_LP Cross-validation for cox regression using the linear predictor estima-
tor with wrapper for warnings handling

Description

Cross-validation for cox regression using the linear predictor estimator with wrapper for warnings
handling

Usage

CVE_LP(x)

Arguments

x list of 3 named elements : data (data containing columns time and status),
partition (dataframe with 1 column), nfolds (number of fold for cross-validation).

Value

numeric, cross-validation error

4 evaluate_partition_semisup

Examples

data(cancer, package = "survival")
cancer$status <- cancer$status - 1
part <- data.frame(Cl= factor(cancer[, "sex"]), stringsAsFactors = TRUE)
CVE_LP(list(data = cancer, partition = part, nfolds = 10))

evaluate_partition_semisup

Evaluation of a semisupervised obtained partition in comparison to
reference partitions

Description

Evaluate number of clusters, ARI, AUC difference, c-index and CPE, with Supervised, unsuper-
vised and Semisupervised reference partitions

Usage

evaluate_partition_semisup(
partition,
ref.unsup,
ref.sup,
ref.semisup,
data.surv,
TMIN = 2,
TMAX = 5

)

Arguments

partition Vector containing cluster ids of the partition to evaluate.

ref.unsup Vector: Unsupervised reference partition (i.e. data structure).

ref.sup Vector: Supervised reference partition (i.e. using survival parameters).

ref.semisup Vector: Semisupervised reference partition (i.e. combining both).

data.surv dataframe with variables time and status.

TMIN time point to start analyzing AUC.

TMAX time point to analyze AUC.

Value

a list of named performances values

Examples

library(survival) # survival should be loaded in the environment
data(cancer, package = "survival")
cancer$status <- cancer$status - 1
res <- evaluate_partition_semisup (

partition = factor(rep(c(1,2,3), each = 50)),
ref.unsup = factor(rep(c(1,2,3), times = c(100, 25, 25))),

evaluate_partition_unsup 5

ref.sup = factor(rep(c(1,2), times = c(50, 100))),
ref.semisup = factor(rep(c(3, 2, 1), times = c(120, 10, 20))),
data.surv = cancer[1:150, c("time", "status")])

evaluate_partition_unsup

Comparison of an unsupervised obtained partition to a reference par-
tition.

Description

Compares partitions on number of cluster, ARI and percentage of unclassified observations.

Usage

evaluate_partition_unsup(
partition,
partition.ref,
is.missing = NULL,
is.cens = NULL

)

Arguments

partition vector (factor): the partition to evaluate.

partition.ref reference partition 1 (ex partition on complete data or true partition if known).

is.missing boolean vector identifying observations with missing data (coded TRUE), from
those without (coded FALSE).

is.cens the incomplete dataframe with NA for missing and left-censored data (or the
complete datasets if all data were observed).

Value

A list containing the following elements : Nbclust: number of clusters of the partition; ARI: ARI
value on cases classified by both partitions ; ARI.cc: ARI value on cases complete AND classified
by both partitions ; ARI.nona; ARI on cases with no missing data AND classified by both partitions;
ARI.nocens: ARI on cases with no censored data AND classified by both partitions ; Per.Unclass:
Percentage of observations unclassified in the partition ; Per.Unclass.cc: Among complete cases,
percentage of observations unclassified in the partition ; Per.Unclass.na: Among cases with miss-
ing data, percentage of observations unclassified in the partition ; Per.Unclass.cens: Among
cases with censored data, percentage of observations unclassified in the partition ; Per.Unclass.ic:
Among incomplete cases, percentage of observations unclassified in the partition

Examples

res <- evaluate_partition_unsup(
partition = factor(rep(c(1,2,3), each = 50)),
partition.ref = factor(rep(c(1,2,3), times = c(100, 25, 25))))

With missing data
res2 <- evaluate_partition_unsup(

6 initiate_centers

partition = factor(rep(c(1,2,3), each = 50)),
partition.ref = factor(rep(c(1,2,3), times = c(100, 25, 25))),
is.missing = sample(c(TRUE, FALSE), 150, replace = TRUE, prob = c(.2,.8)))

With missing and censored data
missing.indicator <- sample(c(TRUE, FALSE), 150,
replace = TRUE, prob = c(.2,.8))
Censor.indicator <- data.frame(
X1 = runif(150, 1, 5),
X2 = runif(150, 6, 8),
X3 = runif(150, 3, 9))
Censor.indicator$X1[missing.indicator] <- NA
Censor.indicator$X1[
sample(c(TRUE, FALSE), 150,replace = TRUE, prob = c(.1,.9))] <- NA
Censor.indicator$X2[
sample(c(TRUE, FALSE), 150,replace = TRUE, prob = c(.3,.7))] <- NA
Censor.indicator$X3[
sample(c(TRUE, FALSE), 150,replace = TRUE, prob = c(.05,.95))] <- NA

res3 <- evaluate_partition_unsup(
partition = factor(rep(c(1,2,3), each = 50)),
partition.ref = factor(rep(c(1,2,3), times = c(100, 25, 25))),
is.missing = missing.indicator,
is.cens = Censor.indicator)

With missing and censored data and unclassifed observations
res4 <- evaluate_partition_unsup(

partition = factor(rep(c(1,2, NA,3), times = c(50, 40, 20, 40))),
partition.ref = factor(rep(c(1,2,3), times = c(100, 25, 25))),
is.missing = missing.indicator,
is.cens = Censor.indicator)

initiate_centers Initiate centers for clustering algorithm

Description

Initiate centers for clustering algorithm

Usage

initiate_centers(data, N = 1000, t = 1, k, algorithms = NULL, seeds.N = NULL)

Arguments

data Dataset that clustering will be applied on

N Integer. Number clustering initialization (set of centers) to generate

t Numeric between 0 and 1. weight coefficient between only random centers (t=1)
and only centers from clustering (t=0).

k Vector of size N containing the number of centers for each initialization.

algorithms list of algorithm(s) (size N * (1-t) to generate centers if t!=1, given as charac-
ters. Possible values are km for K-means, kmed for K-medians, hclust.mean,hclust.med
for hierarchical clustering with mean or median position of the center.

seeds.N (optional) vector of size N containing seeds for each initialization.

mice.impute.cens 7

Value

list of size N containing coordinates of centers for clustering initialization.

Examples

Cent.init <- initiate_centers(data = iris[, 1:4], N = 10,
k = sample(c(2:7), 10, replace = TRUE))

mice.impute.cens Impute left censored data with MICE

Description

Function from Lapidus et al. for imputing left-censored data with mice

Usage

mice.impute.cens(
y,
ry,
x,
lod.j,
lod.name = "lod",
REDRAW = FALSE,
wy = NULL,
...

)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset y[ry] of elements
in y to which the imputation model is fitted. The ry generally distinguishes the
observed (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x
may have no missing values.

lod.j censoring value.

lod.name suffix name used for the censored variable.

REDRAW Boolean indicating whether values should be redrawn if some are over the cen-
soring limit

wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

... Other named arguments.

Value

Vector with imputed data, same type as y, and of length sum(wy).

8 MImpute

MImpute Wrapper functions for multivariate imputation with survival data or
left-censored data

Description

Performs imputation of the missing data using MICE and returns a list in the correct format for
the unsupMI() and seMIsupcox()functions. MImpute performs imputation for datasets with miss-
ing data only. MImpute_surv performs imputation for a dataset with survival data. The Nelson
Aalen estimator is calculated and used as predictor in the imputation, Time is not used as pre-
dictor. MImpute_lcens performs imputation for a dataset with left-censored data. Note that with
MImpute_lcens pmm imputation is performed for variables not affected by left-censoring.

Usage

MImpute(
data,
mi.m,
method = NULL,
predMat = NULL,
maxit = 10,
return.midsObject = FALSE

)

MImpute_surv(
data,
mi.m,
time.status.names = c("time", "status"),
return.midsObject = FALSE

)

MImpute_lcens(
data,
data.lod,
standards,
mi.m,
mice.log = 10,
maxit = 10,
return.midsObject = FALSE

)

Arguments

data Dataframe with incomplete data. (for MImpute_lcens, with NA for both missing
and left-censored data).

mi.m Number of imputations to perform.

method Optional. single string, or a vector of strings specifying the imputation method
to be used for each column in data (passed to mice()). If NULL default mice
setting are used.

MImpute 9

predMat Optional. supply a predictorMatrix (passed to mice()). If NULL default mice
setting are used.

maxit passed to mice().
return.midsObject

Boolean
time.status.names

Names of the variables for time and status (in that order).

data.lod Dataframe containing indicators of which observation are left-censored (censor-
ing value for such observations and any other values for not censored observa-
tions). The colnames should correspond to variables in data. The variables that
are left-censored are thus given in data (with left-censored data as NA) and in
data.lod with random values for observed data and the LOD for left-censored
data. Note that if the data are to be logged (is.numeric(mice.log)), only the
argument data will be logged, therefore, the LOD values given here should be
given as log(LOD) with the correct number of decimals: round(log(LOD),mice.log).

standards Dataframe of 1 row containing the LOD values (not logged, whatever the value
for mice.log).

mice.log set to FALSE if the imputation should be performed on unlogged data. Otherwise,
number of decimal to save after taking the log of data (should be 10 unless for
specific reasons) ; in that case the data will be unlogged after imputation.

Value

If return.midsObject == FALSE a list of size mi.m, containing the imputed datasets. If return.midsObject
== TRUE a list of 2, the first element (imputed.data) being the list of size mi.m as described in the
previous sentence, the 2nd element (mids.obj) containing the mids object as returned by mice()

Examples

data(cancer, package = "survival")
cancer.imp <- MImpute(cancer[, -c(1:3)], 3)

MImpute_surv
data(cancer, package = "survival")
cancer$status <- cancer$status - 1
cancer.imp <- MImpute_surv(cancer, 3)

MImpute_lcens
toy <- iris[, 1:4]
censor on variables 3 and 4, with LOD at quantile .1 and .2.
LODs <- toy[1,]
LODs[1,] <-c(NA, NA, quantile(toy[,3], .2), quantile(toy[,4], .1))
Censor indicator
Censored <- data.frame(Petal.Length = runif(150, 50,60),

Petal.Width = runif(150, 50,60))
Censored[toy[,3] < LODs[1, 3], 1] <- LODs[1, 3]
Censored[toy[,4] < LODs[1, 4], 2] <- LODs[1, 4]
NA for censored data
toy[toy[,3] < LODs[1, 3], 3] <- NA
toy[toy[,4] < LODs[1, 4], 4] <- NA
Additional missing data
toy[sample(1:nrow(toy), 30), 1] <- NA
toy[sample(1:nrow(toy), 30), 3] <- NA
toy[sample(1:nrow(toy), 30), 4] <- NA

10 MultiCons

toy.imp <- MImpute_lcens(data = toy, data.lod = Censored, standards = LODs,
mi.m = 3, mice.log = FALSE)

MultiCons MultiCons Consensus Clustering Algorithm

Description

Performs MultiCons clustering, from Al-Najdi et Al. For some reason, if you want to use mclust
clustering the package needs to be loaded manually

Usage

MultiCons(
DB,
Clust_entry = FALSE,
Clustering_selection = c("kmeans", "pam", "OPTICS", "agghc", "AGNES", "DIANA",

"MCLUST", "CMeans", "FANNY", "BaggedClust"),
num_algo = 10,
maxClust = 10,
sim.indice = "jaccard",
returnAll = FALSE,
Plot = TRUE,
verbose = FALSE

)

Arguments

DB Either data or dataframe of partitions.

Clust_entry Is DB partitions (TRUE) or data (FALSE).

Clustering_selection

If DB is data, clustering algorithm to select among. Must be included in default
value.

num_algo Number of clustering algorithms to perform.

maxClust Maximum number of clusters.

sim.indice Index for defining best partition.

returnAll Should all partitions (TRUE) or only the best (FALSE) be returned.

Plot Should tree be plotted.

verbose Passed on to mclust and other functions.

Value

A list of 2: performances and partitions. If returnAll is TRUE, both elements of the list contain
results for all levels of the tree, else they only contain the results for the best level of the tree.

partition_generation 11

Examples

library(mclust)
With clustering algorithm choices
MultiCons(iris[, 1:4],

Clustering_selection = c("kmeans", "pam", "DIANA", "MCLUST"),
Plot = TRUE)

With a manual clustering entry
parts <- data.frame(factor(rep(c(1,2,3), each = 50)),

factor(rep(c(1,2,3), times = c(100, 25, 25))),
factor(rep(c(1,2), times = c(50, 100))),
factor(rep(c(3, 2, 1), times = c(120, 10, 20))),
stringsAsFactors = TRUE)

MultiCons(parts, Clust_entry = TRUE, Plot = TRUE)

partition_generation Unsupervised partition with K selection

Description

Generates a partition using clust.algo algorithm, with k.crit for selecting the number of clusters

Usage

partition_generation(data, LOG, clust.algo, k.crit)

Arguments

data dataframe to cluster

LOG logical. Should all columns of the dataset be logged before applying clustering
algorithms?

clust.algo vector of strings: name of clustering algorithms to use (use "km" for k-means,
"kmed" for K-medians, "hc" for hclust and/or "mclust" for mclust).

k.crit string. Criterion to select the optimal number of clusters (for each imputed
dataset). Use "ch" for Calinski and Harabasz criterion (not available for mclust),
"CritCF" for CritCF or bic for BIC (mclust only).

Value

a dataframe with one column for each algorithm in clust.algo, containing the cluster IDs.

Examples

partition_generation(iris[, 1:4], LOG = FALSE,
clust.algo = c("km", "hc"), k.crit = "ch")

12 plot_boxplot

plot_boxplot ggplot type boxplots for each vars.cont by partition level.

Description

ggplot type boxplots for each vars.cont by partition level.

Usage

plot_boxplot(
data,
partition.name,
vars.cont,
vars.cont.names = NULL,
unclass.name = "Unclassified",
include.unclass = FALSE,
add.n = FALSE,
nc.facet = 10

)

Arguments

data The dataset.

partition.name string. Name of the partition (in data). The partition variable should be a factor.

vars.cont vector of strings. variables to plot (continuous only).
vars.cont.names

Optional. Names for displaying the continuous variables. (given in the same
order than vars.cont)

unclass.name If applicable, name for the unclassified observations in the partition.
include.unclass

boolean, should boxplot be displayed for the unclassified or should they be ex-
cluded from the plot.

add.n Boolean. Should the number of samples per cluster be indicated on the x axis
and color legend.

nc.facet integer. Number of columns in the facet_wrap()

Value

ggplot object.

Examples

data(cancer, package = "survival")
cancer$status <- factor(cancer$status)
plot_boxplot(data = cancer, partition.name = "status",

vars.cont = c("age", "meal.cal", "wt.loss"))

With unclassifieds
cancer$status.2 <- as.character(cancer$status)
cancer$status.2[sample(1:nrow(cancer), 30)] <- "Unclassif."

plot_frequency 13

cancer$status.2 <- factor(cancer$status.2)
plot_boxplot(data = cancer, partition.name = "status.2",

vars.cont = c("age", "meal.cal", "wt.loss"),
unclass.name = "Unclassif.", include.unclass = TRUE)

With unclassifieds (as NA)
cancer$status.3 <- cancer$status
cancer$status.3[sample(1:nrow(cancer), 30)] <- NA
plot_boxplot(data = cancer, partition.name = "status.3",

vars.cont = c("age", "meal.cal", "wt.loss"),
unclass.name = NA, include.unclass = TRUE, add.n = TRUE)

plot_frequency ggplot type barplots representing frequencies for each vars.cat by
partition level.

Description

ggplot type barplots representing frequencies for each vars.cat by partition level.

Usage

plot_frequency(
data,
partition.name,
vars.cat,
vars.cat.names = NULL,
binary.simplify = TRUE,
unclass.name = "Unclassified",
include.unclass = FALSE

)

Arguments

data The dataset.

partition.name string. Name of the partition (in data). The partition variable should be a factor.

vars.cat vector of strings. variables to plot (categorical only).

vars.cat.names Optional. Names for displaying the categorical variables. (given in the same
order than vars.cat)

binary.simplify

boolean. Should only the 1st level be kept for binary variables in vars.cat?

unclass.name If applicable, name for the unclassified observations in the partition.
include.unclass

boolean, should boxplot be displayed for the unclassified or should they be ex-
cluded from the plot.

Value

ggplot object.

14 plot_MIpca

Examples

data(cancer, package = "survival")
cancer$status <- factor(cancer$status)
plot_frequency(data = cancer, partition.name = "status",

vars.cat = c("sex", "ph.ecog"))

With unclassifieds
cancer$status.2 <- as.character(cancer$status)
cancer$status.2[sample(1:nrow(cancer), 30)] <- "Unclassif."
cancer$status.2 <- factor(cancer$status.2)
plot_frequency(data = cancer, partition.name = "status.2",

vars.cat = c("sex", "ph.ecog"),
unclass.name = "Unclassif.", include.unclass = TRUE)

With unclassifieds (as NA)
cancer$status.3 <- cancer$status
cancer$status.3[sample(1:nrow(cancer), 30)] <- NA
plot_frequency(data = cancer, partition.name = "status.3",

vars.cat = c("sex", "ph.ecog"),
unclass.name = NA, include.unclass = TRUE)

plot_frequency(data = cancer, partition.name = "status.3",
vars.cat = c("sex", "ph.ecog", "ph.karno"),
binary.simplify = FALSE,
unclass.name = NA, include.unclass = FALSE)

plot_MIpca Plot a PCA from a multiply imputed dataset.

Description

plot_MIpca plots only mean value while plot_MIpca_all plots all values for the selected obser-
vations.

Usage

plot_MIpca(
data.list,
obs.sel,
color.var = NULL,
pca.varsel = NULL,
pc.sel = c(1, 2)

)

plot_MIpca_all(
data.list,
obs.sel,
pca.varsel = NULL,
color.var = NULL,
pc.sel = c(1, 2),
alpha = 0.4

)

seMIsupcox 15

Arguments

data.list The list of the imputed datasets.

obs.sel The selection of observations to highlight. If NULL, no observations are selected;
if numeric, the vector corresponds to the observations’ row number to highlight,
if character, the string should be of type a condition (TRUE/FALSE) on the
dataset to select the observations, where the dataset is referred to as "DATA" (ex:
obs.sel = "DATA$X1>3").

color.var Either NULL to color according to obs.sel, "none" to use no color, or a vector
of size nrow(data.list[[1]]) (a factor).

pca.varsel optional. A vector of strings containing the names of the variables to use for the
PCA. If NULL all variables in the dataset will be used.

pc.sel Numeric vector of size 2 containing the indexes of the principal components to
plot. Default is PC1 and PC2.

alpha Transparency level for plotting the point of the selected observations.

Value

A ggplot object.

Examples

data(cancer, package = "survival")
cancer.imp <- MImpute(cancer[, -c(1:3)], 6)
plot_MIpca(cancer.imp, 1:10,

pca.varsel = c("age", "sex", "ph.ecog", "meal.cal", "wt.loss"))

not run
plot_MIpca(cancer.imp, obs.sel = NULL, color.var = factor(cancer$status),
pca.varsel = c("age", "sex", "ph.ecog", "meal.cal", "wt.loss"))
data(cancer, package = "survival")
cancer.imp <- MImpute(cancer[, -c(1:3)], 6)
plot_MIpca_all(cancer.imp, 1:10,

pca.varsel = c("age", "sex", "ph.ecog", "meal.cal", "wt.loss"))

seMIsupcox Semisupervised learning for a right censored endpoint

Description

MultiCons consensus based method for MI-Semisupervised clustering. The final partition is a con-
sensus of the Pareto-optimal solutions.

Usage

seMIsupcox(
Impute = FALSE,
Impute.m = 5,
center.init = TRUE,
center.init.N = 500,
center.init.Ks = 2:7,

16 seMIsupcox

X,
CVE.fun = "LP",
Y,
nfolds = 10,
save.path = NULL,
Unsup.Sup.relImp = list(relImp.55 = c(0.5, 0.5)),
plot.cons = FALSE,
cleanup.partition = TRUE,
min.cluster.size = 10,
level.order = NULL,
Unclassified = "Unclassified",
return.detail = FALSE

)

Arguments

Impute Boolean. Default is FALSE to indicate that the user performed the imputa-
tion and provides the imputed data. If TRUE, the imputation will be performed
within the call using the MImpute_surv() function. Note that if Impute is TRUE,
center.init is also forced to TRUE as the center coordinates may depend on
the imputation.

Impute.m Used only if Impute is TRUE; number of imputations to perform
center.init Either a User supplied List of dataframe containing the cluster centers coordi-

nates (for example as obtained with initiate_centers(), Or TRUE to initiate
the centers within the call of the function (performed with initiate_centers()).
Note that if TRUE a random initialization will be performed. For a finer tuning of
the center initialization the user should generate and provide the list of centers
coordinates.

center.init.N Used only if center.init is TRUE. The number to initialization to produce.
Default to 500.

center.init.Ks Used only if center.init is TRUE. Vector of number of clusters to generate for
the initialization. Default to 2 to 7 clusters.

X Data, in the form of a list of data.frame(s). The list should be one length 1 if data
are complete or if Impute is TRUE, of should be a list of imputed dataframes if
data are incomplete. If columns named "time" and "status" are present they
will be discarded for the clustering.

CVE.fun string indicating how to calculate the cross validation error : only LP is available
and stands for linear predictor approach (using the ncvreg package).

Y Passed to CVE.fun, Outcome data: should be dataframe or matrix with 2 columns:
"time" and "status".

nfolds Number of folds for cross-validation.
save.path Path indicating where objectives values for each iteration should be saved. If

null the values are not saved.
Unsup.Sup.relImp

List of weights for the unsupervised and supervised objectives for the Pareto
optimal solution. Default is to use only one set of weights : same weight.

plot.cons Logical. Should the consensus tree be plotted?
cleanup.partition

should the partition be trimmed of small clusters. (The consensus may generate
small clusters of observations for which there is no consensus on the cluster
assignation)

seMIsupcox 17

min.cluster.size

if cleanup.partition == TRUE: Minimum cluster size (i.e., smaller clusters
will be discarded)

level.order if cleanup.partition == TRUE: optional. If you supply a variable the cluster
levels will be ordinated according to the mean values for the variable

Unclassified if cleanup.partition == TRUE string for the label of the unclassified observa-
tions. defaults value is NA.

return.detail logical. Should the detail of imputation specific partition be returned, in supple-
ment to the final consensus partition?

Value

A vector containing the final cluster IDs. Or if return.detail == TRUE, a list containing Consensus:
the final cluster ID, Detail: the clusters obtained for each imputed dataset, Imputed.data a list
containing the imputed datasets.

Examples

data(cancer, package = "survival")
cancer$status <- cancer$status - 1
cancer <- cancer[, -1]
With imputation included
not run
res <- seMIsupcox(X = list(cancer), Y = cancer[, c("time", "status")],
Impute = TRUE, Impute.m = 3, center.init = TRUE,
nfolds = 10, center.init.N = 100)

With imputation and center initialization not included
1 imputation
cancer.imp <- MImpute_surv(cancer, 3)

2 Center initialization
N <- 100
center.number <- sample(2:6, size = N, replace = TRUE)
the.seeds <- runif(N) * 10^9
sel.col <- which(!colnames(cancer) %in% c("time", "status"))
inits <- sapply(1:length(cancer.imp), function(mi.i) {
initiate_centers(data = cancer.imp[[mi.i]][, sel.col],

N = N, t = 1, k = center.number,
seeds.N = the.seeds)},

USE.NAMES = TRUE, simplify = FALSE)

3 learning
not run
res1 <- seMIsupcox(X = cancer.imp, Y = cancer[, c("time", "status")],
Impute = FALSE, center.init = inits, nfolds = 10,
cleanup.partition = FALSE)
res2 <- seMIsupcox(X = cancer.imp, Y = cancer[, c("time", "status")],
center.init = inits, nfolds = 10)

18 table_categorical

table_categorical Display table with comparison of the partition with categorical vari-
ables.

Description

Display table with comparison of the partition with categorical variables.

Usage

table_categorical(
data,
partition.name,
vars.cat,
vars.cat.names = NULL,
na.value = "",
nb.dec = 1,
text.pval = FALSE

)

Arguments

data The dataset.

partition.name string. Name of the partition (in data). The partition variable should be a factor.

vars.cat vector of strings. variables to compare to (categorical only).

vars.cat.names Optional. Names for displaying the categorical variables. (in the same order
than vars.cat)

na.value Value to use for the empty cases (e.g. "" or NA).

nb.dec digit. Number of decimals for the percentage.

text.pval boolean. Set to TRUEto display "p=", to FALSE to display only the value.

Value

table with n and percentage values per level of the partition and chi square test p-values.

Examples

data(cancer, package = "survival")
cancer$status <- factor(cancer$status)
table_categorical(data = cancer, partition.name = "status",

vars.cat = c("sex", "ph.ecog"))

table_continuous 19

table_continuous Display table with comparison of the partition with continuous vari-
ables.

Description

Display table with comparison of the partition with continuous variables.

Usage

table_continuous(
data,
partition.name,
vars.cont,
vars.cont.names = NULL,
na.value = "",
nb.dec = 1,
text.pval = FALSE

)

Arguments

data The dataset.

partition.name string. Name of the partition (in data). The partition variable should be a factor.

vars.cont vector of strings. variables to compare to (continuous only).

vars.cont.names

Optional. Names for displaying the continuous variables. (in the same order
than vars.cont)

na.value Value to use for the empty cases (e.g. "" or NA).

nb.dec digit. Number of decimals for the mean and quartile values.

text.pval boolean. Set to TRUEto display "p=", to FALSE to display only the value.

Value

table with mean and Q1 Q3 values per level of the partition and ANOVA test p-values.

Examples

data(cancer, package = "survival")
cancer$status <- factor(cancer$status)
table_continuous(data = cancer, partition.name = "status",

vars.cont = c("age", "meal.cal", "wt.loss"))

20 unsupMI

unsupMI Unsupervised learning for incomplete dataset

Description

Unsupervised clustering for multiply imputed datasets using MultiCons consensus (Faucheux et
al. 2021 procedure)

Usage

unsupMI(
Impute = FALSE,
Impute.m = 5,
cens.data.lod = NULL,
cens.standards = NULL,
cens.mice.log = 10,
data,
log.data = FALSE,
algo = "km",
k.crit = "ch",
comb.cons = FALSE,
plot.cons = FALSE,
return.detail = FALSE,
not.to.use = c("time", "status"),
cleanup.partition = TRUE,
min.cluster.size = 10,
level.order = NULL,
Unclassified = "Unclassified"

)

Arguments

Impute Default is FALSE to indicate that the user performed the imputation and provides
the imputed data. Otherwise string ("MImpute", "MImpute_surv" or "MImpute_lcens")
to perform the imputation within the call using the MImpute(), MImpute_surv()
or MImpute_lcens() function.

Impute.m Used only if Impute is not FALSE ; number of imputations to perform

cens.data.lod passed to MImpute_lcens() if Impute == MImpute_lcens

cens.standards passed to MImpute_lcens() if Impute == MImpute_lcens

cens.mice.log passed to MImpute_lcens() if Impute == MImpute_lcens

data Data, in the form of a list of data.frame(s). The list should be one length 1 if data
are complete or if Impute is not FALSE, it should be a list of imputed dataframes
if data are incomplete and imputed. If some columns are in not.to.use, they
will be discarded for the clustering.

log.data logical. Should all columns of the dataset be logged before applying clustering
algorithms?

algo vector of strings: name of clustering algorithms to use (use "km" for k-means,
"kmed" for K-medians, "hc" for hclust and/or "mclust" for mclust).

unsupMI 21

k.crit string. Criterion to select the optimal number of clusters (for each imputed
dataset). Use "ch" for Calinski and Harabasz criterion (not available for mclust),
"CritCF" for CritCF or "bic" for BIC (mclust only).

comb.cons logical. Forced to FALSE if length(algo)<2. Use TRUE to perform an additional
consensus from all partitions generates, whatever the algorithm.

plot.cons logical. Use TRUE to print the MultiCons tree. Note that if all partitions are
identical across the imputation no consensus will be performed and therefore
not plot will be obtained even if plot.cons = TRUE.

return.detail logical. Should the detail of imputation specific partition and the imputed data
be returned, in the supplement to the final consensus partition?

not.to.use vector of strings : names of the columns that should be discarded for the learning
step.

cleanup.partition

should the partition be trimmed of small clusters. (The consensus may generate
small clusters of observations for which there is no consensus on the cluster
assignation)

min.cluster.size

if cleanup.partition == TRUE: Minimum cluster size (i.e., smaller clusters
will be discarded)

level.order if cleanup.partition == TRUE: optional. If you supply a variable the cluster
levels will be ordinated according to the mean values for the variable

Unclassified if cleanup.partition == TRUE string for the label of the unclassified observa-
tions. defaults value is NA.

Value

if length(algo)>1 a vector of final cluster ID ; if length(algo)>1 a data.frame with each column
being the final cluster ID for the corresponding algorithm. Or if return.detail == TRUE, a list
containing Consensus : the final cluster ID (or data.frame), Detail: the clusters obtained for each
imputed dataset, Imputed.data a list containing the imputed datasets.

Examples

With imputation included
data(cancer, package = "survival")
cancer$status <- cancer$status - 1
res.0 <- unsupMI(data = list(cancer), Impute = "MImpute_surv",

cleanup.partition = FALSE)

With imputation not included
1 imputation
cancer.imp <- MImpute_surv(cancer, 3)
2 learning
res <- unsupMI(data = cancer.imp, cleanup.partition = FALSE)
summary(factor(res))
res.1 <- unsupMI(data = cancer.imp)
summary(factor(res.1))

2.bis learning with several algorithms
res.2 <- unsupMI(data = cancer.imp, algo = c("km", "hc"), comb.cons = TRUE,

plot.cons = TRUE)

22 unsupMI

Alternative: perform imputation within
not run
res <- unsupMI(Impute = "MImpute_surv", data = list(cancer))

Index

cleanUp_partition, 2
CVE_LP, 3

evaluate_partition_semisup, 4
evaluate_partition_unsup, 5

initiate_centers, 6

mice.impute.cens, 7
MImpute, 8
MImpute_lcens (MImpute), 8
MImpute_surv (MImpute), 8
MultiCons, 10

partition_generation, 11
plot_boxplot, 12
plot_frequency, 13
plot_MIpca, 14
plot_MIpca_all (plot_MIpca), 14

seMIsupcox, 15

table_categorical, 18
table_continuous, 19

unsupMI, 20

23

	cleanUp_partition
	CVE_LP
	evaluate_partition_semisup
	evaluate_partition_unsup
	initiate_centers
	mice.impute.cens
	MImpute
	MultiCons
	partition_generation
	plot_boxplot
	plot_frequency
	plot_MIpca
	seMIsupcox
	table_categorical
	table_continuous
	unsupMI
	Index

