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Introduction

Latent growth curve modeling within the structural equation modeling (SEM) framework
has become a popular methodology for analyzing longitudinal data. In latent curve mod-
els (LCMs), structural variables are defined in a way that creates unobservable trajectory
components that are useful for modeling how individuals or events grow over time. One of
the main benefits to using LCMs is that any existing SEM software capable of estimating
parameters with full-information methods (with mean structure) can be used to estimate
LCMs, incidentally inheriting all of the powerful and commonly used diagnostic tools found
in SEM software. While full-information estimators are widely available in commercial soft-
ware, another potentially useful algorithm for estimating individual trajectories is to use
ordinary least squares (OLS) estimation for each individual case, and collecting these esti-
mates to make inferences about the latent trajectory parameters. This technique is available
in any statistical software that is capable of estimating ordinary linear regression models,
and a user defined macro has already been written for SAS software by Carrig, Wirth, and
Curran (2004). In this article, we shall demonstrate how similar results can be obtained in
R (R Development Core Team, 2011).

As Bollen and Curran (2006) note, there are a variety of advantages to using the
case-by-case approach for estimating trajectory parameters. First of all, OLS estimation
is intuitively appealing, making it a good pedagogical tool for introducing how to model
trajectories, and illuminates many essential conditions and assumptions necessary for LCMs.
Second, prediction of the parameters for individual trajectory estimates are calculated for
each case in the sample, which can lead to several diagnostics by statistical and graphical
means. Also, summary statistics can be computed for these estimates (which can also be
graphically portrayed) and if need be these estimates can be analyzed further by other
statistical frameworks.

Unfortunately there are also several limitation to OLS estimation for LCMs, namely:
overall tests of fit are not readily available, the structure of the error variances must be
unrealistically constrained to estimate a pooled standard error, the latent factors cannot be
regressed without error on other exogenous or time-varying variables, and analytic signifi-
cance tests are often not readily available (Bollen & Curran, 2006). However, OLS estimation
may still be useful in the preliminary stages of latent curve modeling for (a) selecting appro-
priate functional forms of growth, (b) examining unconditional population homogeneity, (c)
observing whether the relationship between growth factors are linear, and for (d) detecting
influential outliers (Carrig et al., 2004; Rogosa, 1994).

Parameter Estimation of OLS Curve Models

OLS estimation begins by estimating N OLS regression models, one for each case in the
sample. In the case of a linear functional form of growth, the model estimated for each case
is

Yie = @ + AP + € (1)
with

@ = Mo *+ Loi (2)

Bi = g + &pi (3)
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where y;; is the value of the repeated measure for individual i at time ¢, @; is the regression
intercept for individual i, A, is the value of the user specified coding of time at time ¢, §;
describes linear change over time in y for individual i, and €; is the time-specific regression
residual for individual i. The OLS estimator of slope for each case reduces to

XL =Dk -9
Y2

and the OLS estimator of intercept for each case reduces to

Bi (4)
&; = i — Bid (5)

Standard errors for any group mean (fi,) are available and can be calculated as

Vi — f1y)? /(N = 1
i) — \/w #u;\)] JN-1) .

These estimates may also be useful in hypothesis testing situations for determining which
mean trajectory parameters would be useful to model.

The variances of the trajectory parameters can be calculated using the sample variance
estimates of the individual trajectories, however these values are biased representations of
the population variance parameters. Though formulae for the correction of linear trajec-
tory parameters do exist (see Rogosa, 1994) they are not implemented in any 0LScurve.R
functions. However, users can still make use of the unadjusted variance estimates by treat-
ing them as upper bounds of the true variance parameters. This interpretation is possible
because the calculation of the variances from the trajectory parameters does not account
for errors in the estimation at the case-by-case level, but if case-by-case errors were known,
or could be approximated, then they would simply remove a portion of variance due to
the inherent error in predicting the individual trajectories (see Bollen & Curran, 2006, p.
28). Hence accounting for the case level errors only serves to (potentially) lower the group
variance estimates.

OLScurve in R

The primary function for creating objects from the OLScurve package is, perhaps unsur-
prisingly, the OLScurve () function, which requires two basic inputs: a formula with the
keywords y for the DV and time for the time dependent functional form of growth, and a
data-set containing only the unconditional growth variables with the individual trajectories
in the rows. OLScurve () contains an additional input parameter, time, which specifies the
time difference in the sequentially recorded occasions, where by default the variables are
assumed to be equally spaced (e.g., time = 0,1,2,3,...,T-1).

The OLScurve functions also subtly improves upon various areas in the SAS macro
created by Carrig et al. (2004). The first feature added is that OLScurve() can model a
wide variety of growth functional forms, whereas the SAS macro can only model linear and
quadratic growth. For example, consider the following formula specified functional forms,
which when combined with the ability for the user to specify the time metric allows for
flexible modeling of individual trajectories:

e Linear —» ~ time
e Cubic Polynomial - ~ time + I(time~2) + I(time"3)



OLS GROWTH CURVES IN R

e Square-root - ~ sqrt(time)

e Exponential » ~ exp(time)

e Combination - ~ time + I(time"2) + sqrt(time)
The next improvement can be found in the print (object) function, which produces sum-
mary statistics for the entire data or by groups to observe sample homogeneity. Here the
pooled standard error estimate is printed, as well as the standard errors for the mean tra-
jectories and covariances for the entire data, potentially partitioned into groups.

All of the graphical capabilities from the SAS macro have been ported to R with
some modifications to better represent the data when a conditional grouping variable is of
interest, and new graphical features have been added to allow further probing of the case-
by-case trajectory estimates. These feature capitalize on the powerful and flexible trellis
based graphical package lattice (Sakar, 2008). To begin, the generic plot(OLSobject)
function produces the individual trajectories for each grouping variable onto a single plot,
useful for comparing the homogeneity of slopes and intercepts between groups. The subj-
plot (OLSobject) function creates a grid of the case-by-case trajectories superimposed over
the raw data, and this is useful to determine visually how well each trajectory predicts
each case. Finally, parplot(OLSobject) produces graphics for observing the estimated
parameters values, displaying either histograms, box-plots, or scatter-plot matrices.

Nonlinear Factor Relationship Example

A short example of the functions available in OLScurve.R is presented here that demonstrates
how to detect nonlinear relationships between latent factors. A data set entitled nonlindata
consisting of N = 500 trajectories with four distinct and equally spaced time-dependent
variables was simulated from the parameters p, = 0, VAR(a) = 1, yg = 1, VAR(B) = 0.5,
o =g =€ =N ~(0,0.2). However, the relationship between the @ and § parameters was
specified to be that of a U-shaped relationship; specifically, 8 = z,  VAR(B) + ug, where z,
represents the z-score standardization of |f?>. For didactic reasons, a hypothetical grouping
variable ‘gender’ was created to demonstrate how the functions can accommodate nominal
grouping variables.

Although we should suspect that a linear growth model would be best for these data,
a quadratic relationship is tested first.

> library("OLScurve")
> mod.quad <- OLScurve( ~ time + I(time"2), data = nonlindata)
> mod.quad

Call:

OLScurve(formula = “time + I(time~2), data = nonlindata)
Note: 0% ommited cases.

Pooled standard error = 0.01989803

MEANS:

$fulldata

(intercept) time time"2
-0.018 1.000 -0.003

Standard Errors for Means:



$fulldata
(intercept)
0.053

time
0.051
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time~2
0.026

COVARIANCE (correlations on lower off-diagonal):

$fulldata

(intercept)
time
time~2

We observe from the output that the mean trajectory for the quadratic factor is
not of great magnitude, and in fact fails to reach significance (z ~ —0.003/0.026 = 0.115,
p = .54). We also observe that there is relatively little variance in the quadratic factor, so
the conclusion not use a quadratic term appears to be corroborated. We now compose a
linear trajectory model, determine if there are any major differences between the grouping
variables, and observe how well this model fits the data at the individual trajectory level.

(intercept)

1.056
0.022
0.036

time time~2

0.018 0.004
0.651 -0.029
-0.365 0.010

> mod.lin <- OLScurve( ~ time, data = nonlindata)
> subjplot(mod.lin)

> print(mod.lin, group = gender)

Call:

OLScurve(formula = y ~
Note: 0% ommited cases.
Pooled standard error =

MEANS:

$male
(intercept)
-0.014

$female
(intercept)
-0.015

time
0.984

time
0.999

time, data = nonlindata)

0.03981435

Standard Errors for Means:

$male
(intercept)
0.079

$female
(intercept)

time
0.061

time
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Subject plots
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Figure 1. First 49 cases from subjplot ().
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Group Plots
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Figure 2. Group allocated plot of the modeled trajectories.

0.081 0.068

COVARIANCE (correlations on lower off-diagonal):

$male

(intercept) time
(intercept) 1.036 0.100
time 0.142 0.478
$female

(intercept)  time
(intercept) 1.085 -0.042
time -0.050 0.652

> plot(mod.lin, group = gender)

Next, we use a scatter-plot matrix graphic (Figure 3) to determine whether the as-
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sumption of linearity between trajectory parameters is tenable. Although comparing trajec-
tory parameter relationships does not appear to be common practice according to texts on
latent curve modeling (e.g., Bollen & Curran, 2006) it is nonetheless an important area that
should be probed to ensure that a proper LCM model has been fit to the data. For example,
if one were to use Mplus (Muthén & Muthén, 2008) to fit a linear LCM to this simulated data
they would find that the overall model fit extremely well, x2(5) = 3.652, p = .60, where the
correlation between the slope and intercept factors is r,s = 0.053, z = 1.150, p = .25. How-
ever, graphical inspection of the OLS parameters using parplot () reveals that even though
the overall model fit may be excellent the conclusion that the intercept and slope are unre-
lated is far from correct (although it is true that there is no linear relationship). It appears
that individuals with higher and lower initial intercepts tend to have larger slope trajecto-
ries, whereas those closely centered around the intercept mean have much smaller slopes.
Similar conclusions could be drawn from estimating factor scores from the LCM in Mplus
or other software, although the choice of which estimation method to employ may make
a difference, and unfortunately researchers are often not comfortable analyzing calculated
factor scores—perhaps due to the large literature surrounding factor score indeterminacy
(Bollen, 1989; Mulaik, 2010).

> parplot(mod.lin, type = 'splom')

Discussion

As was demonstrated above, R now has the ability to comfortably implement OLS growth
curves with the help of the OLScurve, and improves upon Carrig et al.’s (2004) SAS macro.
Plotting the case-by-case trajectories has been substantially condensed to allow for viewing
multiple cases per graph, compared to the SAS macro which plots one case per graphic,
and other high quality graphics have been made available from the lattice package to
facilitate analysis. The flexibility of model specification has also been greatly improved, since
OLScurve () is not limited to modeling only linear and quadratic growth curves. Additionally
the object returned by 0LScurve () may have its individual elements extracted for further
analyses that were not contained in the source code. Finally, and for completeness, selections
of cases (via row extraction) defined by the user to allow sub-groupings to be analyzed
separately is possible by simply extracting which rows in the data input are to be grouped
and placing them in separate matrix or data.frame objects.

In conclusion, OLS estimation can be used to evaluate many important and often
overlooked model assumptions. Visually presenting estimates of individual growth trajec-
tories allows for the identification of cases for which the selected functional form of growth
may not characterize the manifest data, and further examination of these cases could reveal
that these cases are indeed outliers. In this way, OLS estimation can be used either as a
screening tool or as a post-hoc diagnostic tool to assess model misfit (Carrig et al., 2004).
We hope that the range of flexibility offered by the OLScurve functions prove useful for
researchers—who may or may not be regular R users—interested in broadening their latent
curve modeling toolbox.
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Figure 3. Scatter-plot matrix between the intercept and slope parameter estimates.
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