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Abstract

This paper concentrates on the stable distributions which have maximum skewness. The
exponentials of such stable distributions with maximum skewness to the left are called
finite moment log-stable distributions. They have the property that all moments are finite,
and are of interest in financial options pricing as an alternative to log-normal distributions.

One difficulty which has hampered the practical use of stable distributions has been
that their density and distribution functions are difficult to compute. The main novelty of
this paper is to show how this difficulty can be overcome by using interpolation formulae
in two variables to compute the density and distribution functions rapidly and to high
precision. Another difficulty is that it is easy to make mistakes when manipulating the
parameters of stable distributions. This difficulty can be reduced by using objects which
contain information about the distributions and performing computational procedures on
those objects. Both of these developments have been implemented in an R package called
FMStable.

Possible use of finite moment log-stable distributions for options pricing is discussed.
The most important qualitative difference from the Black-Scholes log-normal model for
options pricing is that dynamic hedging appears to reduce portfolio risk by a much smaller
amount. This suggests that finite moment log-stable distributions could be used to provide
more conservative assessments of portfolio risk.

1 Introduction

Stable distributions were originally defined as the solution to a theoretical problem. They
have the property that the sum of several independent and identically distributed random
variables has the same distribution as the individual random variables, except that the
location and scale parameters may be different. According to Feller (1966, page 169),
Lèvy (1924) first found the Fourier transforms of the family of stable distributions.

There are four parameters to the family of stable distributions: a location parameter,
a scale parameter, a skewness parameter which is usually denoted by β and a parameter
denoted by α which is called the characteristic exponent. If two independent random
variables X and Y have identical stable probability distributions then the sum X+Y has
a stable probability distribution with a scale which is 21/α times the scale of X.
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For financial applications, I consider it useful to restrict attention to the maximally
skew distributions (i.e. those for which β is either +1 or −1). Zolotarev (1986) used the
adjective “extremal” to distinguish them. If X has a maximally skew stable distribution
which is skewed to the right then exp(−X) can be said to have a log maximally skew stable
distribution. This terminology is based on the fact that if X has a normal distribution
then exp(X) is said to have a log-normal distribution. The log maximally skew stable
distributions have also been called “finite moment log-stable distributions” by Carr and
Wu (2003), highlighting their important property that all moments are finite.

Sections 2 and 3 of this paper give technical details of how to achieve good precision
when translating between parametrizations, when computing values of the distribution
function or probability density by numerical integration, and when when computing values
of the distribution function or probability density by interpolation. These details need not
be understood by a user concerned with financial applications, but further work on these
aspects of stable distributions is required before computer software dealing with stable
distributions can be relied upon. Section 4 discusses the use of these basic methodologies
for calculating option prices. Section 5 discusses consequences.

Propagation of rounding errors

Some familiarity with numerical analysis is needed to understand parts of this paper. In
particular, it must be appreciated that mathematically equivalent formulae sometimes
provide quite different computational accuracy.

Computer systems generally provide facilities for computing common mathematical
functions such as log, exp, sin, arcsin, cos, arccos, sinh and asinh to approximately the
relative precision with which floating-point numbers are stored: about 1 part in 252 or
2.2×10−16. The functions log1p and expm1 are also available in most computer languages
which are used for mathematical computing. In some circumstances where the argument
of the function might sensibly be specified as a deviation from a standard value or the
quantity required is the function plus or minus a constant, we need to be very conscious
of the precision that might be lost when numbers are subtracted. Some examples of
computational alternatives are listed below. In all cases, δ denotes a small positive number
such as δ = 1× 10−13, which is known to good relative precision.

• sin(δ) is better than sin(π − δ).

• 2 arcsin(
√

0.5δ) is better than arccos(1− δ).

• asinh(
√
δ(2− δ)) is better than acosh(1 + δ).

• log1p(δ) is better than log(1 + δ).

• expm1(δ) is better than exp(δ)− 1.

• 2 sin2(0.5δ) is better than 1− cos(δ).

• 2 sinh2(0.5δ) is better than cosh(δ)− 1.
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One example of sensitivity to deviations from a standard value involving stable dis-
tributions is that the right-hand-tail probability for a maximally-skew stable distribution
is asymptotically proportional to 2cαx

−α where cα = Γ(α) sin(π
2
α)/π. Mathematically,

sin(π
2
α) is the same as sin(π

2
ε) where ε = 2− α. However from the point of view of com-

putational precision, if α is near to 2 and ε = 2− α is known to good relative precision,
then it is better to use cα = Γ(α) sin(π

2
ε)/π.

Another example where deviations from a standard value matter is in numerical
quadrature. Computing W using formula (1) on page 6 is much more accurate in cir-
cumstances where θ − φ0 and 1 − α are small in absolute value if they can somehow be
obtained to good relative precision rather than being computed by subtraction from θ
and α.

Translating between parametrizations

One annoying feature of stable distributions is that there are many different parametriza-
tions. See, for instance, Zolotarev (1986) or Samorodnitsky and Taqqu (1984). Different
parametrizations are often convenient for different purposes. Hall (1980) pointed out that
mistakes concerning the direction of skewness of different parametrizations had been made
by many people, including himself. Here, we are concerned with translating numerical
values of parameters between different parametrizations.

For computations involving translating between different parametrizations, it is often
more accurate to work with deviations from standard values rather than the parame-
ter values themselves. For instance, let βA denote the value of β for the A (or S1)
parametrization and βC denote the value of β for the C parametrization. The math-
ematical relationship between them is usually written βC = arctan(βA tan(π

2
α))/(π

2
α).

However, greater computational accuracy can be achieved by alternative, mathematically
equivalent formulae in appropriate circumstances.

• If α is near unity and its difference from unity is known more accurately than α
itself, compute tan(π

2
α) as 1/ tan(π

2
(1− α)).

• If α is near two and its difference from two is known more accurately than α itself,
compute tan(π

2
α) as − tan(π

2
(2− α)).

• If βA is near unity and 1− βA is known more accurately than βA then rather than
computing βC = arctan(βA tan(π

2
α))/(π

2
α) in the obvious way, first compute

tan(π
2
α(1− βC)) =

tan(π
2
α)− tan(π

2
αβC)

1 + tan(π
2
α) tan(π

2
αβC)

=
(1− βA) tan(π

2
α)

1 + βA tan2(π
2
α)

and then compute 1 − βC by taking the arctangent of this quantity. Similar com-
putation of 1 + βC from 1 + βA can be done when βA is near −1.

When working with finite moment log-stable distributions I often use the mean and
standard deviation, denoted by µ and σ respectively, as parameters rather than the loca-
tion and scale, often denoted by δ and γ, of the corresponding stable distribution.

The most obvious standard values for µ and σ are both unity. Figure 1 shows these
standard stable distributions for a range of values of the characteristic exponent, α. The
figure illustrates the following features.
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Figure 1: Distribution functions for various α for finite moment log-stable dis-
tributions which have mean 1 and standard deviation 1.

• For α = 2 the stable variate has a normal distribution and the log-stable variate
has a log-normal distribution.

• The left-hand tails of the stable distributions are less heavy than the left-hand tail
of the normal distribution which corresponds to α = 2. The right-hand tails of the
stable distributions are heavier than the right-hand tail of the normal distribution
which corresponds to α = 2.

• The limit as α → 0 for the log-stable variate has probability 1
2

at X = 0 and
probability 1

2
at X = 2. The stable variate has probability 1

2
at X = − log(2) and

probability 1
2

at X =∞.

• Dealing with these distributions can often require use of numbers outside the ranges
used for storing real numbers on computers (e.g. 4.9 × 10−324 to 1.8 × 10308). For
several of the log-stable distributions shown there is a substantial probability of
values smaller than 10−1000.

The moment generating function for log maximally skew stable distributions is given
by Samorodnitsky and Taqqu (1994, page 15, proposition 1.2.12). It can be found by tak-
ing the analytic continuation of the characteristic function to values of t on the imaginary
axis. For the A or S1 parametrization , it is

MA(t) = E[exp(−t(δ + γXA))] = exp
(
−γαtα/ cos(π

2
α)− δt

)
.

For the M or S0 parametrization, it is

HM(t) = exp
(
−γαtα/ cos(π

2
α) + t tan(π

2
α)− δt

)
,

as can be seen by replacing δ by δ−tan(π
2
α). When α = 1, the moment generating function

can be found as the limit of this expression as ε → 0, namely exp( 2
π
t log t) = (γt)2t/π−δt.
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The C parametrization has a scale which is different by a factor of cos1/α(π
2
α) from the

A (or S1) parametrization, so its moment generating function is

MC(t) = exp (−(γt)α − δt) .

The relationship between the location and scale parameters, δ and γ, and the mean
and standard deviation of the finite moment log-stable distribution, µ and σ, is readily
computed in either direction. For the M parametrization, the first moment is

exp(−δ) exp

(
γ

sin(π
2
ε)

[
γα−1 − sin(π

2
α)
])

and the second moment is

exp(2− δ) exp

(
2γ

sin(π
2
ε)

[
(2γ)α−1 − sin(π

2
α)
])
.

For the C parametrization, the first moment is

exp(−δ) exp (−γα)

and the second moment is
exp(2− δ) exp (−(2γ)α) .

In both cases, the ratio of the second moment to the square of the first moment (which
ratio we will denote by r) is a function of γ which does not involve δ. This can be used
to find the value for the parameter γ for specified first moment, µ, and second moment,
µ2+σ2. The ratio must have the value r = 1+(σ/µ)2. For the M (or S0) parametrization,
provided that α 6= 1, the equation for γ is of the form

exp

(
2γ

sin(π
2
ε)

[
(2γ)α−1 + sin(π

2
α)
])
÷ exp

(
2γ

sin(π
2
ε)

[
γα−1 + sin(π

2
α)
])

= r.

Taking logarithms of both sides and simplifying:

2γ

sin(π
2
ε)

[(2γ)ε − γε] = log(r).

This is satisfied when

γα =
log(r) sin(π

2
ε)

2(2ε − 1)
=

log(r) sin(π
2
ε)

2 expm1(ε log 2))
.

For the case α = 1, the corresponding equation is γ = π log(r)/(4 log 2). For the C
parametrization, the equation for γ is of the form

exp (−(2γ)α)÷ exp (−2(γ)α) = r.

This also has an explicit solution:

γ = [log(r)/(2− 2α)]1/α .
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Code in R

I have written a package called FMStable for R which implements many of the ideas
discussed in this paper. One important aspect of this implementation is that it uses the
C parametrization when α < 1

2
and to use the M or S0 parametrization when α ≥ 1

2
, but

hides this from the user.

2 Precise computation of density and distribution

functions

I have written code in Fortran90 for computing the density and distribution function
of stable distributions. This code can be run in using either 64-bit precision or 128-bit
precision for the floating point numbers.

The mathematical formulae behind this computation can be understood most easily
relative to the simulation method of Chambers, Mallows and Stuck (1976) which uses the
C parametrization. For α 6= 1, the distribution function is

Fα(x) =
∫

exp(−W (θ, x)) dθ

where
W = cos(θ − α(θ − φ0)) sin(α(θ − φ0))

α
1−α cos(θ)−

1
1−αx−

α
1−α . (1)

The integration limits are some combination of −π
2
, π

2
and φ0 = −π

2
βk(α)/α where

k(α) = 1 − |1 − α|, depending on the values of α, β and x. For α = 1, the distribution
function is of the form

F1(x) =
∫ π

2

−π
2

exp(−W (θ, x)) dθ

where
W = 2

π
exp

[
{(π

2
+ βθ) tan θ − 2

π
x}/β

]
(π
2

+ βθ) sec θ.

Formally differentiating these expressions with respect to x gives the density as a one-
dimensional definite integral.

The accuracy of this Fortran90 code was checked during its development by comparing
results obtained using 64-bit and 128-bit precision. It was often found useful to store
critical quantities relative to more than one origin so that the most appropriate could
readily be used. For instance, as well as storing α, the values of α − 1 and 2 − α were
also stored. Similarly, values of β + 1 and 1− β were stored as well as β. For numerical
integration with respect to θ, the quantities θ ± π

2
, α(θ − φ0)± π and θ − α(θ − φ0)± π

2

were also stored as well as θ.

Later, I wrote some code in R which used a strategy for reducing rounding errors
which has the same effect but is compatible with existing software for automatic numerical
integration. The variable of integration is taken to range from −1 to +1, so that even
when the range of integration is halved up to 52 times there will be no rounding error
in the computer representation of the endpoints of subintervals. Then the quantities θ,
θ ± π

2
, α(θ − φ0) ± π and θ − α(θ − φ0) ± π

2
for the intermediate points. This code is

included in an R package called FMStable.
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3 Interpolation approximation to distribution func-

tion and probability density function in various re-

gions of the parameter space

The main novel contribution of this paper is to discuss how the probability distribution
function and probability density can be computed satisfactorily by interpolation. The
value judgement that only the maximally skew stable distributions are of primary interest
is important. This reduction in the scope of the problem means that only two-dimensional
interpolation is required.

In order to provide good approximations to the density, the distribution function
and the right tail probability for all α and all x, it was found necessary to use different
mathematical forms in each of several different regions. The regions where the various
approximations have been used are indicated on Figure 2. In some cases, there is overlap
between adjacent regions of validity of interpolation formulae, but this is not important.

-

6

x

α

Region 3
α < 1
αξ > 1

5

Dual of
Region 3
α > 1
αξ > 1

5
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α < 0.5
αξ < 1
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α < 0.5
xC > 1
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α > 1.7
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Region 5
0.5 < α < 1.7

y > 5
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0.5 < α < 1.7

ξ < 2
5
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Figure 2: Regions where different approximations were used for the density and distribution
function for log maximally-skewed stable distributions
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Region 1

From Holt and Crow (1973) section 2.21 or Zolotarev (1986) equations 2.4.3 and 2.4.8,
the probability density at x for the C parametrization is given by the convergent series

fα(x) =
1

πx

∞∑
k=1

(−1)k−1

k!
Γ(αk + 1)x−αk sin(π

2
kα).

The probability in the right tail is

1− Fα(x) =
1

πα

∞∑
k=1

(−1)k−1

k × k!
Γ(αk + 1)x−αk sin(π

2
kα). (2)

These series suggest that xfα(x) and 1 − Fα(x) can be interpolated as functions of
x−α and α. Such interpolation was found to be reasonably accurate (i.e. relative errors
apparently less than 10−14) over the range α < 0.5 and x > 1 in the C parametrization
with 20 Chebyshev-spaced nodes in each of the variables. This is Region 1 on Figure 2.

The one-dimensional interpolation method used is always based on 16 nodes. If there
are 8 nodes available on each side of a point for which an interpolated function value is
required then the nearest 8 nodes on each side of that point are used. Otherwise, the
nearest 16 nodes are used. This form of interpolation is moderately efficient and was kept
constant while other aspects of the interpolation procedure were varied, in order to reduce
the complexity of the search for good methods of interpolation.

Using the first term of series 2 and taking cα = Γ(α) sin(π
2
α)/π gives the approxima-

tion
1− Fα(x) ≈ 2cαx

−α.

This is useful as a first approximation when finding quantiles.

Region 2

From equation (2), as α→ 0 the probability in the right tail tends to

1

πα

∞∑
k=1

(−1)k−1

k × k!
x−αk

[
π
2
kα
]

=
1

2

∞∑
k=1

(−1)k−1

k!
x−αk ≈ 1

2

(
1− exp(−x−α)

)
.

In Region 2, interpolation was done using the variable 1 − exp(−x−α), rather than
exp(−x−α) as in Region 1. Again, 20 Chebyshev-spaced nodes were used in each of
the variables.

The approximation
Fα(x) ≈ 1− 2cαx

−α.

was used as a first approximation when finding quantiles.
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Region 3 and its dual

Zolotarev (1986) equation (2.5.17) tells us that the density of a maximally-skewed stable
variable when α < 1 for values of x in the C parametrization near zero is approximately

ν√
2πα

ξ
2−α
2α exp(−ξ)

{
1 +

∞∑
n=1

Qn(α)(αξ)−n
}

where ξ = (1 − α)(x/α)−α/(1−α) and ν = (1 − α)−1/α. The terms Qn(α) are polynomials
of degree 2n.

Similarly, Zolotarev (1986) equation (2.5.20) tells us that the distribution function of
a maximally-skewed stable variable when α < 1 for values of x in the C parametrization
near zero is approximately

1√
2παξ

exp(−ξ)
{

1 +
∞∑
n=1

Q̃n(α)(αξ)−n
}

where the polynomials Q̃n(α) are not the same as Qn(α).

We do not need to evaluate the polynomials Qn(α) or Q̃n(α). These formulae suggest
that interpolation as functions of α and (αξ)−1 can be used to approximate the expressions
in large brackets, at least when αξ is large. Calculations suggest that 20 Chebyshev-
spaced nodes in α and 70 Chebyshev-spaced nodes in (αξ)−1 was adequate to achieve
good accuracy provided that αξ < 1

5
.

Zolotarev (1986) says that this formula also applies when α > 1 and x→∞ provided
that α is replaced by 1/α in the summation. This could also be shown by the principle of
duality which is most simply stated in the C parametrization. See section 2.3 of Zolotarev
(1986). The portions of maximally skew stable distributions for α > 1 for positive x are
related to portions of the maximally skew stable distributions for α < 1. Denoting the
distribution function by Fα(x) and the density function by fα(x); if α > 1 then

α (1− Fα(x)) = F1/α(x−α)

and
fα(x) = x−1−αf1/α(x−α)

Note also that the value of ξ is the same for the points related by duality. For α > 1,
it should be noted that ξ as a function of x in the complex domain has an essential
singularity at x = 0 except for the case when α = 2. Hence this approximation cannot be
expected to be useful for negative x or for x near to zero.

The formulae above are for the C parametrization. For the M (or S0) parametrization,
x needs to be replaced by xs where s = (1 + tan2(π

2
k))−1/(2α) in the formula for the

distribution function. For the density, there needs to be a factor of s as well as this
replacement. When α < 1,

ξ = (1− α)

(
x+ tan(π

2
α)

α cos(π
2
α)

)−α/(1−α)
The inverse relationship for x in terms of ξ is

x = α

(
1− α
ξ

)(1−α)/α (
cos(π

2
α)
)−1/α

− tan(π
2
α).
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This relationship is not computationally practical for α near to 1. It can be rewritten as

x =
α

cos(π
2
α)

expm1

(
1− α
α

log
1− α

ξ cos(π
2
α)

)
+

α

cos(π
2
α)
− tan(π

2
α).

Computationally, this formula is handled by first calculating four quantities which
are dependent only on α or on ε = 1−α. It turns out that these formulae work for α > 1
also, even though the earlier relationships would need to be modified by addition of some
modulus signs and multiplication by sign(1− α).

C1 =
α

cos(π
2
α)

=
α

sin(π
2
ε)

C2 =
1− α
α

=
ε

1− ε

C3 =
1− α

cos(π
2
α)

=
ε

sin(π
2
ε)

C4 =
α

cos(π
2
α)
− tan(π

2
α) =

1− ε− sin(π
2
α)

cos(π
2
α)

=
2 sin2 π

4
ε− ε

sin π
2
ε

Then translation between x and ξ for the M (or S0) parametrization can be handled using
the equations

x = C1expm1 (C2 log(C3/ξ)) + C4

ξ = C3/ exp
(

log1p(
x− C4

C1

)/C2

)
In these regions, an approximation to ξ for given F is found by approximately solving

the equation

F =
1√

2παξ
exp(−ξ).

A first approximation is ξ = − log(F ). This is refined using a single Newton-Raphson
iteration.

Region 4

In this region it is not necessary to match the method of interpolation with any asymptotic
behaviour. The logarithm of the right hand tail probability and the logarithm of the
probability density are interpolated as functions of α and x. Accuracy appeared to be
satisfactory with 40 Chebyshev-spaced nodes over α and 60 Chebyshev-spaced nodes over
x.

Approximate quantiles are found by using the approximation for Regions 3 and its
dual if the left hand tail probability is the smaller, and by using the approximation for
Regions 5 and 6 if the right hand tail probability is the smaller.
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Regions 5 and 6

A good approximation in these regions is given in Zolotarev (1986) Theorem (2.5.6). We
need to compute

η = tan(πα
2

)

and
x = y + ηy1−α.

The density and right hand tail probability at x are approximately

fα(x) ≈ 1

πx

∞∑
n=1

An(α)y−αn

1− Fα(x) ≈ 1

πα

∞∑
n=1

1

n
(An(α) + (1− α)An−1(α)) y−αn

where A0 = 0 and, using “Im” to stand for “imaginary part”,

An(α) = Im
n∑
k=1

Γ(αk + n− k + 1)

Γ(k + 1)Γ(n− k + 1)
(−η)n−keiπαk/2(ηeiπ/2 − 1)k.

In particular, note that

A1(α) = Im
Γ(α + 1)

Γ(2)Γ(1)
eiπα/2(tan(π

2
α)eiπ/2 − 1)

= Γ(α + 1) Im
{

cos(π
2
α)− i sin(π

2
α)
}{

i tan(π
2
α)− 1

}
= 2Γ(α + 1) sin(π

2
α). (3)

For the purpose of interpolation, the density and the right tail probability at x can be
expressed as quantities which depend on α times y−1−α times a polynomial in y−α which
may be taken to be unity at infinity (i.e. x = 0).

This for the A (or S1) parametrization. For the M (or S0) parametrization, the value
of x for given y is

x = y + ηy1−α − η = y + tan(π
2
α)
[
y1−α − 1

]
= y + expm1 (ε log(y)) / tan(π

2
ε)

where ε = 1− α. The limit as ε→ 0 (i.e. as α→ 1) is x = y + 2
π

log(y).

Zolotarev (1986) indicates that this approximation is intended to be applied when
α < 1, so interpolation in terms of α and y−1/α can be expected to be satisfactory.
Numerical work has indicated that such interpolation also works well when α > 1.

Interpolation in Region 5 was done using 40 Chebyshev-spaced nodes over α and
20 Chebyshev-spaced nodes over y−1/α. Interpolation in Region 6 was done using 17
Chebyshev-spaced nodes over α and 20 Chebyshev-spaced nodes over y−1/α.

Approximations to quantiles can be found by truncating the series in equation (??)
and using the known value for A1(α).

1− Fα(x) ≈ 1

πα
2Γ(α + 1) sin(π

2
α)y−α

Values for y can be substituted into equation (3) to find values for x.
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Figure 3: Implied volatility for option prices based on finite moment log-stable
models with mean 1 and standard deviation 0.18 for many different values of
the parameter α.

Region 7

As α→ 2, it appears that

f ′2(x) = lim
α→2

∂fα(x)

∂α

and

F ′2(x) = lim
α→2

∂Fα(x)

∂α

are bounded and are smooth functions of x. Interpolation in this region was done using
17 Chebyshev-spaced nodes over 2 − α and 100 Chebyshev-spaced nodes over x. This
could probably be made computationally faster if good numerical procedures (such as
continued fractions) were available for f ′2(x) and F ′2(x).

In this region, approximate quantiles were found using the fact that the distribution
for α = 2 is normal with variance 2.

4 Values of options

I have written code for valuing options by numerical integration of the distribution func-
tion. This provides high precision and is sufficiently rapid for current purposes. Greater
speed could be achieved by using interpolation over a three-dimensional table. Other
methods that might be useful for achieving greater speed are numerical inversion of Fourier
transforms, finding rational approximations at least for the most commonly-used regions
of the parameter space (such as α near to 2 and coefficient of variation in the range 0.01
to 0.3), and finding interpolation formulae for the distribution functions of finite moment
log-stable distributions that can be integrated term by term.
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Figure 3 shows the values of options on scales which are often used by options traders.
The horizontal axis gives the moneyness. This is the number of standard deviations on a
logarithmic scale by which the strike price exceeds the current or spot price. The vertical
axis gives the implied volatility. This is the volatility such that the Black-Scholes mod-
els gives option values derived from the finite moment log-stable model. The non-bold
continuous lines are for finite moment log-stable distributions with mean 1, standard devi-
ation 0.18, and probabilities 0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001, 0.000003
and 0.000001 of being less than 0.01. The corresponding values for α are 0.687, 1.197,
1.527, 1.769, 1.897, 1.964, 1.9873, 1.99609 and 1.99869. The distribution corresponding
to α = 0 is discrete with probability 0.03138 at zero and probability 0.96861 at 1.0324.
The log-normal distribution corresponding to α = 2 has volatility 0.1786 which does not
vary with moneyness.

The lines for values of α greater than 1.0 all have shapes consistent with what is called
a “volatility smile” or a “volatility smirk”.

Estimating the parameter α

The parameter α cannot be estimated accurately from small amounts of data. Figure 4
shows the maximum likelihood estimates of α, α̂, from 200 simulations. In each simulation,
the data were 100 independent numbers from a finite moment log-stable distribution with
mean 1.001, standard deviation 0.025 and α = 1.8. These data are in some ways like a
set of 100 weekly returns from a share after adjustment for overall market trends, and are
referred to as returns. However, weekly returns from real markets are heteroskedastic and
have variable correlation structures. Kring, Rachev, H(̈o)chstötter and Fabozzi (2009)
found that stable distributions with α ≈ 1.6, β ≈ 0 were good fits to daily log-returns for
29 stocks that were in the DAX30 index from May 2002 to March 2006.

Here, estimates of α, the mean and the standard deviation were found by maximum
likelihood. There were 11 cases where α̂ was 2. We can see from Figure 4 that there is a
fairly strong relationship between the smallest of the 100 returns and α̂.

If a player in financial markets were to estimate α for a large number of companies’
shares using two years of data on weekly returns for each company, then the α̂ values
would depend largely on whether there has been any substantial fall in that company’s
share price. This variation in would α̂ values result in out-of-the-money put options
having much smaller prices for companies which had had a substantial fall in share price
and for companies which had not had a substantial fall in share price. It seems likely to
me that the real values of α would be much less variable over companies that the values
of α̂.

One alternative way to estimate α would be to calculate the mean and standard devia-
tion of daily or weekly returns, and to subjectively estimate the probability of bankruptcy
or the probability of a drop of, say, 30% in price. The parameters of a finite moment log-
stable distribution could be fitted to these three pieces of information.

Another way to estimate α would be to use data on the market prices for options,
and to find the finite moment log-stable distribution which best fits those prices.
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Figure 4: Estimated values for α for 200 simulated data set each with 100
returns which were from a finite moment log-stable distribution with mean
1.001, standard deviation 0.0.025 and α = 1.8.

Hedging

One interesting aspect of finite moment log-stable models is that attempts to hedge risk
are expected to be much less effective under finite moment log-stable models with α
substantially less than 2 than under a log-normal model (finite moment log-stable with
α = 2).

Consider a portfolio which is long one share and short some call options which are
at-the-money (meaning that the strike price is equal to the current price) and have one
year to expiry. The number of call options is chosen so that the derivative of the value
of the portfolio with respect to share price is zero. In Table 1, the second row gives the
partial derivative of the value of the call options with respect to current price. This partial
derivative is often referred to as “delta”. The number of call options in the portfolio is
1/δ. It varies only a small amount with the parameter α over the range from α = 1.5 to
α = 2 shown in Table 1.

The expected value of this portfolio is zero for any future time. In order to evaluate
this expectation we must take the reduction in the time-to-expiry of the options into
account However, the variance of value of the portfolio increases with time into the future.
This variance has been calculated by numerical integration over the possible asset prices
at that time. The numbers in the body of Table 1 are these variances divided by the
length of the time period.

We can see that for the log-normal model (α = 2) the variance per unit time is
smaller for small time intervals than for large time intervals. The variance per unit time
is approximately proportional to the length of the time interval. Therefore this model
predicts that the risk of a portfolio can be substantially reduced by frequent adjustment
of the hedging ratio. This ability to reduce risk by dynamic hedging decreases as α is
reduced from 2. For instance, for α = 1.9 the minimum variance per unit time of the
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α 1.5 1.6 1.7 1.8 1.9 1.99 1.999 1.9999 2.
δ 0.31994 0.32855 0.33254 0.33354 0.33255 0.33052 0.33027 0.33025 0.33024

Time
1.000 0.78503 0.74703 0.72040 0.70978 0.71997 0.75095 0.75533 0.75578 0.75583
0.500 0.67526 0.59424 0.51429 0.43951 0.37443 0.32823 0.32441 0.32404 0.32399
0.200 0.62942 0.52913 0.42467 0.31951 0.21756 0.13215 0.12408 0.12328 0.12319
0.100 0.61621 0.51008 0.39806 0.28334 0.16953 0.07123 0.06175 0.06081 0.06070
0.010 0.60509 0.49393 0.37533 0.25220 0.12784 0.01795 0.00719 0.00611 0.00599
0.001 0.60402 0.49236 0.37312 0.24915 0.12374 0.01270 0.00181 0.00072 0.00060

Table 1: Variance per unit time

value of the portfolio per unit time is about 0.12. This is substantially smaller than the
variance per unit time of 0.72 that the portfolio is exposed to if the hedging ratio is not
dynamically adjusted; but it is much larger than the variance per unit time over a period
of 0.01 years according to the log-normal model. Intuitively, this means that much of the
risk of the portfolio can be reduced by dynamic hedging, but a component of the risk
cannot be eliminated.

5 Discussion

The main point of this paper is to show that use of finite moment log-stable distribu-
tions is computationally practical. The issues that have been most critical in making the
computations fast enough to be practical are the concentration on maximally-skew stable
distributions, so that only two-dimensional rather than three-dimensional interpolation
is required, and the use of different forms of interpolation in different parts of the pa-
rameter space. The difficulties of dealing with the many different parametrizations for
stable distributions and the complicated formulae for moments for the log-stable distri-
butions (and the further complication that different computational algorithms are often
appropriate for a single mathematical relationship in different regions of the parameter
space) are able to be handled by computer software, rather than requiring users to deal
with this complexity. I have done this in R by using objects of a class which I have called
stableParameters, but other software solutions could be developed.

When making use of finite moment log-stable distributions for modelling financial
risk, the qualitative feature that I believe matters most is the extent to which risk can
be hedged. This comes out as being qualitatively different from when log-normal dis-
tributions are used. I recommend that the new methods be used for stress testing the
portfolios of organizations with large, partly-hedged portfolios; such as banks, insurance
companies and hedge funds; possibly by the regulators of those organizations.

This paper has not discussed the fact that volatility varies over time, due to changes
in market sentiment and variations in the rate at which price-sensitive information is
expected to arrive. It should be reasonably straight-forward to consider such complexity
using finite moment log-stable distributions.—They have only one extra parameter beyond
the log-normal model. Such work is beyond the scope of this paper.

The interpolation approach suggested in this paper might be simplified by making
use of formulae for derivatives with respect to α at α = 2, and could be made more
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computationally efficient in several other ways. The interpolation approach could be
extended to three variables in order to deal with the distribution function and density of
general stable distributions. Similarly, interpolation formulae in three variables might be
developed for values of options (or the implied volatility).
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