towards message based audio systems

Winfried Ritsch
Institute of Electronic Music and Acoustics Graz
Inffeldgasse 10
8010 Graz,
Austria,
ritsch@iem.at

Abstract

The deployment of distributed audio systems in the
context of computermusic and audio installation is
explored in the paper, expanding the vision of static
streaming audio networks to flexible dynamic au-
dio networks. Audiodata is send on demand only.
Sharing sources and sinks allows us arbitrary audio
networks.

This lead to the idea of message based audio sys-
tems, which has been investigated within two use
cases: Playing on an Ambisonics spatial audio sys-
tem, and within a computermusic ensemble.

In a first implementation Open Sound Control
(OSC) is used as the content format proposing a
definition of Audio over OSC (A0O).

Keywords

audio-interfaces, networked audio, OSC, computer-
music ensembles, sound installation

1 Introduction

The first idea of a message based audio sys-
tem came up with the requirement of playing
a multi-speaker environment of distributed net-
worked embedded devices from several comput-
ers, avoiding a central mixing desk.

Another demand for a message based au-
dio network came up during the develop-
ment of a flexible audio network within the
ICE-ensemble! [TEM, 2011]. A variable num-
ber of computermusic musicians sending time
bounded audio material with their computers to
other participants (for monitoring or collecting
audio material), would have caused a complex
audio-matrix setup of quasi-permanent network
connections with all the negotiations and ini-
tializations for these streams. Not only because
of the limited rehearsal time, this seems to be
both too error prone and an overkill in terms of
network load.

The structure of a functional audio-network
for ICE, especially during improvising sessions,

TEM (Institute of Electronic Music and Acoustics)
Computermusic Ensemble

cannot always be foreseen and is therefore hard
to implement as a static network. It is therefore
important to be able to easily change the audio
network during performance, as musicians come
and leave (and reboot). On the other hand, the
need for low latency, responsiveness and suf-
ficient audio quality has to be respected even
during the dynamic change of network connec-
tions. No strict requirements on sample-rates,
sample-accurate synchronization and the use of
unique audio formats should be made in such
situations. It should be possible to freely add
or remove audio related devices to/from the sys-
tem without having to go through complicated
setup of audio streams and without having to
negotiate meta data between the participants.
This should simplify the implementation of the
particular nodes.

Of course, special care has to be taken when
playing together in an ensemble. Factors like
network overload, especially peaks, can lead to
bad sound and feedbacks. On the other hand,
we also find such situations when playing to-
gether in the analog world. In any case, the
limits have to be explored during rehearsals.

Setting up continuous streams where audio
data, including silence, is send continuously to
all possible destinations is an overhead, that
can easily touch the limits of available network
bandwidth. But also can cause wasteful/costly
implementations. If we can send audio from
different sources to sinks (like speaker systems)
only on demand, simplifies the setup. Also, re-
ducing the needs for negotiation for establishing
connections simplifies this task, and therefore
stabilizes the setup.

The use of messages for the delivery of
audio-signals in a network seems to contradict
the usual implementation of real-time audio-
processing implementations in digital audio
workstations, where mostly continuous synchro-
nized audio streams are used. If these audio
messages are send repeatedly in such a way that



they can be combined together in time, they can
been seen as limited audio data streams and su-
persede continuous audio streams.

Figure 1: first idea of a message audio system
with sources S,, and drains D,

Summing up these demands, the overall vi-
sion is to implement a distributed audio net-
work, where a variable amount of nodes act
as sound sources and sound sinks (drains). It
should be possible to send audio messages from
any source to any sink, from multiple sources
simultaneously to a single sink, respectively
broadcasting audio messages from one source
to multiple sinks. Accordingly, the cross-linking
between the audio components is arbitrary, as
shown in figurel.

There should not be a “Before you stream
audio, you first have to negotiate and connect
with ...”, Instead, any participant should be
able to just send their audio data to others when
needed. The receivers should be able to decide
how to handle the audio, depending if they can
or want to use them.

Following features can be outlined:

e audio signal intercommunication between
distributed audio systems

e arbitrary ad hoc connections
e various audio formats, sample-rates
e synchronization and lowest latency possible

e audio-data on demand only

The most common way of communication
within local networks is Ethernet. Therefore
“Audio over Ethernet“ has become a widely
used technique. However, there is roughly only
a single approach: Stream based audio trans-
mission, representing the data as a continuous
sequence. For audio messages as on-demand

packet based streams? we found no usable im-
plementation (2009). This lead to the design
and implementation of a new audio transmis-
sion protocol for the demands shown before.
As a first approach, an implementation in user
space (on the application layer) without the
need of special OS-drivers was intended. This
can also be seen as the idea of “dynamic audio
networks”.

2 Audio over OSC

Looking for a modern, commonly used trans-
mission format for messaging systems within
the computermusic domain, we found “Open
Sound Control” (OSC) [Wright, 2002]. With its
flexible address pattern in URL-style and its im-
plementation of high resolution time tags, OSC
provides everything needed as a communication
format[Schmeder et al., 2010]. OSC specifica-
tions points out that it does not require specific
underlying transport protocol, but often uses
Ethernet network. In our case this would be
UDP in a first implementation but is not lim-
ited to these. TCP/IP as transport protocol
can also be used, but would make some features
obsolete and some more complicated, like the
requirement for negotiations to initialize con-
nections. Wolfgang Jager implemented “Audio
over OSC” (AoO) within a first project at the
IEM [Jaeger and Ritsch, 2009]. This was used
in tests and ”AUON* (all under one net), a con-
cert installation for network art?

2.1 the AoO-protocol

The definition of AoO protocol was made with
simplicity in mind, targeting also small devices
like microcontrollers:

Ao0 message := "#bundle" timestamp
<format> <channel> [<channel>,...]

format := "/AOO/drain/<d>/format"
samplerate blocksize overlap mime-type
[time correction]

channel := "/A0O/drain/<d>/channel/<c>"
id sequence resolution resampling <data>

d ... number of drain (integer)
¢ ... channel number (integer)
data ... audio data (blob)

2not to be mistaken with ”streaming on demand” or
UDP packets

3performed 17.1.2010 in Medienkunstlabor Kun-
sthaus Graz see http://medienkunstlabor.at/
projects/blender/ArtsBirthday17012010/index.
html



A AoO message is represented by an OSC-
bundle with the obligate timestamp. It contains
one format message at the beginning and one or
more channel messages.

For the addressing scheme the structure of the
resources in network is used as the base. Each
device in the network with an unique network-
address (IP-number and Port number) can have
one or more drains. Each of these drains can
have one or more channels. There can be an ar-
bitrary amount of drains, and each drain could
have an arbitrary amount of channels. An ex-
ample address of a channel in an device looks
like /AOO /drain/2/channel /3, where the third
channel of the second drain in the device is tar-
geted. /AOO is the protocol specific prefix.

Like described in ”Best Practices for Open
Sound Control“[Schmeder et al., 2010], REST
(Representational State Transfer) style is used.
With its stateless representation each message
is a singleton containing all information needed.

In OSC, there is a type of query opera-
tors called address pattern matching. These
can be used to address multiple channels or
drains in one message. Since pattern match-
ing can be computational intensive, we pro-
pose only to use the ”*“ wild-char for address-
ing all channels of a drain or all drains of
a device. For instance the channel message
JAOO /drain/2/channel/« will use the audio
data for all channels of the second drain.

A OSC format message, with for example
JAOO /drain/2/ format as address string, is al-
ways the first item in the bundle and specifies
the samplerate, the blocksize and overlap factor
as integer, followed by a string as the mime-type
of the audio data. The optional time correction
factor will be explained at section 2.3.

Integer was chosen in favor for processors
without hardware floating point support. Chan-
nel specific data information like the id number
of the message stream, the sequence number in
the channel message allow more easily to detect
lost packages. The resolution of a sample and an
individual resampling factor is contained in the
channel messages, where the resampling factor
enables channels to differ from the samplerate
specified in the format message, allowing lower
rates for sub channels, control streams or higher
rates for specific other needs. This also becomes
handy if FFT-frames are transmitted as data.

Some of the header data is shown in the fol-
lowing summary example to explain some spe-
cific features of the audio transmission:

sampling rate Different sampling rates of
sources are possible, which will be re-
sampled in the drain.

blocksize The amount of samples in each pack-
age of audio data, which must be greater or
equal 1, limited by packet size.

overlapping factor The overlapping factor is
1 (one) by default. Higher values can
be used to implement redundancy, to deal
with lost packets or needed when sending
FFT-frames (in future implementations).

resampling factor is linked to the sampling-
rate in order to be able to choose the pre-
cision of each channel individually using
oversampling or similar.

coding of the audio data using the Multi-
purpose Internet Mail Extensions (MIME)
standard[Authority, 2009]. In our uncom-
pressed format, the MIME type would
be ”audio/pcm“, whereas ”audio/CELP “
classifies CELP encoded data.

In order to send usable data, sources have
to be aware of the formats a given drain
can handle. 4

data types preferred are uncompressed pack-
ets with data types defined by OSC, like
32-Bit float. However, it’s also possible to
use blobs with an arbitrary bit-length audio
data. This can become handy if bandwidth
matters. Sources must be aware, which for-
mats can be handled by the drains.

To provide low latency, time-bounded audio
transmissions should be sliced into shorter mes-
sages and send individually to be reconstructed
at the receiver.

2.2 drains

single packets

concatenating

[ reconstruct
o

Figure 2: audio messages are arranged as single,
combined or overlapped

Sending audio data is simply slicing and
adding timestamps. On the other side, receiving

4This subject is currently under discussion, and may
get changed in the future



means that audio packets have to be resched-
uled and synchronized on the time-line, using
the timestamp, sequence and id received, and
mixed together. Mixing is required either if au-
dio packets come from different sources, have
different ids or if they are overlapping (using
an overlapping factor greater than one). Au-
dio messages also have to be re-sampled before
they are added, to handle with sources with
different samplerates. Even if nodes are using
the same nominal sample-rate, they are usu-
ally not sample-synchronized, since the sample-
clocks can drift in time. The re-sampling factor
can therefore change dynamically.

For re-arranging the audio packages there is
a need to do some sort of labeling of the mes-
sages, since it is not clear if they are intended
to overlap or are different material. This can
be handled via the “identification number” (id).
Identical identification numbers means to recog-
nize the material as one material and they can
be cross-faded. So these numbers has to has to
unique at least at the drain.

The first audio packet has to be faded in and
the last faded out. A sequence of audio mes-
sages must be concatenated. At least one mes-
sage has to be buffered to know if a next one ar-
rives. If messages are in overlapping mode, they
always have to be cross-faded. If one packet is
lost in the overlapping mode, the signal can be
reconstructed.

2.2.1

Like described above, to deliver audio messages
to a drain, additionally to the drain number and
channel number, the address of the device has
to be known. A decision was made, that the
address is not part of the message, since the
sender has to know about the drain on the re-
ceiver and the network system has to handle the
addressing. Since automatic IP assignment can
be used, this could make the argument to sim-
plify the network obsolete, since we devices have
no static address.

Like stated in in the vision, we do want ne-
gotiations and requests, but in situations where
IPs are unknown, we needed a mechanism to
grasp it. One implementation was announce-
ment message broadcasted by each drain, with
the address and a human readable meaning-
ful name. Even more polite we implemented
them as invitation messages, which also states:
"ready to receive“. This was done every 10 sec-
onds, to limit load and also serves as a live mes-
sage.

addressing problems

A second problem arose, since broadcasting
to all drains with the same number, the desti-
nation information is not contained in the audio
message, we cannot use broadcast to reduce net-
work load and address specific destinations. For
this the drain has to know about the sources
it will accept. Anyway this worked fine, but
made some additional efforts in communication
before.

Anyway addressing is in heavy discussion, has
to be tested further on use cases and will prob-
ably change in future.

2.2.2 mixing modes

In this first implementation we used two dif-
ferent modes: Mode 1 provides the possibility
of summation of the received audio signals and
Mode 2 should perform an arithmetic averaging
of parallel signals. The reason for this is that
summing audio signals with maximum ampli-
tudes each causes distortion. Using Mode 2 this
cannot happen. If many sources play into one
drain, this can also be seen as a kind of mix to
reduce the impact of a single one. Sometimes
automatic level control or limiting in the digi-
tal domain after adding the signals is the better
way to prevent clipping.

realtime ~ b
s
Xo Xy Xn|Xo X1 Xn|Xo X1 Xn
ts1 ts2 ts3
time [T, ’ T, T,
stamping S a g
Xo Xq an Xo X1 an Xo Xy Xa

resampling:

{ Rn=f(Rn-Ltsn/tpn) % |

Yo Y A2 AR AA

tD1 tDZ tD3 t:D4

Figure 3: re-sampling rate R, between source
S and drain D is not constant

2.3 timing and sample-rates
Timing is critical in audio-systems, not only for
synchronizing audio, but also to prevent jitter
noise. Time tags of the packets are represented
by a 64 bit fixed point number, as specified
by OSC, to a precision of about 230 picosec-
onds. This conforms to the representation used
by the Network Time Protocol (NTP)[Mills et
al., 2010].

In fixed buffering mode, the buffer size has
to be chosen large enough to prevent dropouts.
In the automatic buffer control mode, the drain



should use the shortest possible size for buffer-
ing. If packets arrive too late, buffering should
be dynamically extended and then slowly re-
duced.

Since audio packets can arrive with differ-
ent sample-rates, re-sampling is executed before
the audio data is added to the internal sound
stream synchronized with the local audio en-
vironment. This provides the opportunity to
synchronize audio content respecting the timing
differences and time drifts between sources and
drains. This strategy of resampling is shown in
figure 3:

Looking at synchronization in digital audio
system, mostly a common master-clock is used
for all devices. Since each device has its own
audio environment, which may not support ex-
ternal synchronization sources, the time Tsn of
the local audio environment is used to calculate
the timestamp for outgoing audio messages.

Using the incoming timestamps from the re-
mote source, we can compare them with the lo-
cal time tpn and correct the re-sampling factor
R,, dynamically for each message. The change
of the correction should be small if averaged
over a longer time, but can be bad for first audio
messages received.

For a better synchronization of audio data, a
Time Transfer protocol can be used in parallel
to synchronize the drain with the source, as a
sort of master-clock.

Therefore, as proposed in the OSC specifica-
tions, NTP can be used for each node. Another
time protocol for synchronization of audio data
is the Precision Time Protocol (PTP)[on Sen-
sor Technology, 1588-2002], e.g. also used in
AVB?®, allows a more lightweight implementa-
tion in local networks and can guarantee a quasi
sample-accurate synchronization. PTP is the
preferred time protocol to be used with AoO.
For these protocols we need a master (or grand-
master) in the network. This is done differently
depending on the used implementation of the
time protocol.

Since the local time source of a device can dif-
fer from the timing of the audio environment,
each device needs a correction factor between
this time source and the audio hardware time in-
cluding the time master device. This factor has
to be communicated between the devices, so the
re-sampling correction factor can be calculated
before the first audio message is sent, guarantee-
ing a quasi sample-synchronous network-wide

® Audio Video Briding, Standard IEEE 802.1

system starting with the first message send.

2.4 Requests

Asking won’t hurt. If the drain provides in-
formation about its capabilities, it can be used
to optimize and ensure the transmission. How-
ever, this information is optional, allowing sim-
ple implementations on some nodes, like micro-
controllers, that may be unable to accomplish
this task. Until now there is no proposal how
to implement such requests, instead we used
announcement /invitation messages for grasping
the sources in the local net.

2.5 Implementation

As a first proof of concept, AoO was im-
plemented within user space using Pure
Data[Puckette, 1996]. This implementation has
shown various problems to be solved in future.
Using the network library iemnet® additional
”externals“ have been written in C to extend
the OSC-Protocol, split continuous audio sig-
nals into packets and mix OSC audio messages
in drains. As repository for the GPL open
source can be found at the ” OpensourceQIEM”
sourceforge as git repository site at:
http://sourceforge.net/p/iem/aoo/

As a first test environment, a number of dif-
ferent open-source audio hardware implemen-
tations, using Debian Linux OS-System, has
been used. The test patches were written
with Pd version 0.42.5, where a central com-
ponent has been the OSC library of Martin
Peach. Later, an implementation for a micro-
controller board ”escher2“[Algorythmics, 2012]
has been created, which has been superseded
by small embedded arm-devices, like beagle-
bones[Foundation, 2013], also using a Debian
OS system.

3 message based Ambisonics spatial
audio systems

As a first goal, the geodesic sound-dome in
Pischelsdorf (with a diameter of 20 m and a
height of about 10 m) as an environmental land-
scape sculpture in Pischelsdorf should trans-
mute into 3D a sound-sphere. Therefore as
special hardware and software, a low power so-
lar power driven multichannel Ambisonics sys-
tem was developed and installed prototypically.
This should result in a low cost implementation
of multichannel audio system Up to 48 speakers

Siemnet project site is http://puredata.info/
downloads/iemnet



master
controller

player

player

power|

[

(off-grid)

ethernet switch
(power over ethernet)

microcontroller

amplifier >

speaker system

>
JELALEIR[RLETELA . [ATLTEA

Figure 4: AoO with embedded devices for spa-
tial audio system

should be mounted in a hemisphere, forming an
Ambisonics sound system. Using 6 nodes, each
with 8 speakers, special embedded controllers
are used to render the audio in the system (fig-
ure 4).

Figure 5: One node with one speaker in the
dome

Each node is a small embedded computer
equipped with an 8-channel sound-card, includ-
ing amplifiers and speakers. Each speaker can
been calibrated and fed individually. However,
since each unit is aware of its speaker positions,
it can also render the audio with an internal
Ambisonics encoder/decoder combination.

So instead of sending 48 channels of audio to
spatialize one or more sources, the sources can
be broadcast combined with OSC-spatialization
data and the drains render them independently.
Another possibility is to broadcast an encoded
Ambisonics-encoded multichannel signal, where
the devices decode the Ambisonics signal for
their subset of speakers. The Sound Environ-
ment can be sent from one master controller or
any other connected computer.

The first implementation of the nodes has
been done with special micro-controller boards
escher2[Algorythmics, 2012] which drive the
custom designed DA-Amp boards. Since these
devices have very limited memory (max. 16
samples of 64 channels), standard Linux audio
system cannot provide the packets small and
fast enough for a stable performance without
special efforts, like own driver in kernel space for
the packet delivery. Therefore a major problem
has been the synchronization and the reliability
of the transmission, but providing latency.

One other solution could be, to secure re-
sources like bandwidth and computing time
with restricting audio data to be sent on defined
time slots: only and one time-slot for each de-
vice. Most of the available network-components
are able to handle the IP-protocol or even OSC
but unfortunately there is no commonly used
computer OS, which is able to deliver audio data
in dedicated time-slots. Therefore as one imple-
mentation of hard real-time networking for real-
time Linux, the RTnet[Team, 2002] has been
found. It needs a hard-realtime kernel. In a fur-
ther thought the OSC-Transmission has to be
implemented as a Linux-device, coupling with
the RT-Net Ethernet driver.

Since 2012 small embedded Linux-systems
like the beaglebone black[Foundation, 2013] are
available and can be used to drive the DAs with
amplifiers. This has been tested recently with
good success on a beaglebone black: An accept-
able latency of 5-10 ms with 8 out-channels has
been achieved .

Figure 6: sounddome as hemisphere, 20 m di-
ameter in cornfield

The main advantage, besides the low cost and
autonomous system, is that one or more sound
technicians or computer musicians can enter the



dome, plug into the network with their portable
devices and play the sound dome either address-
ing speakers individually, with audio material
spatializing live with additional OSC messages
or a generated or prerecorded Ambisonics audio
material.

3.1 Playing together

Figure 7: first concert of IEM computermusic
ensemble ICE playing over a HUB

When specifying an audio-network for playing
togehter within an ensemble, a focus was set on
the collaborating efforts to be done to gain the
unity of the individuals.

So, like a musicians with acoustic instrument,
joining a band with Linux audio-computer im-
plies a need for a place where the musician has
a ”virtual sound space* they can join. So they
provide sound sources and need to plugin audio
channels on a virtual mixing desk. With AoO
the participant just needs to connect to the net-
work, wireless or wired, choosing the drains to
play to and send phrases of audio with AoO
when needed.

For the ICE ensemble Ambisonics as an vir-
tual audio environment was chosen, which can
be rendered to different concert halls. Within
the Ambisonics each musician can always use
the same playing parameters for spatializing her
or his musical contribution. So the imagination
of the musician is ”playing in a virtual 3D envi-
ronment “, sending their audio signals together
with 3D-spatial data to a distributed mixing
system which is rendering it on the speakers.

Additional there is an audio communication
between the musicians, where each musicians
can hear into the signal produced by the other,
if there is one or on special offered drains send
audio intervention to the others for e.g. mon-
itoring purposes. The musicians can do their

own monitor mix, depending on the piece and
space where the play.

Using a message audio system, each musi-
cians only sends sound data if playing, like audio
bursts just notes, or just sending their audio-
data to another musicians, who will process this
further and so on. There should be no border
on the imagination of these situations, (as long
it can be grasped by the participants).

wiiii AoO broadcasts
——> Ao0O direct + spatial data

o® @
& M:I.'a" muI:czian muI:::‘ian

T

~Befe-gi-> . A0O receive

/ : X s m,
bt : bt m;
/ 3 2 g ‘ Mn
/ __.ambisonics

K : - 2mbise

spatialization g Mo

Ambisonics | _ duct
workstation osc- conductor
control

Ao0O SPACE

ystem

audio connections

e o o e

Ambisonics System 3D/2D + SUB

PA-S

Figure 8: ICE using AoO as space for playing
together and on a PA system6

4 state of the work

The AoO has been implemented for proof of
concept and special applications in a first draft
version. The next version should fixate the pro-
tocol, after having discussed it in public, in a
way that makes it compatible with future pro-
tocol upgrades.

The usage of AoO in an ensemble has been ex-
plored in a workshop with students at the TEM,
but the implemented software was not stable
enough on the different platforms used for stage
performance. This was especially true, when we
tried to reach the short latencies needed for con-
certs. Some more programming efforts has to
be done, to guarantee better timing using dif-
ferent computer types, within different Linux-
implementations and setups.

Running AoO on embedded Linux devices
has shown to be successful, if the devices are
tweaked for real-time audio usage. The de-
velopment on the escher?2 (dsPIC33E-)micro-
controller board has been abandoned in favor of
the new generation of small low power embed-
ded devices with arm processors. A first ver-
sion of implementation (V1.0) of AoO is sched-
uled for April 2014 for a public installation in
the sound-dome, where the Ambisonics audio-
system should be finalized for permanent perfor-



mance and open access. More documentation
and source code should be released and open-
hardware as AoO-audio devices should be avail-
able.

Special focus is done on using embedded de-
vices with AoO as networked multichannel au-
dio hardware interfaces for low cost solutions
adding audio processing for calibration filters,
beam-forming,. .. for speaker-systems optional
powered over Ethernet.

5 Conclusions

Starting as a vision, these experiments and im-
plementations have shown, that message based
audio systems can enhance the collaboration in
ensembles, playing open audio systems. Also
network art projects using the Internet can use
AoO to contribute to sound installation from
outside, just knowing the IP and ports to use.

The implementation is far from being com-
plete, and more restrictions will be included in
order to simplify the system. Synchronization
and re-sampling is not perfect, but usable for
most cases and it has been shown, that audio
message systems can work reliable in different
situations.

Audio message systems can also be imple-
mented in other formats than OSC and lower
layers of the Linux OS, like jack-plugins or
ALSA-modules as converters between message
based audio system and synchronous data flow
models.

For really low latency (below 1 ms) using AoO
as audio over Ethernet system, kernel-drivers
must be developed and with time-slotted Ether-
net transmissions, systems with latencies down
to 8 us on transmission time can be imple-
mented using hard RT-systems.

6 Acknowledgements

Thanks to ...my colleagues on the IEM sup-
porting me with their help, especially Wolfgang
Jager for a first implementation as a sound-
engineering project. Also for helping set up
the "Klangdom“ especially to Marian Weger,
Matthias Kronlachner and the cultural initia-
tive K.U.L.M. in Pischelsdorf and the members
of the ICE Ensemble helping to experiment and
many others. Thanks also for corrections of this
paper and useful hints, to enhance the under-
standing.

References

Atelier Algorythmics. 2012. escher devel-
opment. http://algo.mur.at/projects/
microcontroller/escher. [Online; accessed

1-Feb-2014].

Internet Assigned Numbers Authority. 2009.
MIME Media Types. http://www.iana.
org/assignments/media-types/. [Online;
accessed 1-Feb-2014].

The BeagleBoard.org Foundation. 2013. bea-
glebone black. http://beagleboard.org/

products/beaglebone\%20black. [Online;
accessed 1-Feb-2014].
Winfried Ritsch IEM. 2011. IEM Com-

puter Music Ensemble.
projekte/ice. [Online;
2014).

http://iaem.at/
accessed 1-Feb-

Wolgang Jaeger and Winfried Ritsch.
2009. AQOO. http://iem.kug.ac.
at/en/projects/workspace/2009/
audio-over-internet-using-osc.html.
[Online; accessed 12-Dez-2011].

D. Mills, J. Martin, J. Burbank, and
W. Kasch. 2010. Network Time Protocol Ver-
sion 4: Protocol and Algorithms Specifica-
tion. RFC 5905 (Proposed Standard), June.

Technical Committee on Sensor Technol-
ogy. 1588-2002. IEEE Standard for a Preci-
sion Clock Synchronization Protocol for Net-
worked Measurement and Control Systems.
The Institute of Electrical and Electronics
Engineers, Inc. (Hrsg.), New York, ieee std.
edition, November.

M. Puckette. 1996. Pure Data. In Proceed-
ings, International Computer Music Confer-
ence., page 224-227, San Francisco.

Andrew Schmeder, Adrian Freed, and David
Wessel. 2010. Best Practices for Open Sound
Control. In Linux Audio Conference, Utrecht,
NL, 01/05/2010.

RTnet Development Team. 2002. RTNET.
http://rtnet.org/. [Online; accessed 1-

Feb-2014].
Matt Wright. 2002. The open sound
control 1.0 specification. http:

//opensoundcontrol.org/spec-1\_0.
[Online; accessed 1-Feb-2014].



