

About me...

• Musician, Electrical Engineer, Mixing/Mastering Engineer

• Studied audio DSP at CCRMA

• 5+ years of making audio plugins, DAWs, etc.

• Not a great guitarist (but I’m learning…)

2

Klon Centaur

Guitar pedal made by Bill Finnegan (MIT) from 1994-2000

3

Virtual Analog Modelling

Creating a digital emulation of a classic analog audio effects.

• Provide access to effects that are old or rare.

• Lower cost.

• Convenience.

• Improved understanding.

4

“White-Box” Modelling

Modelling a circuit through mathematical simulations of the

physical interactions of the component parts.

• Nodal Analysis
• Modified Nodal Analysis (MNA)
• State-Space Formulation
• Wave Digital Filters (WDF)
• Port-Hamiltonian Formulation

5

“White-Box” Modelling

Advantages:

• Accurate modelling of

circuit behaviour (even in

extreme situations)

• Accurate modelling of

control parameters

• Improved understanding of

the modelled effect

Disadvantages:

• Often computationally

expensive (especially for

real-time use)

• Requires knowledge of

DSP, as well as physics,

circuit theory, etc.

6

“Black-Box” Modelling

Modelling a circuit by taking measurements, and designing a

system to give a perceptually equivalent output.

• Convolution with Impulse Response (for linear systems)
• Volterra Series
• Weiner-Hammerstein Method
• Neural Networks

7

“Black-Box” Modelling

Advantages:

• Better for capturing

“unique” behaviour

• Computationally cheaper

• Only requires background

knowledge of DSP

Disadvantages:

• Difficult to include control

parameters

• Minimal understanding of

the effect being modelled

8

Different Platforms

Desktop Audio Plugin:

• Consumer-grade CPU

• Plenty of memory

• Have to share resources

with other plugins

Embedded Device:

• Depends on the device

(pedal, Eurorack module,

multi-effects processor)

• More powerful processors

are more expensive

• Limited memory

• (Usually) don’t have to

share resources

9

Research Goals

• Model sub-circuits from the Klon Centaur using different
modelling methods:
• Nodal Analysis
• Wave Digital Filters
• Neural Networks

• Create desktop and embedded implementations of the

modelled effect

• Compare the advantages/disadvantages of each method

10

Outline

• Traditional Circuit Modelling
• Nodal Analysis (Tone Stage sub-circuit)
• Wave Digital Filters (FF-1 sub-circuit)

• Neural Network Circuit Modelling
• Recurrent Neural Network (Gain Stage sub-circuit)

• Desktop and embedded implementations

• Comparisons and Results

11

Nodal Analysis

12

Example Circuit: Tone Stage

−

+
+4.5V

R22

Vin

R21

RV2

C14
R24

R23

Vout

Klon Centaur Tone Control Circuit

13

Nodal Analysis: Continuous Time

1. Convert the circuit to the Laplace Domain, using the Laplace

variable s = jω. The complex impedance of each principal

circuit component is defined as:

ZR = R, ZC =
1

Cs
, ZL = Ls (1)

14

Nodal Analysis: Continuous Time

2. Form the Laplace domain transfer function.1

Vout(s)

Vin(s)
=

C14

(
1

R22
+ 1

R21+Rv2b

)
s+ 1

R22

(
1

R21+Rv2b
+ 1

R23+Rv2a

)
C14

(
1

R23+Rv2a
+ 1

R24

)
s+ −1

R24

(
1

R21+Rv2b
+ 1

R23+Rv2a

) (2)

1Maby, Solid State Electronic Circuits.
15

Nodal Analysis: Discrete Time

3. Use a conformal map to map from the s-plane to z-plane

(often the bilinear transform).2

s← 2

T

1− z−1

1 + z−1
(3)

2Smith, Physical Audio Signal Processing.
16

Nodal Analysis: Discrete Time

4. Implement the system as a digital filter.

y[n] = b0x[n]+b1x[n−1]+b2x[n−2]−a1y[n−1]−a2y[n−2] (4)

17

Discretization Considerations

• Frequency warping
• Stability

18

Tone Stage Frequency Response

19

Nodal Analysis

Advantages:

• Simple and

computationally efficient

circuit models

Disadvantages:

• Cannot be used to model

nonlinear circuits (can be

extended with Modified

Nodal Analysis)

• Sometimes difficult to

compute parameter

changes

20

Wave Digital Filters

21

Kirchoff Domain Circuits

• Each circuit component has an impedance

• Each component has a voltage across its terminals and

current between

• Components are connected in series/parallel

configurations (usually)

22

Wave Domain Circuits

Circuits are made up of wave ports with incident and reflected

waves.

Incident wave:

a = v +R0i (5)

Reflected wave:

b = v −R0i (6)

23

Wave Domain Circuits

• Each circuit component is a “1-port element” that inputs

incident and outputs reflected wave variables

• Each series/parallel junction is an “N-port adaptor” that

connects the 1-ports with a scattering junction

• Free parameter: port resistance

24

Wave Digital Filters

Wave Digital Filters (WDFs) were developed by Alfred Fettweis

in the 1970’s and 80’s.3

• Digital simulation of circuits in the wave domain

• Discretize each circuit element independently

• Create binary connection tree (BCT) between circuit

elements

3Fettweis, “Wave digital filters: Theory and practice”.
25

Example Circuit: Feed-Forward Network 1

C3
R7 R19

−+ 4.5VC16

Klon Centaur Feed-Forward Network 1 Circuit

26

Example Circuit: Feed-Forward Network 1

Vin S1
C3

S2
R7

P1

C16

S3
R19

V4.5

WDF tree for the Klon Centaur Feed-Forward Network 1 Circuit. S and P nodes refer to series

and parallel adaptors respectively.

27

Time-Domain Response

28

Wave Digital Filters

Advantages:

• Modularity: circuit

elements and topology can

be alterred on-the-fly

• Each element can be

discretized with a different

conformal map

Disadvantages:

• Cannot model circuits with

multiple nonlinearities or

R-type topologies
• These types of circuits can

be modelled using

R-adaptors, but with an

increase in complexity

29

Wave Digital Filters

More information:

• Alfred Fettweis, “Wave Digital Filters: Theory and
Practice”, Proceedings of the IEEE, vol. 74, no. 2, 1986
• Original reference for deriving WDF formalism

• Kurt Werner, Virtual Analog Modeling of Audio Circuitry
Using Wave Digital Filters, PhD. Thesis, Stanford University,
2016
• Great reference for deriving WDFs, including more recent

advancements

• Expands WDFs to handle R-type topologies and multiple

nonlinearities

30

Wave Digital Filters

More information:

• François Germain, Non-oversampled physical modeling for
virtual analog simulation, PhD. Thesis, Stanford University,
2019
• Example of independently discretizing circuit elements with

Alpha Transform

• Jingjie Zhang and Julius Smith, “Real-timeWave Digital
Simulation of Cascaded Vacuum Tube Amplifiers Using
Modified Blockwise Method”, Proc. of the 21st International
Conference on Digital Audio Effects, 2018
• Real-time simulation of an impressively large circuit

31

Real-Time Neural Networks

32

Black Box Modelling with Neural Nets

Previous work: Damskägg et al., 20194

• Uses a WaveNet-style, “Temporal Convolutional Network”

• Used to model distortion pedal circuits

• Also used to model tube amp distortion5

• Disadvantage: computationally expensive

4Damskägg, Juvela, and Välimäki, “Real-Time Modeling of Audio Distortion Circuits with

Deep Learning”.
5Damskägg et al., Deep Learning for Tube Amplifier Emulation.

33

Temporal Convolutional Networks

Keith Bloemer: Smart Guitar Amp6

6https://github.com/keyth72/SmartGuitarAmp
34

https://github.com/keyth72/SmartGuitarAmp

Temporal Convolutional Networks

Christian Steinmetz: Randomized Overdrive Neural Networks7

7https://github.com/csteinmetz1/ronn
35

https://github.com/csteinmetz1/ronn

Black Box Modelling with Neural Nets

Previous work: Parker et al., 20198

• Uses a deep, fully-connected “State Transition Network”

• Approximates a state-space solution for nonlinear

distortion and filter circuits

• Effectively a “grey-box” model

8Parker, Esqueda, and Bergner, “Modelling of Nonlinear State-Space Systems Using a

Deep Neural Network”.
36

State Transition Networks

Native Instruments: Guitar Rig 6 Pro9

9https://blog.native-instruments.com/the-making-of-icm/
37

https://blog.native-instruments.com/the-making-of-icm/

Black Box Modelling with Neural Nets

Previous work: Wright et al., 201910

• Uses a single layer recurrent neural network

• Used to model guitar distortion circuits

• Can also be used to model time-varying circuits11

10Wright, Damskägg, and Välimäki, “Real-Time Black-Box Modelling with Recurrent

Neural Networks”.
11Wright and Välimäki, “Neural Modelling of Time-Varying Effects”.

38

Recurrent Neural Network

Advantages of using RNNs to model distortion circuits:

• Makes sense (recurrent units can be distortion effects)

• Computationally efficient

• Can include circuit control parameters

39

Recurrent Neural Network

Input x[n] Recurrent Layer Current State h[n]

z−1

Previous State h[n− 1]

Fully Connected Layer

Output y[n]

40

Recurrent Neural Network

Recurrent layer: Gated Recurrent Unit

z[n] = σ(Wzx[n] + Uzh[n− 1] + bz) (7)

r[n] = σ(Wrx[n] + Urh[n− 1] + br) (8)

c[n] = tanh(Wcx[n] + r[n] ◦ Uch[n− 1] + bc) (9)

h[n] = z[n] ◦ h[n− 1] + (1− z[n]) ◦ c[n] (10)

41

Example Circuit: Centaur Gain Stage

42

Recurrent Neural Network: Training

Training Data:

• ∼ 4 minutes of guitar recordings (direct) at 44.1 kHz
• Split into 0.5 second segments
• 400 training samples, 25 validation samples
• Simulated Klon output using SPICE
• 5 positions of “Gain” parameter

Loss Function: Error-to-Signal Ratio

EESR =

∑N−1
n=0 |y[n]− ŷ[n]|2∑N−1

n=0 |y[n]|2
(11)

43

Recurrent Neural Network: Control Parameters

In training, we were unable to successfully train a network that

included the “Gain” parameter.

Instead, we trained 5 independent networks, one for each

“Gain” knob position. In the final implementation, we “fade”

between the models in real-time.

44

Recurrent Neural Network: Training

Training: 500 epochs, ∼ 8 hours

45

Recurrent Neural Network: Training

Training results (time domain)

46

Recurrent Neural Network: Training

Training results (frequency domain)

47

Recurrent Neural Networks

Advantages:

• Efficient black-box

modelling technique for

distortion circuits

• Can potentially include

control parameters

Disadvantages:

• Large networks can be

computationally expensive

• Must be used at the same

sample rate as training

data

• Can be difficult to train

with control parameters

48

Neural Networks: FutureWork

Computational Efficiency

• Dense, recurrent, and convolutional layers often require

nonlinear activation functions, like tanh
• In DSP, we often use fast approximations, or look-up tables

• Can we use function approximations in neural networks?
• Is it better to train with approximations, or train with full

precision, and use approximations for real-time implementation?
• Similar to questions in TinyML about weight quantization

49

Neural Networks: FutureWork

Sample Rate

• Currently most networks must be used at the same sample

rate as the training data

• Can one network to be used for a range of sample rates?
• Sample rate as input?
• Transform network weights?
• Fractional delay (RNN only)?

• What about aliasing?

50

Real-Time Implementation

51

Klon Centaur Circuit Schematic

52

Implementation

Non-ML Implementation

• Use a combination

nodal analysis, WDFs

• Control parameters for

Treble, Gain, Level

ML Implementation

• RNN model for Gain Stage,

nodal analysis elsewhere

• Fade between models for

variable Gain control

• Custom GRU and Dense layer

implementations in C++

53

RNN Inferencing Engine

Tensorflow Lite

• Converts a Tensorflow model to a format that can be run

on embedded devices

• Support for GRUs is still experimental

• Real-time audio concerns: no thread locks, no memory

allocation on real-time audio thread

54

RNN Inferencing Engine

Custom engine: Eigen

• Eigen is a linear algebra C++ library with SIMD support for

matrix/vector operations

• Custom implementations of GRU and fully connected

layers, validated against Tensorflow

• Can be difficult to compile on embedded devices

55

RNN Inferencing Engine

Custom engine: C++ STL

• Optimized algorithms for operations such as

std :: inner_product

• Custom implementations of GRU and fully connected

layers, validated against Tensorflow

• Can be compiled on most embedded devices

56

Implementation

Desktop Audio Plugin (JUCE/C++)

57

Implementation

Teensy 4.0, Teensy Audio Shield, Teensy Audio Library

58

Results: Performance

Compute time per second of audio.

Block Size NonML Speed ML Speed

8 0.0723437 0.0528792

16 0.0703079 0.0510437

32 0.0652856 0.0511147

64 0.0662835 0.0502434

128 0.0666593 0.0495194

256 0.0696844 0.0480298

512 0.0669037 0.0477946

1024 0.060816 0.0488841

2048 0.0695175 0.0488309

4096 0.0623839 0.0472191
59

Results: Summary

• Subjectively, non-ML and ML models sound very similar.

• MLmodel has slightly damped high frequency response,

(not a big deal on guitar input; more noticeable on other

audio).

• MLmodel is more efficient!

60

Takeaways

• 3 methods for modelling circuits:
• Nodal Analysis (simplest)

• Wave Digital Filters (modular)

• Neural Networks (experimental)

• Modelling circuits with neural networks can be done, but

more research/experimentation is needed

• Desktop vs. Embedded:
• Memory management

• Processing power (floating point processing, SIMD)

• Price

61

Links

• Technical Paper

• Source Code (and plugin download)

• Video Demos

62

https://arxiv.org/abs/2009.02833
https://github.com/jatinchowdhury18/KlonCentaur
https://www.youtube.com/playlist?list=PLrcXtWXbPsj11cNBamVyMmDcWY1SXZHvz

Acknowledgements

• Pete Warden and the EE 292D class, for insipiring this

project

• Julius Smith, Kurt Werner, and Jingjie Zhang, for assistance

with WDFs

63

Thank You!

64

