


About me...

• Musician, Electrical Engineer, Mixing/Mastering Engineer

• Studied audio DSP at CCRMA

• 5+ years of making audio plugins, DAWs, etc.

• Not a great guitarist (but I’m learning…)
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Klon Centaur

Guitar pedal made by Bill Finnegan (MIT) from 1994-2000
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Virtual Analog Modelling

Creating a digital emulation of a classic analog audio effects.

• Provide access to effects that are old or rare.

• Lower cost.

• Convenience.

• Improved understanding.
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“White-Box” Modelling

Modelling a circuit through mathematical simulations of the

physical interactions of the component parts.

• Nodal Analysis
• Modified Nodal Analysis (MNA)
• State-Space Formulation
• Wave Digital Filters (WDF)
• Port-Hamiltonian Formulation
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“White-Box” Modelling

Advantages:

• Accurate modelling of

circuit behaviour (even in

extreme situations)

• Accurate modelling of

control parameters

• Improved understanding of

the modelled effect

Disadvantages:

• Often computationally

expensive (especially for

real-time use)

• Requires knowledge of

DSP, as well as physics,

circuit theory, etc.
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“Black-Box” Modelling

Modelling a circuit by taking measurements, and designing a

system to give a perceptually equivalent output.

• Convolution with Impulse Response (for linear systems)
• Volterra Series
• Weiner-Hammerstein Method
• Neural Networks
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“Black-Box” Modelling

Advantages:

• Better for capturing

“unique” behaviour

• Computationally cheaper

• Only requires background

knowledge of DSP

Disadvantages:

• Difficult to include control

parameters

• Minimal understanding of

the effect being modelled
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Different Platforms

Desktop Audio Plugin:

• Consumer-grade CPU

• Plenty of memory

• Have to share resources

with other plugins

Embedded Device:

• Depends on the device

(pedal, Eurorack module,

multi-effects processor)

• More powerful processors

are more expensive

• Limited memory

• (Usually) don’t have to

share resources
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Research Goals

• Model sub-circuits from the Klon Centaur using different
modelling methods:
• Nodal Analysis
• Wave Digital Filters
• Neural Networks

• Create desktop and embedded implementations of the

modelled effect

• Compare the advantages/disadvantages of each method
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Outline

• Traditional Circuit Modelling
• Nodal Analysis (Tone Stage sub-circuit)
• Wave Digital Filters (FF-1 sub-circuit)

• Neural Network Circuit Modelling
• Recurrent Neural Network (Gain Stage sub-circuit)

• Desktop and embedded implementations

• Comparisons and Results
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Nodal Analysis
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Example Circuit: Tone Stage
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Klon Centaur Tone Control Circuit
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Nodal Analysis: Continuous Time

1. Convert the circuit to the Laplace Domain, using the Laplace

variable s = jω. The complex impedance of each principal

circuit component is defined as:

ZR = R, ZC =
1

Cs
, ZL = Ls (1)
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Nodal Analysis: Continuous Time

2. Form the Laplace domain transfer function.1

Vout(s)

Vin(s)
=

C14

(
1

R22
+ 1

R21+Rv2b

)
s+ 1

R22

(
1

R21+Rv2b
+ 1

R23+Rv2a

)
C14

(
1

R23+Rv2a
+ 1

R24

)
s+ −1

R24

(
1

R21+Rv2b
+ 1

R23+Rv2a

) (2)

1Maby, Solid State Electronic Circuits.
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Nodal Analysis: Discrete Time

3. Use a conformal map to map from the s-plane to z-plane

(often the bilinear transform).2

s← 2

T

1− z−1

1 + z−1
(3)

2Smith, Physical Audio Signal Processing.
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Nodal Analysis: Discrete Time

4. Implement the system as a digital filter.

y[n] = b0x[n]+b1x[n−1]+b2x[n−2]−a1y[n−1]−a2y[n−2] (4)
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Discretization Considerations

• Frequency warping
• Stability
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Tone Stage Frequency Response
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Nodal Analysis

Advantages:

• Simple and

computationally efficient

circuit models

Disadvantages:

• Cannot be used to model

nonlinear circuits (can be

extended with Modified

Nodal Analysis)

• Sometimes difficult to

compute parameter

changes
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Wave Digital Filters
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Kirchoff Domain Circuits

• Each circuit component has an impedance

• Each component has a voltage across its terminals and

current between

• Components are connected in series/parallel

configurations (usually)
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Wave Domain Circuits

Circuits are made up of wave ports with incident and reflected

waves.

Incident wave:

a = v +R0i (5)

Reflected wave:

b = v −R0i (6)

23



Wave Domain Circuits

• Each circuit component is a “1-port element” that inputs

incident and outputs reflected wave variables

• Each series/parallel junction is an “N-port adaptor” that

connects the 1-ports with a scattering junction

• Free parameter: port resistance
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Wave Digital Filters

Wave Digital Filters (WDFs) were developed by Alfred Fettweis

in the 1970’s and 80’s.3

• Digital simulation of circuits in the wave domain

• Discretize each circuit element independently

• Create binary connection tree (BCT) between circuit

elements

3Fettweis, “Wave digital filters: Theory and practice”.
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Example Circuit: Feed-Forward Network 1

C3
R7 R19

−+ 4.5VC16

Klon Centaur Feed-Forward Network 1 Circuit
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Example Circuit: Feed-Forward Network 1

Vin S1
C3

S2
R7

P1

C16

S3
R19

V4.5

WDF tree for the Klon Centaur Feed-Forward Network 1 Circuit. S and P nodes refer to series

and parallel adaptors respectively.
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Time-Domain Response
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Wave Digital Filters

Advantages:

• Modularity: circuit

elements and topology can

be alterred on-the-fly

• Each element can be

discretized with a different

conformal map

Disadvantages:

• Cannot model circuits with

multiple nonlinearities or

R-type topologies
• These types of circuits can

be modelled using

R-adaptors, but with an

increase in complexity
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Wave Digital Filters

More information:

• Alfred Fettweis, “Wave Digital Filters: Theory and
Practice”, Proceedings of the IEEE, vol. 74, no. 2, 1986
• Original reference for deriving WDF formalism

• Kurt Werner, Virtual Analog Modeling of Audio Circuitry
Using Wave Digital Filters, PhD. Thesis, Stanford University,
2016
• Great reference for deriving WDFs, including more recent

advancements

• Expands WDFs to handle R-type topologies and multiple

nonlinearities
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Wave Digital Filters

More information:

• François Germain, Non-oversampled physical modeling for
virtual analog simulation, PhD. Thesis, Stanford University,
2019
• Example of independently discretizing circuit elements with

Alpha Transform

• Jingjie Zhang and Julius Smith, “Real-timeWave Digital
Simulation of Cascaded Vacuum Tube Amplifiers Using
Modified Blockwise Method”, Proc. of the 21st International
Conference on Digital Audio Effects, 2018
• Real-time simulation of an impressively large circuit
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Real-Time Neural Networks
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Black Box Modelling with Neural Nets

Previous work: Damskägg et al., 20194

• Uses a WaveNet-style, “Temporal Convolutional Network”

• Used to model distortion pedal circuits

• Also used to model tube amp distortion5

• Disadvantage: computationally expensive

4Damskägg, Juvela, and Välimäki, “Real-Time Modeling of Audio Distortion Circuits with

Deep Learning”.
5Damskägg et al., Deep Learning for Tube Amplifier Emulation.
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Temporal Convolutional Networks

Keith Bloemer: Smart Guitar Amp6

6https://github.com/keyth72/SmartGuitarAmp
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Temporal Convolutional Networks

Christian Steinmetz: Randomized Overdrive Neural Networks7

7https://github.com/csteinmetz1/ronn
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https://github.com/csteinmetz1/ronn


Black Box Modelling with Neural Nets

Previous work: Parker et al., 20198

• Uses a deep, fully-connected “State Transition Network”

• Approximates a state-space solution for nonlinear

distortion and filter circuits

• Effectively a “grey-box” model

8Parker, Esqueda, and Bergner, “Modelling of Nonlinear State-Space Systems Using a

Deep Neural Network”.
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State Transition Networks

Native Instruments: Guitar Rig 6 Pro9

9https://blog.native-instruments.com/the-making-of-icm/
37

https://blog.native-instruments.com/the-making-of-icm/


Black Box Modelling with Neural Nets

Previous work: Wright et al., 201910

• Uses a single layer recurrent neural network

• Used to model guitar distortion circuits

• Can also be used to model time-varying circuits11

10Wright, Damskägg, and Välimäki, “Real-Time Black-Box Modelling with Recurrent

Neural Networks”.
11Wright and Välimäki, “Neural Modelling of Time-Varying Effects”.
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Recurrent Neural Network

Advantages of using RNNs to model distortion circuits:

• Makes sense (recurrent units can be distortion effects)

• Computationally efficient

• Can include circuit control parameters
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Recurrent Neural Network

Input x[n] Recurrent Layer Current State h[n]

z−1

Previous State h[n− 1]

Fully Connected Layer

Output y[n]
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Recurrent Neural Network

Recurrent layer: Gated Recurrent Unit

z[n] = σ(Wzx[n] + Uzh[n− 1] + bz) (7)

r[n] = σ(Wrx[n] + Urh[n− 1] + br) (8)

c[n] = tanh(Wcx[n] + r[n] ◦ Uch[n− 1] + bc) (9)

h[n] = z[n] ◦ h[n− 1] + (1− z[n]) ◦ c[n] (10)
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Example Circuit: Centaur Gain Stage
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Recurrent Neural Network: Training

Training Data:

• ∼ 4 minutes of guitar recordings (direct) at 44.1 kHz
• Split into 0.5 second segments
• 400 training samples, 25 validation samples
• Simulated Klon output using SPICE
• 5 positions of “Gain” parameter

Loss Function: Error-to-Signal Ratio

EESR =

∑N−1
n=0 |y[n]− ŷ[n]|2∑N−1

n=0 |y[n]|2
(11)
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Recurrent Neural Network: Control Parameters

In training, we were unable to successfully train a network that

included the “Gain” parameter.

Instead, we trained 5 independent networks, one for each

“Gain” knob position. In the final implementation, we “fade”

between the models in real-time.
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Recurrent Neural Network: Training

Training: 500 epochs, ∼ 8 hours

45



Recurrent Neural Network: Training

Training results (time domain)
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Recurrent Neural Network: Training

Training results (frequency domain)
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Recurrent Neural Networks

Advantages:

• Efficient black-box

modelling technique for

distortion circuits

• Can potentially include

control parameters

Disadvantages:

• Large networks can be

computationally expensive

• Must be used at the same

sample rate as training

data

• Can be difficult to train

with control parameters
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Neural Networks: FutureWork

Computational Efficiency

• Dense, recurrent, and convolutional layers often require

nonlinear activation functions, like tanh
• In DSP, we often use fast approximations, or look-up tables

• Can we use function approximations in neural networks?
• Is it better to train with approximations, or train with full

precision, and use approximations for real-time implementation?
• Similar to questions in TinyML about weight quantization
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Neural Networks: FutureWork

Sample Rate

• Currently most networks must be used at the same sample

rate as the training data

• Can one network to be used for a range of sample rates?
• Sample rate as input?
• Transform network weights?
• Fractional delay (RNN only)?

• What about aliasing?
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Real-Time Implementation
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Klon Centaur Circuit Schematic
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Implementation

Non-ML Implementation

• Use a combination

nodal analysis, WDFs

• Control parameters for

Treble, Gain, Level

ML Implementation

• RNN model for Gain Stage,

nodal analysis elsewhere

• Fade between models for

variable Gain control

• Custom GRU and Dense layer

implementations in C++
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RNN Inferencing Engine

Tensorflow Lite

• Converts a Tensorflow model to a format that can be run

on embedded devices

• Support for GRUs is still experimental

• Real-time audio concerns: no thread locks, no memory

allocation on real-time audio thread
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RNN Inferencing Engine

Custom engine: Eigen

• Eigen is a linear algebra C++ library with SIMD support for

matrix/vector operations

• Custom implementations of GRU and fully connected

layers, validated against Tensorflow

• Can be difficult to compile on embedded devices
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RNN Inferencing Engine

Custom engine: C++ STL

• Optimized algorithms for operations such as

std :: inner_product

• Custom implementations of GRU and fully connected

layers, validated against Tensorflow

• Can be compiled on most embedded devices
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Implementation

Desktop Audio Plugin (JUCE/C++)
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Implementation

Teensy 4.0, Teensy Audio Shield, Teensy Audio Library
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Results: Performance

Compute time per second of audio.

Block Size NonML Speed ML Speed

8 0.0723437 0.0528792

16 0.0703079 0.0510437

32 0.0652856 0.0511147

64 0.0662835 0.0502434

128 0.0666593 0.0495194

256 0.0696844 0.0480298

512 0.0669037 0.0477946

1024 0.060816 0.0488841

2048 0.0695175 0.0488309

4096 0.0623839 0.0472191
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Results: Summary

• Subjectively, non-ML and ML models sound very similar.

• MLmodel has slightly damped high frequency response,

(not a big deal on guitar input; more noticeable on other

audio).

• MLmodel is more efficient!
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Takeaways

• 3 methods for modelling circuits:
• Nodal Analysis (simplest)

• Wave Digital Filters (modular)

• Neural Networks (experimental)

• Modelling circuits with neural networks can be done, but

more research/experimentation is needed

• Desktop vs. Embedded:
• Memory management

• Processing power (floating point processing, SIMD)

• Price
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Links

• Technical Paper

• Source Code (and plugin download)

• Video Demos
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https://arxiv.org/abs/2009.02833
https://github.com/jatinchowdhury18/KlonCentaur
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Thank You!
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