
May 10, 2002
Embedix SDK 2.4
Tools
Embedix SDK Lineo Book Template 1.04a

May 10, 2002
Disclaimer, Trademarks, and Copyright Information

Lineo, Inc. makes no representations or warranties with respect to
the contents or use of this manual, and specifically disclaims any
express or implied warranties of merchantability or fitness for any
particular purpose. Lineo, Inc. reserves the right to revise this
publication and to make changes to its content, at any time, without
obligation to notify any person or entity of such revisions or changes.

Lineo, Inc. makes no representations or warranties with respect to
any Lineo software, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose.
Lineo, Inc. reserves the right to make changes to any and all parts of
Lineo software, at any time, without any obligation to notify any
person or entity of such changes.

Lineo and Embedix are registered trademarks of Lineo, Inc. The
stylized Lineo logo is a trademark of Lineo, Inc. The Metrowerks
name and logo as well as the CodeWarrior name and logo are
copyright Metrowerks, a Motorola, Inc. company.

Other product and company names mentioned in this document
may be the trademarks or registered trademarks of their respective
owners.

Copyright © 2002 Lineo, Inc. All rights reserved. No part of this
publication may be reproduced, photocopied, stored on a retrieval
system, or transmitted without the express written consent of the
publisher.

Lineo, Inc.
588 West 400 South
Suite 150
Lindon, UT 84042 USA
http://www.lineo.com

Embedix SDK 2.4 Tools
Part Number: EMBD-SDK-TOOLS-0502
May 2002
Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002
Contents
P R E F A C E About This Guide ..v

Conventions Used in This Document..v
Admonitions..v
Key Combinations..vi
Special Fonts and Capitalization...vi

Additional Resources...vii

C H A P T E R 1 Introduction to SDK Tools..1

Embedix Target Wizard...1
Package Editor ...2
Metrowerks CodeWarrior for Lineo Embedix SDK.....................2
Data Display Debugger (DDD) ...2
Embedix GPL Compliance Toolset...3
Graphical Remote Process Analyzer ..3
Helper Utilities ..3

C H A P T E R 2 Packaging with Package Editor ..5

What is an Embedix Package? ..6
Starting Package Editor ...7

From the Menu Bar ..7
From the Command Line...7

Exploring the Interface..9
Menus ..11
Shortcut Icons ...11
Tabs..12
Log Window ..12

Overview to Creating a Package ...12
General Packaging Steps ..13
Tutorial: Creating a New Package..13
Contents i

Embedix SDK Lineo Book Template 1.04a

May 10, 2002
Tutorial: Creating a Package for an Application from an
External Source (like Open Source Applications) 19
Tutorial: Creating Binary Packages to Use in Target Wizard
... 21

Downloading the Source .. 25
Unpacking the Source .. 25
Modifying LBC Sections ... 26

What is an LBC? ... 26
LBC File Tab ... 27
LBC File Sections ... 30
LBC File Inheritance .. 32
Build Variables in LBC Files.. 33

Modifying ECD Files .. 37
What is an ECD?... 37
ECD File Tab... 38
Why and How to Use ECD .. 44
Build Variables in ECD Files ... 48

Modifying Source Files... 51
Source Tab .. 51
Using an External Text Editor.. 51
Other Options ... 52
Viewing “Diffs” and Making Patches.................................. 52
Installing Patches from External Sources........................... 53

Building the Binary Image ... 54
Installing the Package... 56
Distributing Packages as LPF Files.. 57
Using the Embedix Tool Chains .. 58

C H A P T E R 3 Configuring & Using Metrowerks CodeWarrior with Embedix SDK 61

Configuring CodeWarrior for Lineo Embedix SDK 2.x............ 61
Embedix SDK Installation Options 61
Post-install SDK Configurations ... 63
 CodeWarrior Installation and Initial Configuration 64
Common Global Configuration Options for CodeWarrior66
Recording Embedix SDK Tools Setting 67
CodeWarrior Per Project Configuration Options............... 71
Library and Include Files ... 72
Output Directory... 73
Useful Output Directory Locations: 74
ii Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002
Debugger ...74
Compiler Command Line Arguments76
Linker...79
Configure CodeWarrior to Use the Right GNU Tools80
Configure CodeWarrior to Recognize *.ecd and *.lbc Files ..
81
Creating Project “Stationery” Files83
Adding New Tools to the CodeWarrior Menus84

Using CodeWarrior with Embedix SDK85

C H A P T E R 4 Debugging Using GDB and DDD ..95

Understanding Remote Debugging ...95
Using DDD and GDB from Target Wizard's Tools Menu97

Launching DDD..97
GDBs Used by the SDK..97
Manual Execution of DDD ...98
Using DDD..98
Editor Configuration...100
Web Browser Configuration ..100
Tip of the Day ..101
Warning...101

Overview of Debugging an Embedix Target Image101
Kernel Debugging at Boot Time...102
Kernel Debugging—Started from the Shell105
Kernel Module Debugging..106
Application Debugging over IP ..109
Application Debugging over Serial Port111
Additional Resources...113

C H A P T E R 5 Helper Utilities ..115

Building..115
Privileges ..116
Deployment..116

emb_build..117
emb_mkproj ..118
suwrapper ..119
suwrapper.conf..120
tcconfig ..122
Contents iii

Embedix SDK Lineo Book Template 1.04a

May 10, 2002
A P P E N D I X Manual Method of Packaging.. 125

What is an Embedix Package?.. 125
Creating an LBC.. 126

Buildcontrol File Features.. 126
Buildcontrol File Sections.. 126
Buildcontrol Inheritance.. 128
Build Phases ... 130
%pkg_file .. 130
%patches ... 130
%bld_dir_name .. 131
%cflags .. 131
%cfgopts.. 131
%spec... 131
%bin .. 131
%bld_targ .. 131
%makep... 132
%makec ... 133
%makerc ... 134
%makeb... 134
%makei.. 134
%makest.. 135
%makedc... 135

Creating an ECD ... 136
A Typical ECD File ... 136
Build Options in an ECD ... 143
Creating a Specpatch File .. 146
Summary... 151

Using a Tarfile, SRPM, or CVS Directory For Source............ 151
Tarfile .. 152
SRPM .. 152
CVS Repository... 152

Creating an SRPM .. 153

I N D E X ... 155
iv Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002
P R E F A C E

About This Guide
This preface includes information on formatting practices used
throughout this Lineo® Embedix® document and a list of additional
resources.

Conventions Used in This Document
The style conventions used in the printed and PDF format of this
document do not necessarily apply to other formats. During
conversion to HTML, some of these conventions may be lost.

This document uses the following graphical and typographical
conventions:

! Admonitions

! Key combinations

! Special fonts and capitalization

Admonitions

Note, Tip, and Warning paragraphs draw your attention to additional
information which may help you avoid losing data or time.

Note: Notes contain additional information about the
current topic.

Tip: Tips contain suggestions that may save you time or
effort.
Preface : iii About This Guide v

Embedix SDK Lineo Book Template 1.04b

Conventions Used in This Document

May 10, 2002
Warning: Warnings contain critical information that you
need to understand before proceeding. Ignoring
information in a warning may cause loss of data or time.

Key Combinations

Key combinations (such as Ctrl+O) are presented throughout this
document and should be used in the following way:

1. Press and hold the first key (such as Ctrl).

2. Press the second key (such as O).

3. Release both keys.

Special Fonts and Capitalization

In the printed or PDF version of this document, the following special
fonts and capitalization rules apply:

! Commands or user input: All commands or data to be entered
on an on-screen data entry line appear in bolded Courier
font. This may include commands used with options, paths to
directories or files, or other simple input, such as filenames.

! Code or computer output: CodeAny code sample, including
command output, is shown in Courier font.

! Capitalization: Linux filenames and commands are case-
sensitive. In most instances, they are lowercase. When you enter
a filename or command, use the same case that appears in your
instructions or examples.

! On-screen buttons: When procedures refer to a particular on-
screen button, the name of the button appears in uppercase
(such as “click SAVE”), regardless of how it appears on the
screen.

! Keyboard keys: When procedures refer to a particular key on a
keyboard, only the initial key is capitalized (such as “press Tab”),
just as it appears on a U.S. standard keyboard. This also applies
to key combinations.
vi Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04b

Additional Resources

May 10, 2002
Additional Resources
The following resources are available to provide you with additional
support.

! Embedix SDK Getting Started (Linux hosted) or
Embedix SDK for Windows Getting Started (Windows hosted)

! Embedix SDK Target Wizard User Guide

! Embedix SDK Reference Manual

! Embedix RealTime Programming Guide

! Lineo Support Web site:
http://www.lineo.com/support

Note: Most printed manuals that ship with Lineo products
are also available in PDF and HTML formats on the product
CD-ROM.
Preface : iii About This Guide vii

Embedix SDK Lineo Book Template 1.04b

Additional Resources

May 10, 2002
viii Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04b

May 10, 2002
C H A P T E R 1 Introduction to SDK Tools
This chapter provides an introduction to the tools that are either
included in this SDK product or available for purchase as an
Embedix SDK or Embedix SDK for Windows add-on. The tools
introduced in this chapter are:

Embedix Target Wizard
Package Editor
Metrowerks CodeWarrior for Lineo Embedix SDK
Data Display Debugger (DDD)
Embedix GPL Compliance Toolset
Graphical Remote Process Analyzer
Helper Utilities

Embedix Target Wizard
Embedix Target Wizard is the premiere tool included in the Embedix
SDK and the Embedix SDK for Windows products. Target Wizard
provides a graphical user interface that assists you in developing and
deploying customized embedded Linux systems. It also helps you:

! Manage package dependencies

! Remove conflicts between components

! Integrate applications with the operating system

! Reduce the size of your embedded target image

! Cross compile for target

! Deploy to target

For a detailed introduction to Target Wizard and instructions on use,
refer to the Embedix SDK Target Wizard User’s Guide.
chapter 1: Introduction to SDK Tools 1

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Package Editor
Package Editor
There are a number of methods you can use to add your custom
applications to an Embedix target image. There are two methods we
recommend: Merge your files into a target image or create custom
Embedix packages.

For instructions on merging files into a Target Image, refer to the
Embedix SDK Target Wizard User’s Guide.

For instructions on creating custom Embedix packages, see
“Packaging with Package Editor” on page 5.

Metrowerks CodeWarrior for Lineo Embedix SDK
Instructions for configuring this tool can be found in “Configuring
& Using Metrowerks CodeWarrior with Embedix SDK” on page 61.

Data Display Debugger (DDD)
To assist you in debugging efforts, Embedix SDK includes the gdb
and ddd debugging tools. You can use these to debug your target
image after the target image has been deployed to the target.

The GNU Debugger, gdb, is a debugging tool that provides source-
level run-time debugging. It is used during development to aid in
finding and fixing problems.

The Data Display Debugger, ddd, is a graphical user interface for
gdb, which most users enjoy using rather than using the command-
line driven gdb by itself. The ddd interface provides menus for gdb
functions and windows for gdb commands, code listing, and
variables. It also automatically runs gdb commands in the
background to provide useful information.

For instruction on using the Data Display Debugger, see
“Configuring & Using Metrowerks CodeWarrior with Embedix
SDK” on page 61.
2 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Embedix GPL Compliance Toolset
Embedix GPL Compliance Toolset
The Embedix GPL Compliance Toolset is an Embedix SDK or
Embedix SDK for Windows add-on product available to all SDK
users for an additional fee. It is comprised of a collection of tools
that, once installed, help you analyze your project packages for
license compliance.

For information on purchasing this product, refer to the Lineo Web
site http://www.lineo.com.

Graphical Remote Process Analyzer
Graphical Remote Process Analyzer in an Embedix SDK or Embedix
SDK for Windows add-on product. It provides a tool named LTOP,
which is a monitor that displays the status of the processes currently
in existence. It is much like the Linux utilities top or ps, but with a
graphical user interface.

LTOP can be used to monitor either the host system or a target
system running the ltop_target client software. The graphical
user interface uses the Qt toolkit.

For information on purchasing this product, refer to the Lineo Web
site http://www.lineo.com.

Helper Utilities
The helper utilities are utilities that are available to Embedix SDK or
Embedix SDK for Windows users that are external to Embedix Target
Wizard. The correlating chapter in this book contains information
on Building, Privileges, and Deployment, and includes a copy of a
collection of related man pages.

For more information, see “Debugging Using GDB and DDD” on
page 95.
chapter 1: Introduction to SDK Tools 3

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Helper Utilities
4 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002
C H A P T E R 2 Packaging with Package Editor
Embedix® Target Wizard allows you to place custom applications
and configuration files on your target. One method of doing this is
to “package” the application or files and then add the package to your
Target Wizard project. This allows you to configure and build your
package along with the Embedix SDK packages.

 In Embedix SDK 2.4 (or higher) or Embedix SDK for Windows 2.4
(or higher), Package Editor, a tool with a graphical user interface,
makes packaging simple. It fulfills two purposes:

! It makes modifying pre-existing packages easy.
To easily tweak existing packages until they work for a new
architecture, a newer version of a package's source code, etc.

! It facilitates the creation of new packages.
To reduce or eliminate the need to understand LBC and ECD
files and to know the directory structure of projects, as is
required when creating a package by hand.

Although creating a new package is briefly explained in “Overview to
Creating a Package” on page 12, the primary focus of this document
is to demonstrate how to create an Embedix SDK package from pre-
existing source using the Package Editor.

This chapter provides information and instruction on:

“What is an Embedix Package?” on page 6
“Starting Package Editor” on page 7
“Exploring the Interface” on page 9
“Overview to Creating a Package” on page 12
“Downloading the Source” on page 25
“Unpacking the Source” on page 25
“Modifying LBC Sections” on page 26
chapter 2: Packaging with Package Editor 5

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

What is an Embedix Package?
“Modifying ECD Files” on page 37
“Modifying Source Files” on page 51
“Building the Binary Image” on page 54
“Installing the Package” on page 56
“Distributing Packages as LPF Files” on page 57
“Using the Embedix Tool Chains” on page 58

Note: We expect most users will appreciate the automation
that Package Editor offers, but recommend that you read
“Manual Method of Packaging” on page 125 at least once for
an overview on how to create a package on your own. This
should help you better understand the underlying Package
Editor functionality.

What is an Embedix Package?
An Embedix package consists of at least three files:

! An LBC (Lineo Build Control) file containing the build control
instructions for a package

! An ECD (Embedix Component Description) file containing
information relevant to Target Wizard

! A source file (which could be a tarfile, SRPM file, or CVS
directory) containing the source code and spec file of the package

Note: A package is permitted to have one or more patch
files that will be applied after the SRPM or tarfile has been
unpacked and prepared. These patches are activated by the
presence of the %patches section in the LBC file.

Package Editor was designed to allow you to configure individual
applications in its interface. It provides summaries (such as
inheritances and dependencies) of your project’s LBC, ECD, and
source file entries.
6 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Starting Package Editor
Starting Package Editor
In this product, Package Editor can be invoked from either the Target
Wizard menu bar or the command line—your choice.

From the Menu Bar

In the SDK version 2.4 for Windows or Linux, the option to invoke
Package Editor from Target Wizard appears in the Tools menu. You
may also invoke Package Editor on a package by right-clicking on a
component node in the Target Wizard tree view and choosing
Package Editor from the context-sensitive menu.

To invoke Package Editor from the menu bar, choose Tools > Package
Editor. To open a specific package in Package Editor, choose Tools >
Package Editor > File > Open Package and choose an SDK package
from the drop-down list (which contains all of the packages available
in the Target Wizard project you have opened).

From the Command Line

When Package Editor is installed on a linux machine, a file called
packager is place in /usr/local/bin. This file is a wrapper and is
marked as executable so for most linux machines, simply entering
packager on the command line will start Package Editor.
Whenever Package Editor is started, it needs to have a project that it
will be working in. This must be specified on the command line with
the -d option. For example, in order to run Package Editor on an 8260
project, you would pass the project's directory on the command line,
like this:

packager -d /home/<username><username><username><username>/project/8260

Package Editor will always record the last project that was used so the
next time you start it, you need not specify the project again unless
you want to change it. In addition, you may optionally specify the
package to work with on the command line by using the -p option.

Once Package Editor is up, you may also select it graphically. The
name passed with the -p option should be the name of the ecd for
that package. Usually this is just the name of the package itself (as it
appears in Target Wizard). For example, to work on the bash
chapter 2: Packaging with Package Editor 7

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Starting Package Editor
package, you would invoke Package Editor in a manner similar to the
following example:

packager -d /home/<username><username><username><username>/project/8260 -p
bash

As with the project, Package Editor remembers the last package that
was opened and opens it automatically each time Package Editor
runs unless the package is overriden on the command line.

When using one or more command-line options, use the following
syntax:

packager [-d <project directoryproject directoryproject directoryproject directory>] [-p <package namepackage namepackage namepackage name>]

Tip: You can view the usage for Package Editor by giving a -
h or --help option on the command line.

For a list of command-line options, see the following table.

Table 2-1. Packager Command-line Options

Option Description

-d <project directoryproject directoryproject directoryproject directory> This is the project directory that you would like to use. If you do not
specify this then the packager will look at your current working
directory to see if you are in a project tree. If so, it will use that project's
directory. If you are not in a project tree then it will use the last project
that you opened with Package Editor. If all of these methods fail then
the packager will show this information and quit.

-p <package namepackage namepackage namepackage name> This specifies the package to work on. If it is not specified then the
packager will open the last package that you used in the determined
project. If there was no last package open for the project then it will start
with no package open.

--ip <ip addressip addressip addressip address> If Package Editor is started from windows, the ip address of the
vmware/linux session must be given so that it can connect for building
packages. This may be a dotted quad like 172.27.170.5 or a host name
like cbuild.eng.lineo.com
8 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Exploring the Interface
Exploring the Interface
If Package Editor is started with no package selected, then all of the
widgets are disabled.

If you specify a package on the command line or open a package
within Package Editor, then the package information will be
displayed and the widgets will be enabled, such as in Figure 2-1.

--drives <home home home home
drivedrivedrivedrive>:<opt/Embedix opt/Embedix opt/Embedix opt/Embedix
drivedrivedrivedrive>

 If Package Editor is started from windows, the names of the two drives
that are samba mounted need to be passed in. The first drive is the
samba mount that corresponds to /home/vkit and the second
corresponds to opt/Embedix. Normally this should look like:
 --drives p:q

Table 2-1. Packager Command-line Options

Option Description
chapter 2: Packaging with Package Editor 9

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Exploring the Interface
Figure 2-1

The Package Editor interface has four key areas:

Menus
Short Cut Icons
Tabs
Log Window

Notice that the active tab (such as LBC File in Figure 2-1) consumes
the bulk of the screen real estate.
10 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Exploring the Interface
Menus

The menu bar contains the menus listed in the following table.

Shortcut Icons

Several shortcut icons have been included for your convenience.

Table 2-2. Package Editor Menus

Menu Description

File File options, like “New”

Settings Preference options, like “Editor”

Build Build options

LBC LBC File options

ECD ECD File options

Source Source options

Help Standard help options

Table 2-3. Shortcut Icons

Icon Description

Saves the LBC file

Re-opens the LBC file

Saves the ECD file

Re-opens the ECD file

Copies the opened file

Stops the current operation
chapter 2: Packaging with Package Editor 11

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Overview to Creating a Package
Tabs

The tabs on the main interface are LBC File, ECD File, and Source.
These provide text-entry areas for the properties and settings of three
types of package files: LBC, ECD, and Source.

For information on the fields on these tabs, see the following
sections:

“LBC File Tab” on page 27
“ECD File Tab” on page 38
“Source Tab” on page 51

Log Window

The Log Window provides a display area for build activity messages
and error messages.

Overview to Creating a Package
Before explaining all of the advanced features available in the
packager, we'll present two brief tutorials on automatic packaging.
The package editor is intended to be used for two main purposes.

The first is to make an easy task out of modifying an existing
packages. If a developer creates a BSP (Board Support Package) for
the SDK, then he might need to make changes to packages for the
new architecture. The package editor makes it easy to tweak existing
packages until they work for a new architecture, a newer version of a
package's source code, etc.

The second purpose of the package editor is to facilitate the creation
of new packages (automatic packaging). The best way to leverage the
toolchains available in the Embedix SDK is by creating an SDK
package from existing source code. Creating a package by hand is
not an easy task. It requires an understanding of LBC and ECD files
and it requires a developer to have knowledge of the directory
structure of projects. The package editor solves the problem by
reducing and in some cases eliminating the need to learn about all
of these things.
12 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Overview to Creating a Package
As an example of how easy creating a package can be, you are
presented a tutorial for the classic “hello world” example. Note that
while Package Editor does eliminate tedious work required to create
LBC and ECD files, we recommend that you look at the sections
describing these files for a basic understanding of what they do and
how they work.

Here are the general packaging steps (with cross-references to the
relevant documentation) and a tutorial.

General Packaging Steps

1. Prepare:

“Downloading the Source” on page 25
“Unpacking the Source” on page 25

2. Configure:

“Modifying LBC Sections” on page 26
“Modifying ECD Files” on page 37
“Modifying Source Files” on page 51

3. Make:

“Building the Binary Image” on page 54

4. Install:

“Installing the Package” on page 56
“Distributing Packages as LPF Files” on page 57

Tutorial: Creating a New Package

Normally when a developer wants to get an application working on
an embedded system, he first develops it on his own workstation
(usually an x86 machine) until it is working, and then ports it by
building it with the target toolchain. We will follow this model in
creating a package from scratch.

Here is a “Hello World” example. Note that even though the package
does eliminate tedious work required to create LBC and ECD files,
we recommend you review to section “Manual Method of Packaging”
chapter 2: Packaging with Package Editor 13

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Overview to Creating a Package
on page 125 for a basic understanding of purpose of these files and
how they work.

Normally when a developer wants to get an application working on
an embedded system, the developer first develops it on his or her
own workstation (usually an x86 machine) until it is working, and
then ports it by building it with the target toolchain. For practice,
follow this same model in creating a package from scratch.

Exercise: Create a �Hello World� Package

1. Create a directory somewhere on your machine and call it hello-
1.0. (There's nothing magic about the name here, it just needs to
be in it's own directory.)

2. In that directory, create a text file called hello.c and place the
following content in it.

#include <stdio.h>

int main(void)

{

 printf("hello world\n");

 return 0;

}

3. Create a makefile for your hello world program. For Package
Editor to automatically create a package from source, the
makefile must have three key features.

" The makefile must build the program when called simply
with “make.” This is the normal convention for makefiles.

" The makefile must have a clean target. That is, you should be
able to do a “make clean” and it will clean out the directory
of all built files (like .o's and programs) Again, this is normal.

" The makefile must have an install target and
it must support a prefix argument. You should be able to type
make install and have the program install on the target
machine. You should be able to enter:
 make install prefix=/tmp
to have it install using the tmp directory as the root. (This
concept is illustrated in the following example.)
14 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Overview to Creating a Package
Here is a makefile that contains two out of three key features. It
has a normal install target, but does not support a prefix
argument.

hello: hello.c Makefile

 gcc $(OPT_FLAGS) hello.c -o hello

clean:

 rm hello

install: hello

 install -d /usr/bin

 install hello /usr/bin

This makefile will do three things:

" Build the program if called with no arguments.

" Clean the directory of binaries if called with clean.

" Copy the program into the filesystem if called with install.

Here is the same makefile with the prefix option added.

prefix=/

hello: hello.c Makefile

 gcc $(OPT_FLAGS) hello.c -o hello

clean:

 rm hello

install: hello

 install -d $(prefix)/usr/bin

 install hello $(prefix)/usr/bin

If you do a “make install,” at this point, then the prefix will be set
to / and hello will be installed into a normal place. But if you do
a “make install prefix=/tmp,” then hello will be installed into /
tmp/usr/bin. Making this type of a modification to a makefile is
usually a very simple procedure.

4. Now that you have the source file and the makefile, try testing a
build, install, and clean by hand. If everything works then you're
ready to turn it into a package.

5. Create a package using Package Editor.
chapter 2: Packaging with Package Editor 15

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Overview to Creating a Package
5a. Start Package Editor by invoking it from the command line
or selecting it in the File menu of Target Wizard.

5b. From the Package Editor’s File menu, choose Import Source
as Package. A text entry box appears prompting you for the
name of the package and the location of the source code.

Figure 2-2. Import Source as Package

5c. Enter a package name and a source location (as in
Figure 2-2) and then click OK.

Package Name: The name should not include spaces and
should be all lower case letters.

Source Location: For the source location, enter the directory
path to where the source files reside. You can click on the
Browse button to look through your filesystem.

If no error message appears after a few seconds, then a
Target Wizard package has been created. Click on the LBC,
ECD, and Source tabs to view the files created for this
package.

In order to actually see the source files, from the Source
menu, choose Prepare Source for Work and then view the
source directory layout in the source tab. (For a detailed
explanation of each of these tabs and their functions, refer to
the tab-specific modification instructions later in this
chapter.
16 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Overview to Creating a Package
6. Do a test build in Target Wizard.

To do this, complete the following steps or refer to “Building the
Binary Image” on page 54, which describes how to do a test build
from within Package Editor.

6a. From the Target Wizard menu bar, choose Project > Open
Recent. At the top of the list is the project that is currently
opened.

6b. Select the current project to have Target Wizard reload all of
it's data. This operation may take up to a minute, so Target
Wizard is not really frozen, even though it might not respond
for a little while. When Target Wizard is finished reloading
the project, a new main node should appear.

6c. Expand the main node to see the hello world package that
was just created (such as Figure 2-3).

6d. Enable the nodes and then right-click on the hello node and
select it to do a Forced Rebuild. Because this is a very small
program it should build quite fast. You can view the output
of the build by clicking the Log tab in the bottom portion of
Target Wizard.

If everything went well and there were no errors, then the hello
world program has just been built with the toolchains for the
project (which was 8260 in the case of our sample project in
Figure 2-3 on page 18). You can now deploy to a target and the
hello program will be placed in /usr/bin (because that is where
the make install placed it using some prefix magic).
chapter 2: Packaging with Package Editor 17

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Overview to Creating a Package
Figure 2-3. Target Wizard Project

Congratulations. You have just created an Embedix SDK package
that can be used for any toolchain or project. Creating packages this
way allows developers to leverage the toolchains available in the
SDK. Not all packages will be created quite so easily, but this is a
good start.

If you encountered problems when Target Wizard tried to build the
package or if you want multiple options for a program, then use
Package Editor to fine tune the package until everything works fine.

This concludes the Hello World tutorial, which was focused on
creating a new package. The above tutorial is most useful for
applications designed in-house for a specific architecture or board.

The next tutorial will focus on using the package editor to create a
package for an application from an external source. This can apply
to packages created from Package Editor, like “hello” from the
example, or pre-existing packages (like ash or flex).
18 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Overview to Creating a Package
Tutorial: Creating a Package for an Application from an External
Source (like Open Source Applications)

While the abilitiy to create a new package is desirable and usually
necessary, more often than not in Linux system development, you
will obtain a piece of software from the open-source community to
include on your board. Fortunately, because of the configuration
mechanisms found in most open-source software, this is not a
difficult task.

Exercise: Convert �Gnu Make� into an Embedix Package

The following is an example of how to convert GNU Make (a popular
Linux development tool) into an Embedix SDK package for use in
embedded systems.

1. “Grab” the source. You can obtain make-3.79.tar.gz from a
mirror of GNU's software FTP site.

2. Because Package Editor expects to import a source tree, you can
simply untar the make source tarball in your home directory by
using the following command:

tar zxf make-3.79.tar.gz

 A directory named make-3.79 is created in your home directory.

3. Start Package Editor, giving it the appropriate path to the desired
project directory:

packager -d /home/<username>/project/mips

4. From the File menu, choose Import Source as Package.

5. In the dialog box that appears, enter make for the name, enter
the path to the source directory (for example, /home/
<username>/make-3.79), and then click OK. A minimal package
is created for make.

6. Because most open source software supports make, make
clean, and make install prefix=<directorydirectorydirectorydirectory>, no
changes to the source are needed to get make to compile. To test
this, from the Build menu, choose Force Complete Rebuild. The
package should build without error. If, for some reason, there is
chapter 2: Packaging with Package Editor 19

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Overview to Creating a Package
an error, it is displayed in the log window at the bottom of the
screen. If make successfully built, then a tarball of the resulting
binaries has been automatically created.

7. To ensure that the correct files from the tarball you built are put
on the target when deployed, edit the keeplist.

7a. Select the ECD File tab.

7b. In the tree view, right-click on the node titled ''Include
make?''.

7c. From the context-sensitive menu, choose Create Keeplist.
This brings up a dialog with a list of files. These are the files
that were built for this package.

7d. To allow the users of this package to install just make and not
any documentation, in the list, select /bin/make.

7e. Add nodes for including the man page and the info pages as
well: (1) Right-click on the make node and choose “Add a
child to this node.” You will be prompted for the name of the
node. (2) Enter ''include_make_man'' and then click OK.
(3) In the prompt field for this node, enter “Include man
page?” (4) Edit the keeplist for this node as you did for the
other node, but this time select only the file “/man/man.1/
make.1.” (5) Add another node to the “Make” node and
name it “include_make_info.” (6) Enter “Include info
pages?” as the prompt and select all of the info files for the
keeplist.

You now have a working ecd file, but the size information is
inaccurate. If you click on the Size tab for the ecd nodes, you'll
see that everything is set to 0.

8. To have Package Editor automatically compute the true size,
right-click on each of the three leaf nodes (the only nodes that
include a keeplist) and then choose “Compute Size Information
from Keeplist.” After selecting that option for each node,
Package Editor calculates the size and fills in those fields.

9. Run ldd on the “make” on your system. You will find that
“make” needs “libutil.so.1” to run.
20 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Overview to Creating a Package
10. Ensure that “libutil.so.1” ends up on the target along with
“make” or make won't run:

10a.In the tree view of the ECD File tab, select the “Include
make?” node.

10b.With the Node subtab selected, from the Attributes radio
button list, choose requires. The word “requires” now
appears over the large text-entry box on the right.

10c.In the “requires” text-entry box, type: libutil.so.1
This indicates that make needs that file to work correctly.
Now this dependency will show up in Target Wizard.

At this point everything required is done.

11. (Optional) Add descriptions to the help fields of the nodes:

11a.In the tree view, select a node.

11b.With the Node subtab selected, from the Attributes radio
button list, choose help. The word “help” now appears over
the large text-entry box on the right.

11c.In the “help” text-entry box, type the help content that you
want displayed for the selected node.

12. Save all of the files and open this project again in Target Wizard.
Make should show up in the ECD tree and you should be able to
select it and deploy it to the target.

Tutorial: Creating Binary Packages to Use in Target Wizard

There may be times when you have a pre-built binary package that
you would like to include in the target. The process of creating a
package for this binary is simple using the Package Editor. The steps
required are as follows:

1. Create a directory containing the binary and all needed files for
it to work correctly.

2. Import the source as a package using the Package Editor.

3. Modify the “Make Build” and “Make Install” sections of the lbc
tab.
chapter 2: Packaging with Package Editor 21

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Overview to Creating a Package
4. Modify the keeplist in the ecd tab.

No build step is required. Once you have done these four steps, you
have a working package for the architecture that the binary was built
for. Of course, you'll need a different binary for each architecture, so
this type of package won't be as portable as a source package. But in
many cases where only one architecture is needed, this works well.

Below is a step by step detailed description of how to create a “hello
world” binary package.

Exercise: Create a Binary Hello World

1. Create a file called hello.c with the following as its contents:

#include <stdio.h>

main()

{

printf("Hello World!\n");

}

2. Compile the executable statically to have no library
dependencies. To compile it statically, execute the command:

gcc hello.c -o hello --static

Of course this creates a binary for an x86 architecture so if you
would like to build an executable for a different architecture you
will need to use the appropriate cross-compiler.

The Embedix SDK provides cross-compiler stationary for use
with the CodeWarrior IDE that makes this a simple process.

3. Once the executable is created, create a directory to house the
contents of everything needed. For this hello world app, no
additional files are needed, so just create a directory and put it in
there.

mkdir /tmp/hello

cp hello /tmp/hello

4. Create the package:

4a. Start the Package Editor.
22 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Overview to Creating a Package
4b. From the File menu, choose “Import source as a package”.

4c. For the name, enter hello (or, enter a one or two word name
of the package substituting underscores for spaces). It’s best
to use one word when possible.

4d. For the source location enter /tmp/hello. The Package
Editor now creates a minimal lbc file and ecd file, and then
“tars up” the contents of /tmp/hello. (At this point the /tmp/
hello directory can be removed because it is no longer
needed.)

5. Modify some lbc entries.

Package Editor makes assumptions about the existence of a
makefile. In this case there is no makefile. First, change the
entry in the “Make Build” section of the lbc tab by changing it
from “make” to something like “echo "nothing to
build"”. This is required because the “Make Build” needs to
have something in it. There is no makefile, so we just insert a
dummy command.

6. Do the same thing for the “Make Clean” section. In that section
just enter something like “echo "nothing to clean"”.

7. The only section that needs real content in it is the “Make Install”
section. In this section enter in the commands needed to place
the binary and supporting files into the correct location in the
target filesystem. As with the other packages, the “Make Install”
section of this package will need to reference the
$BUILD_ROOT variable as the virtual root of the target
filesystem. This means that if we want to executable hello to end
up in /usr/bin then we need to execute the command:

cp hello $BUILD_ROOT/usr/bin

instead of

cp hello /usr/bin

As with normal makefile installs, we need to also create all the
directories before we use them.
chapter 2: Packaging with Package Editor 23

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Overview to Creating a Package
Use the install command because it allows the user to specify the
mode, owner, and group of a file or directory as it is created. Our
“Make Install” section now look like this:

install -d -m 755 -o root -g root $BUILD_ROOT/usr/bin

install -m 755 -o root -g root hello $BUILD_ROOT/usr/bin

8. Click the lbc disk button to save the LBC file after making these
modifications.

9. Now that we have modified the “Make Build”, “Make Clean”, and
“Make Install” sections of the lbc, we can practice building by
selecting “Force Complete Rebuild” from the “Build” menu. Of
course no actual building will take place, but the different
sections of the lbc will be executed and the binary file will be put
in the proper location to be deployed to the target. If there are
any problems or errors during the build, check them and modify
the “Make Install” section as needed.

10. Once you are able to complete the build successfully, click on the
“ECD File” tab. This will show the ecd tree for this package. You
will want to modify the keeplist for the Include node. In my tree,
the last node is labeled “Include hello?”. If you right-click on the
node and select “Create Keeplist” a dialog box will be brought up
listing all of the files that were "installed" in the “Make Install”
section of the lbc. Select the files that you want to be installed
onto the system in this dialog and then close it.

11. If you would like to calculate the file sizes so that they are
accurately represented in Target Wizard, then right-click on this
same node and select, “Compute Size Information from
Keeplist”. Make sure that you save the ecd file after making the
above modifications.

12. You can now re-open the current project in Target Wizard and
the package that you created will appear under the “User
Applications” node of the ecd tree. You can then enable or
disable this package and Target Wizard will treat it just like any
other package. As with source packages, you can modify the ecd
of this package in any way you choose. More detailed
information about lbc and ecd files are described elsewhere in
this documents.
24 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Downloading the Source
Downloading the Source
When you intend to create a package from open source, you may
need to download the source tarball from an FTP site or other Web
site.

Unpacking the Source
You need to unpack (untar) the source code before doing any work
on a package.

1. Untar the downloaded tarball into a directory and select “Import
source as a package.”

A dialog box appears prompting for the name of the package and
the location of the source code (like the sample shown in
Figure 2-4).

Figure 2-4. Import Source as Package

2. Use the dialog box to enter or browse to the source directory
location.

The name should not include spaces and should be all lower case
letters.

3. Click OK.

If no error message appears, then a Target Wizard package
should be created.
chapter 2: Packaging with Package Editor 25

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying LBC Sections
You can now click on the LBC, ECD, and Source tabs to view the
files created for this package. In order to actually see the source
files, however, you'll need to choose Prepare Source for Work
from the Source menu. Then you should see the source directory
layout in the source tab.

You can now begin making modifications to the LBC file (which
controls how the package is built). For more information, see
“Modifying LBC Sections” on page 26.

Modifying LBC Sections
Once you have unpacked the source, you can begin making
modifications to the package’s LBC file, which controls how the
package is built from start to finish. The related topics are:

“What is an LBC?” on page 26
“LBC File Tab” on page 27
“LBC File Sections” on page 30
“LBC File Inheritance” on page 32
“Build Variables in LBC Files” on page 33

Note: When you have finished modifying an LBC file, from
the Package Editor menu bar, choose LBC > Save LBC.

Tip: Modifying the LBC sections for a package and test-
building the package go hand in hand. Whenever an LBC
section is modified, you should test build the package to
make sure that the changes had the desired affect. For build
instructions, see “Building the Binary Image” on page 54.

What is an LBC?

LBC stands for “Lineo Build Control.” An LBC file contains build
instructions for a package.
26 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying LBC Sections
A package may get build instructions from four different sources—
built-in defaults (in a file called builder.pm), a generic LBC file, a
board-specific LBC file, or a local LBC file, with preference being
given to the entries in the local LBC file. (This is discussed in detail
in the section “LBC File Inheritance” on page 32.)

LBC File Tab

The LBC File tab is one of three main tabs in Package Editor interface
and is the tab displayed by default when you start Package Editor.

When you view LBC file settings from this tab, you are actually
viewing the aggregate LBC—the merged version of all applicable
LBC file sections from four files. But when you edit LBC file sections
here, you are essentially editing the local LBC file for a package.
chapter 2: Packaging with Package Editor 27

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying LBC Sections
Figure 2-5. LBC File Tab

The LBC File tab can be divided into three areas: color codes, four
fields with small text-entry boxes, and a list of fields list (radio
buttons) with a large text-entry box.

Fields

The four small text-entry boxes near the top of the LBC File tab are
for LBC sections that are normally only one line long: Package File,
Build Directory, Name, Compile Flags, and Configuration Options.

The radio buttons on the left side represent multi-line LBC sections
that are allowed in an LBC file (such as Patches, Spec Filename, and
Binary). When a radio button is selected, the contents of the
corresponding LBC section is displayed in the large text-entry box on
the right.
28 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying LBC Sections
Color Coding

At the top of the LBC File tab is a color code that lists the four
possible sources of an LBC section (or field) on this tab and their
corresponding colors. The name of each field is colored red, blue,
green, or bold black. This color code applies to the one -line fields
(like Package File) and the multi-line fields (like Patches).

! Red = Built In: Coming from values that have default entries in
the builder (which are displayed in the text-entry box). Most of
these fields will be empty. But a few, like Make Configure and
Make Build, do have built-in values for the builder.

! Blue = Generic: Coming from the LBC in the generic directory.
These are fields that apply to the package for every project and
board.

! Green = Board: Coming from the LBC in the board directory.
These are sections that have been changed or added to from the
generic LBC to get the package to build properly for the specific
BSP that your project is.

! Bold Black = Local: Coming from this project’s LBC file. These
fields do not apply to the package in any other project or BSP.

With color coding you can see all of the LBC settings that the builder
will access when it attempts to build the package. All modifications
made by the user are placed in the local LBC file. (For related
information, see “LBC File Inheritance” on page 32.)

If you modify a field on this tab, the heading will immediately turn
bold black, indicating that this modification will go into the local
LBC file. To revert to the value in the board, generic, or built-in LBC,
simply erase the contents of the text-entry box; the wizard will fill in
the old value automatically.

Note that when the LBC is changed, an asterisk appears next to the
name on the tab. This indicates that changes have been made that
have not been saved. When you save the LBC, the asterisk will
disappear. In addition, if you attempt to close the project or reload
the LBC, you will be asked if you would like to save the LBC before
doing so.
chapter 2: Packaging with Package Editor 29

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying LBC Sections
LBC File Sections

The different sections of an LBC file specify to the builder how to
complete a phase of building the package. Here is a complete list of
all the fields available in an LBC and how they are used.

Table 2-4. LBC File Section Descriptions

LBC File Section See also Description

Package File “%pkg_file” on
page 130

This is the name of the original source file.
Usually this will be a tarball of some kind.

Build Directory Name “%bld_dir_name” on
page 131

This is the build directory for the source.
Usually a tarball untars into a directory (for
instance, untarring bash-1.2.tgz will create the
directory bash-1.2) You can have the packager
make an educated guess as to what the build
directory is by choosing Determine Build
Directory, which is found on the LBC menu.

Compile Flags “%cflags” on page 131 These are the CFLAGS that will be applied to
the package when building.

Configuration Options “%cfgopts” on page 131 Extra options to be used in the configuration
stage (not normally used).

Patches “%patches” on
page 130

The name of any patches that need to be
applied to the source after untarring it. These
are applied in the order that they appear in this
section.

Spec Filename “%spec” on page 131 For SRPMs, this is the name of the spec file to
be used for building (not normally used).

Binary “%bin” on page 131 Used only for the kernel, this is the name of
the binary that is produced.

Build Target “%bld_targ” on
page 131

Used only for the kernel, this is the specific
name of the make target required to build the
linux kernel.
30 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying LBC Sections
Make Configure “%makec” on page 133 This contains the instructions to configure the
package. Equivalent of runnning
./configure on most open source packages.
In fact, most packages have ./configure with
some options for this step.

Make Re-Configure “%makerc” on
page 134

This contains the instructions to re-configure
a package if it has already been configured and
some of the options change.

Make Build “%makeb” on page 134 This contains the instructions to actually build
the package. This is the equivalent of
executing make on the package. For most
packages this will include the command make
and maybe a few other modifications.

Make Install “%makei” on page 134 This contains the instructions to install the
package. When the builder runs this section,
the package should not install onto the host
system, but into a temporary staging area. The
path to this staging area is contained in the
environment variable $BUILD_ROOT. For a
lot of packages, this step looks like:
make install prefix=$BUILD_ROOT

Make Stage Components “%makest” on page 135 This contains instructions to build
components that are needed to build the
package but that do not need to be installed.
This could be used if you need to build library
to build the package, but the library doesn't
need to be on the target machine at run time.

Make Clean “%makedc” on
page 135

This contains the instructions to clean the
source build directory. Usually this consists of
make clean or something similar.

Table 2-4. LBC File Section Descriptions

LBC File Section See also Description
chapter 2: Packaging with Package Editor 31

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying LBC Sections
LBC File Inheritance

Default build instructions are contained in the builder.pm file and
should not be modifed. They can, however, be overridden with LBC
file entries. LBC files can exist in three directories of a project:

<project>/config-data/buildcontrol/generic
<project>/config-data/buildcontrol/board
<project>/config-data/buildcontrol/local

These directories have an inheritance mechanism built in that allows
a package to be customized easily for a specific board or even project.

The generic directory contains package-dependent LBC files and
sections that are valid for any board or project.

The board directory contains architecture-dependent LBC files and
sections that override above behaviors and fix very specific
architecure build problems.

The local directory contains local project development LBC files and
sections that override any of the above sections. Personal software
development should be specified in this section.

Sections in LBC files from each of these locations are merged, giving
priority first to local, then to board, and then generic. For this
reason, end-user LBC files should reside in the local directory.

Example:

The following example shows the masking behavior for a project that
has LBC files with section entries in the four locations described. In
this example, the sections included in each LBC file are represented
with letters.

A = Make Project (%makep)
B = Make Configure (%makec)
C = Make Build (%makeb)
D = Make Install (%makei)
E = Make Clean (%makedc)
32 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying LBC Sections
Location LBC File Sections

builder.pm A B C D E

generic A - - D E

board - - C - E

local A - - - -

 | | | | E from board/<pkgname>.lbc

 | | | D from generic/<pkgname>.lbc

 | | C from board/<pkgname>.lbc

 | B from Builder.pm (SDK default)

 A from local/<pkgname>.lbc

The point of this example is to demonstrate that each of the files can
have identical sections, but the behavior is dependant on a specific
hierarchy. If you want to override a certain section, then you only
need to include that section (plus the only required section, %pkg_file
or Package File) in the LBC file. In other words, you do not need a
complete LBC file in order to override one section.

Build Variables in LBC Files

When a package is built using Target Wizard, Target Wizard places
in the environment a number of useful variables. These can be used
in different sections of the LBC to customize your builds.

For example, the variable $BUILD_ROOT is almost always used in
the Make Install section of an LBC file in the following way:

make install prefix=$BUILD_ROOT

Comprehensive List of Variables

Here are the available build variables and their default settings
(where applicable):

! PATH - /opt/Embedix/tools/bin:/opt/Embedix/bin/opt/
Embedix usr/bin:/opt/Embedix/usr/local/bin

! HOST_PREFIX - i386-linux needed by some packages (e.g flex)
chapter 2: Packaging with Package Editor 33

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying LBC Sections
! TWTOOLS_NATIVEPREFIXED_PATH - /opt/Embedix/tools/
native-linux/bin:$PATH This is used in cross compiler aware
packages, when the CC variable needs to reference the host (x86)
compiler (see glibc.lbc).

! TWTOOLS_TARGETPREFIXED_PATH - /opt/Embedix/tools/
<cross>/bin/$PATH This is used when the CC variable needs to
reference the cross compiler (e.g spoofed).

! NATIVE_PREFIX - native-linux This can be used in lbc files to
force a compiler symbol refer to the host (x86) compiler (e.g.
modutils sets HOSTCC=$NATIVE_PREFIX-gcc).

! INCLUDE_PATH_DEFAULT - <dev_image>/usr
include:<dev_image>/usr/local
include:<:$TC_GCC_INCLUDE_PATH This is used by the
native-linux/bin/tw_wrapper spoofing script.

! LIBRARY_PATH_DEFAULT - <dev_image>/usr/
lib:<dev_image>/usr/local/lib:<dev_image>/
lib:$TC_GCC_LIBRARY_PATH This is used by the native-
linux/bin/tw_wrapper spoofing script.

! LD_LIBRARY_PATH - This parameter is deliberately cleared.

! TC_SIZE_SHORT, TC_SIZE_INT, TC_SIZE_LONG,
TC_SIZE_FLOAT, TC_SIZE_DOUBLE - These parameters are
used by the toolchains. Their values are set in /opt/Embedix/
tools/<arch>.tcconfig.

! SOURCE_DIR - <project>/build/rpmdir/SOURCES

! BUILD_DIR - <project>/build/rpmdir/BUILD

! OPT_FLAGS - This variable takes on the value of %cflags set in
bsp_config. This may be overidden in the package lbc file.

! ARCH - This variable takes on the value of %arch set in the
bsp_config file.

! BUILD_ROOT - <project>/tmp/<package> This variable names
the transient path used to stage the root directory for the install
phase of building.
34 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying LBC Sections
! PACKAGE_NAME - This variable holds the current package
name.

! CFG_OPTS - This options can be used to pass extra options to
the configure stage.

! DEV_IMAGE - <project>/build/dev_image This variable point
to the location where packages install files needed by other
packages. For instance, glibc installs it's header files here.

! CROSS - This variable is set to the value of the token %cross in
the bsp_config file (e.g powerpc-linux).

! BUILD_TARG - This variable reflects the value of %bld_targ in
the bsp_config file.

! BINOUT - This variable reflects the value of %bin in the lbc file.

! RPMDIR - <project>/build/rpmdir

! LINUX_HDR_DIR - This variable points to the location of the
linux header files.

! TARDIR - <project>/build/tarfiles The final output of a complete
build for a package is a tarfile, this file is place in this directory
under the name $TARDIR/<package_name>.tar.gz.

! PKG - This variable holds the current package name (same as
PACKAGE_NAME).

! CVSROOT - This is for packages that get there source from cvs.
This variable specifies the cvsroot.

Using Common Variables

To view or use a list of commonly used build variables for any multi-
lined LBC section (or field):

1. On the left side of the LBC tab, choose the appropriate radio
button. The contents of the corresponding LBC section appear in
the large text-entry box on the right.

2. Place the cursor in the large text-entry box where you would like
to insert a variable.
chapter 2: Packaging with Package Editor 35

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying LBC Sections
3. Right-click and then choose Build Variables from the context-
sensitive menu . A list of build variables appears.

4. Select a build variable to insert it at the location of the cursor.

Figure 2-6. Build Variables

In addition to built-in build variables, it is possible to use ECD
buildvars in LBC files. This allows a package to be built differently
depending on the ECD options that are enabled or disabled for that
package in Target Wizard. For information on creating BuildVars in
ECD files, see the ECD section of this document.

To use an ECD BuildVar in an LBC section:

1. Select the desired section from the radio button group.

2. Place the cursor in the desired location in the text box and right-
click.

3. From the right-click menu, select custom buildvars. A list of all
buildvars available from the ECD appear.
36 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying ECD Files
4. Select the buildvar that you want to insert and it will be placed at
the location of the cursor.

It's important to note that there is nothing magical about the way
that Package Editor inserts the variable names. You could type a
variable in (such as $BUILD_ROOT) and get the same result as
when you select it from the menu. The menus are there for your
convenience to help you avoid some typing or having to look up valid
variables.

Modifying ECD Files

Tip: If you have modified your LBC file, be sure to test your
changes by doing a test-build before proceeding. For build
instructions, see “Building the Binary Image” on page 54.

ECDs are used to allow multiple configurations for an Embedix
package. After you get the package building correctly, you can modify
the ECD so that the user can select options for the package.

This section covers the following topics:

“What is an ECD?” on page 37
“ECD File Tab” on page 38

“ECD Nodes in the Tree View” on page 38
“ECD Node Properties in Subtabs” on page 40
“ECD Node Properties in Attributes List” on page 43

“Build Variables in ECD Files” on page 48

Note: When you have finished modifying an ECD file, from
the Package Editor menu bar, choose ECD > Save ECD.

What is an ECD?

ECD stands for Embedix Configuration Description. This is an XML-
like file that describes different configuration options for a package.
chapter 2: Packaging with Package Editor 37

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying ECD Files
This includes things like the help for a given node, the keeplist for
options, etc.

ECD File Tab

ECD files have many properties—all of which can be edited using
Package Editor and the ECD File tab.

Figure 2-7. ECD File Tab

The ECD File tab (as shown in Figure 2-7) can be divided into two
sections:

! ECD nodes (Tree View)

! ECD node properties (subtabs with small text-entry boxes and
the Attributes list with radio buttons and a large text-entry box)

ECD Nodes in the Tree View

On the left side of the tab is a tree view of all of the ECDs for the
current project. This is much like the tree view in Target Wizard,
38 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying ECD Files
except that there is no dependency checking and Package Editor
shows autovars (which are not visible in Target Wizard).

When you click on a node in the tree view, its information displays
under the subtabs and attribute fields on the right (where you can
modify the node's information as needed).

You can expand and collapse a portion of the tree by clicking on the
+ or - boxes next to nodes that have children.

Types of Nodes

In the tree view, each ECD node is listed as one of four main types:

! Group nodes are the top-level nodes. These correspond to
categories of packages. Group nodes can be nested and their
children are always component nodes or other group nodes.
The root node of every project is the Embedix group node.

! Component nodes describe packages. There is a one to one
correspondence between component nodes and packages in the
project. Enabling a component node enables a package and vice
versa. Component nodes can only have group nodes as their
parents and autovars and option nodes as their children.

! Option nodes describe package configuration options. These
include things like how to build the package, which files from
the package end up on the target, etc. Option nodes can have
option nodes as children and option nodes and component
nodes as parents.

! Autovar nodes act similar to option nodes in that they provide
configuration information to a package. The difference is that
the values of autovar nodes are calculated by Target Wizard, not
set by the user. Autovar nodes are the only nodes that do not
show up in the tree view in Target Wizard.

These node types are also discussed in “Why and How to Use ECD”
on page 44.
chapter 2: Packaging with Package Editor 39

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying ECD Files
Edit a Node

You can right-click on nodes in the tree view to perform certain
operations.

Add a child to this node - Creates a new empty node as the child
of the node that you right clicked on. You can then modify
the information for this child node.

Cut - Cuts the selected node (and all of its children) and places it
in the packager's internal clipboard for pasting later.

Copy - Makes a copy of the current node (and all of its children)
in the packager's internal clipboard for pasting later.

Paste - If there is a node in the clipboard, it pastes that node (and
children) as a child of the selected node.

Write ECD for this node to the log window - Writes the ECD
information for this node (and children) to the log window
for inspection.

Create Keeplist - Brings up a dialog box that allows easy keeplist
creation. This option will only work if the package has
already been built and a tarball exists for it.

Warning: If you copy a node or set of nodes and then paste
them somewhere else, you will need to rename them.
Otherwise you may have more than one node in the ECD
with the same name and Target Wizard will not function
correctly.

ECD Node Properties in Subtabs

On the upper-right side of the ECD File tab are the subtabs: Node,
Value, File, Size, and Time, which are collections of one-line project
properties for the node that is currently selected in the tree view. The
subtabs and their properties are outlined in the following tables.
40 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying ECD Files
Table 2-5. Node tab

Node tab Contains values that every node should have.

name Every node must have a name and that name must be unique to the entire project
tree. This name should not include spaces and by convention contains only lower
case letters and underscores.

prompt The text that appears for the node in the tree-view for Target Wizard. If this in not
set, then the name is used instead. This can contain any text desired and should
describe the node in a few words.

nodetype This specifies what type the current node is. The available types are group,
component, option, and autovar.

Table 2-6. Value tab

Value tab Describes the value for a node. If nothing is specified here for a node then it is assumed
that the node is a boolean (can be enabled and disabled) and is by default, disabled.

type Describes the value type for this node. The available types are:

int: Indicates that the value of the node is an integer. This allows the user to set
the value to an integer in Target Wizard.

int.oct: Indicates that the value of the node is an octal integer. Otherwise, same
as above.

int.hex: Same as above except that the value is in hexadecimal instead of decimal.

string: Indicates that the user can set the value of the node to a string.

bool: Indicates that the node has two states, on and off. By default, all nodes are
bools unless specified otherwise.

tristate: Special type used only for the kernel. Allows a node to be enabled,
disabled, or set to module.

default_value The initial value of the node. The node will keep this value until a user modifies it.

range Specifies the range if numbers that are allowed. Obviously this only applies to
integer types. Examples of entries for this field are 0:100 or 0x20:0x4f.
chapter 2: Packaging with Package Editor 41

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying ECD Files
value <Advanced use only>

Table 2-7. File tab

File tab Describes some file information associated with the node.

filename <Deprecated, but kept for backwards capability.> Users should not modify this.

srpm For packages that use SRPMs only.Indicates the name of the srpm to use.

specpatch For packages that use SRPMs only. Indicates the name of the patch to apply to the
specfile of the SRPM before building the package.

Table 2-8. Size tab

Size tab Contains size information. This information is used in Target Wizard to calculate the
needed storage and ram size for the target board.

storage_size The size, in bytes, needed to store the files that are included in this node. This
should only be set in nodes that have a keeplist.

static_size The static size of all executable files for the node. It indicates how much ram is
needed on the target to run the executables in this package.

min_
dynamic_size

The minimum amount of dynamic memory that the files in this node will need in
order to run.

transient Indicates if the program runs continually or just periodically on the target machine.
The value should be specified as 1 or 0. If transient = 1 then the RAM size values
are not aggregated into the sum that is used to check the target RAM requirements.

Table 2-6. Value tab
42 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying ECD Files
ECD Node Properties in Attributes List

The lower-right side of the ECD File tab contains the Attributes radio
buttons and a large text-entry box. Like the subtab fields, these
attributes are also properties of the node that is currently selected in
the tree view. But, because these fields are typically multi-line
entries, a larger text-entry box is provided.

Click on an attribute’s radio button to view its current setting in the
large text-entry box. The title over the text-entry box also indicates
which attribute (or ECD field) is being displayed.

The bolded items in the Attribute list are those that contain text. The
non-bold (or regular) items in the list are those that are empty.

Here are descriptions of each of the attributes or multi-line fields.

! help - The help that will be displayed in the description tab of
Target Wizard when this node is selected. This should include a
description of what the node is and when it should be enabled or
disabled.

! keeplist - Contains a list of files that will be placed on the
target machine if the node is enabled.

! provides - Contains a list of the services that the node
provides. This is used in dependency checking. Each line should
be one word.

Table 2-9. Time tab

Time tab Contains values for times associated with the files in the current node.

build_time If the package takes a large amount of time to build, a rough estimate of the time
needed to build the package may be given here. Time is measured in seconds.

startup_time If the executables for the node take a long time to start up on the target, a rough
estimate of the time needed to startup may be specified here. Time is measured in
seconds.
chapter 2: Packaging with Package Editor 43

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying ECD Files
! build_requires - Contains a list of the packages that need to
be built before the current package is built. For example, a
package, foo, that uses the ncurses library would need ncurses to
be built before it was built. By including ncurses in this section,
Target Wizard would ensure that ncurses was built before foo.

! build_vars - Contains a list of environmental variables that
will be exported to the build environment before the package is
built. These expressions can be simple, such as
LINK_TYPE="static" or more complex. The buildvars will only
be exported if the node is enabled.

! requires - Contains a list of the packages/services that are
required for this node. This could include things like ncurses,
perl, or ash.

! requiresexpr - Contains an expression describing the
requirements for this package. This could be something like
(bash||ash) or (CONFIG_SOUND=='y') &&
(CONFIG_SOUND_OSS != 'n' || CONFIG_ALSA != 'n'). This
allows requirements to be more versatile and complex.

! choicelist - Allows a user to select a value for the node from
a number of choices. Each line contains two items. The first item
is the string to be displayed and the second item is the actual
value that the node will take on. Here is an example.

100 100

50 50

25 25

10 10

This will display a choice for the user to choose either 100, 50, 25, or
10 and the nodes value will be set to that number accordingly.

Why and How to Use ECD

Inside of Target Wizard, all of the ECDs for a given project are
combined to form one tree. The top level nodes are group nodes,
below groups are component nodes which represent the packages
themselves and under most packages are a number of option nodes.
44 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying ECD Files
These option nodes allow a user to choose different configurations
for a package.

For example if you create an i386 project and then navigate down the
tree to Programming > Interpreters > perl, you will see a number of
options below the perl node (see Figure 2-8).

Figure 2-8

All of these options are binary (meaning they are either on or off,
other types of options take numerical values, etc.) and determine
which files are included in the package. You can choose to include
or not include the pod utilites, documentation, examples, etc. and
depending on what options are chosen, different files will be put on
the target. Each of these nodes represents an ECD node. Since these
options affect which files are kept from the build, they use the
keeplist attribute of the ecd node.
chapter 2: Packaging with Package Editor 45

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying ECD Files
Other nodes in other packages can affect which libraries are linked
to an executable, what options are passed to the ./configure script for
that package, or whether it is built statically or with dynamic
libraries. For most packages designed in-house by companies using
the SDK for their own products, not a lot of options will be needed
because the developers know exactly how the package should be built
and used. Packages intended for a large audience, however, should
give the user a number of options so that the exact desired
configuration can be achieved.

Option nodes typically have the following attributes. Each attribute
is capitalized. Usually the TYPE is a bool, meaning that it can be
either enabled or disabled. The NAME of option nodes should
include numbers, letters, and underscores, but no spaces. A brief
description of the node should be put in the PROMPT field such as
"Include Documentation?" or "Build Statically?". In addition, a
longer explanation of the option should be placed in the HELP
section.

If the option affects which files are placed on the target, then the
option will contain values in the KEEPLIST field. If there are files in
the KEEPLIST, then both the STATIC_SIZE and STORAGE_SIZE
should be filled in as well so that Target Wizard can accurately
determine needed disk and memory size requirements. (These last
two items can be filled in automatically by the Package Editor.)

If the package needs external libraries or services (such as libc or
inetd), then these should be placed in the REQUIRES section of the
ECD node. If the option affects the build in some way then it will
most likely have some values in the BUILD_VARS section.

Here is an example of the ''Include perl base package?'' node for the
perl package. This is the actual ECD file which has an xml-like
syntax so it should be easy to tell which values apply to which fields.
46 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying ECD Files
<OPTION keep-perl>
 TYPE=bool
 DEFAULT_VALUE=1
 PROMPT=Include perl base package?
 <HELP>

This is the absolute minimum required to use perl. It provides /usr/bin/
perl and a few modules.

 </HELP>
 <KEEPLIST>
 /usr/bin/perl
 /usr/bin/perl5.00502
 /usr/lib/perl5/5.00502/AutoLoader.pm
 /usr/lib/perl5/5.00502/Carp.pm
 /usr/lib/perl5/5.00502/Exporter.pm
 /usr/lib/perl5/5.00502/IO
 /usr/lib/perl5/5.00502/Thread
 /usr/lib/perl5/5.00502/Tie/Array.pm
 /usr/lib/perl5/5.00502/Tie/Handle.pm
 /usr/lib/perl5/5.00502/Tie/Hash.pm
 /usr/lib/perl5/5.00502/Tie/RefHash.pm
 /usr/lib/perl5/5.00502/Tie/Scalar.pm
 /usr/lib/perl5/5.00502/Tie/SubstrHash.pm
 /usr/lib/perl5/5.00502/i386-linux-thread/Config.pm
 /usr/lib/perl5/5.00502/i386-linux-thread/auto/Errno
 /usr/lib/perl5/5.00502/i386-linux-thread/auto/GDBM_File/GDBM_File.bs
 /usr/lib/perl5/5.00502/i386-linux-thread/auto/GDBM_File/GDBM_File.so
 /usr/lib/perl5/5.00502/i386-linux-thread/auto/GDBM_File/autosplit.ix
 /usr/lib/perl5/5.00502/i386-linux-thread/auto/Getopt/Long
 /usr/lib/perl5/5.00502/strict.pm
 /usr/lib/perl5/5.00502/vars.pm
 /usr/lib/perl5/site-perl/i386-linux-thread
 </KEEPLIST>
 PROVIDES=/usr/bin/perl
 <REQUIRES>
 libdl.so.2
 libpthread.so.0
 libc.so.6
 ld-linux.so.2
 </REQUIRES>
 STATIC_SIZE=567563
 STORAGE_SIZE=1411268
</OPTION>

The first thing to note is that the options name is ''keep-perl''. This
defines the name of the node and can be used in REQUIRES
sections of other nodes. For instance, the ''Include perl examples?''
chapter 2: Packaging with Package Editor 47

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying ECD Files
node has keep-perl in it's REQUIRES sections because the examples
need the perl base package in order to run. Next is the TYPE which
for this node (and most option nodes) is bool. The
DEFAULT_VALUE defines what the node will be set to initially
before the user touches anything.

Use 1 for on or 0 for off. The HELP section is what is displayed in
the description tab at the bottom of Target Wizard when the node is
displayed. The next section (and by far the longest) is the KEEPLIST
section. This lists all of the files that will be placed on the target if
this node is enabled. Each of these files must be created when the
package is built or must already exist in the source tarball or srpm.
The KEEPLIST can contain actual files or directories. If a directory
is specified then all of the contents of that directory will be placed on
the target (include subdirectories whithin that directory).

The next section is the PROVIDES section. This is the complement
of the REQUIRES section and is used for dependency checking. If
another package needs perl to run then it can include /usr/bin/perl
in it's REQUIRES section and it's node will be unfulfilled until a
node that provides /usr/bin/perl is enabled. The REQUIRES section
for this node lists all of the libraries that are needed to run perl.
Nodes that provide these files will need to be enabled in Target
Wizard or this node will show up as unfulfilled as well. The
dependency information for a node will show up in the Node Status
tab of Target Wizard. The last two fields, STATIC_SIZE and
STORAGE_SIZE are the amount of memory needed to run and the
amount of disk space required for this package respectively.

Build Variables in ECD Files

In addition to KEEPLIST fields, the other common way for an option
to affect a package is by using BUILD_VARS fields.

This can be accomplished in one of two ways. The first and easier
way is to include a number of name value pairs in the BUILD_VARS
section. Here is a simple example:

FOO="BAR"

LINK_TYPE="static"

AGE=12
48 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying ECD Files
If this is in the BUILD_VARS section of an option, then when that
option is enabled, the variables FOO, LINK_TYPE, and AGE will be
created as environmental variabls with the associated values when a
build occurs on that package. These variables can then be referenced
in sections of the LBC file for that package or even directly in
makefiles or source files. Here is a slightly more useful example.
Suppose that you're creating a perl package and you want the option
to include or not include threading when it is built. You might then
create an option node and have the following entry in it's
BUILD_VARS section:

WITH_THREADS="--with-threads"

You can turn on or off thread support in perl by passing "--with-
threads" or "--without-threads" to the ./configure script so you could
include the following in the '''Make Build''' section of the LBC.

./configure $WITH_THREADS

Now when you build the perl package, if this node is enabled the
builder will execute:

./configure --with-threads

Otherwise it will simple execute:

./configure

Because the option is not enabled and WITH_THREADS will not be
exported. If a variable is referenced in shell and it has not been
defined then it is simply replaced with the nothing by the shell. This
method of using BUILD_VARS can be used in a number of
circumstances to affect the build, usually in shell scripts and in the
makefiles themselves.

The other way to use BUILD_VARS is to export the actual value of
the node. Although most option nodes are of type bool, it also to
have them of type int and string. In this case the user actually enters
a value for the node in Target Wizard. When this is the case, you can
use a special form of BUILD_VARS that references $VALUE which
is the actual value of the node itself. Following is an example of a
very simple option node that uses this.
chapter 2: Packaging with Package Editor 49

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying ECD Files
<OPTION include-name>

 TYPE=string

 PROMPT=Include my name?

 HELP=Includes your name in the program.

 <BUILD_VARS>

 MY_NAME=$VALUE

 </BUILD_VARS>

</OPTION>

In this case, the user can right click on the include-name node and
enter in a string. If I enter the string "Bob Jones" for the value then
when the package builds, an environmental variable will be created
with "Bob Jones" as it's value. This can also be used in conjunction
with the CHOICELIST section of an ecd. Here is an example from
the linux ecd.

<OPTION Processor_family>

 TYPE=string

 DEFAULT_VALUE=CONFIG_M686

 PROMPT=Processor family

 <CHOICELIST>

 386 CONFIG_M386

 486 CONFIG_M486

 586/K5/5x86/6x86/6x86MX CONFIG_M586

 Pentium-Classic CONFIG_M586TSC

 Pentium-MMX CONFIG_M586MMX

 Pentium-Pro/Celeron/Pentium-II CONFIG_M686

 Pentium-III/Celeron(Coppermine) CONFIG_MPENTIUMIII

 Pentium-4 CONFIG_MPENTIUM4

 K6/K6-II/K6-III CONFIG_MK6

 Athlon/Duron/K7 CONFIG_MK7

 Crusoe CONFIG_MCRUSOE

 Winchip-C6 CONFIG_MWINCHIPC6

 Winchip-2 CONFIG_MWINCHIP2

 Winchip-2A/Winchip-3 CONFIG_MWINCHIP3D

 CyrixIII/C3 CONFIG_MCYRIXIII

 </CHOICELIST>

 <BUILD_VARS>

 PROCESSOR=$VALUE

 </BUILD_VARS>

</OPTION>
50 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying Source Files
When using a CHOICELIST, each line has two strings. The first
string is what will show up in a list to the user and the second string
(or number) is what the $VALUE will be set to if the user selects that
item.

Modifying Source Files
You can view or edit source files from the Package Editor interface.

Source Tab

The source tab displays the source files for the current package. If
the tarball or srpm for that package has been exploded out then the
directory structure will appear in the source file tab. If no files
appear, then you can select to “unpack sources for work” from the
Source menu or “Force Unpack Sources” from the Build menu.
Both of these steps unpack the source (either in srpm or tarball form)
into a build directory.

The pane on the left of the Source Tab displays a tree structure that
represents the source directory heirarchy for the current package.
You can expand and collapse directories by double clicking on them.

The text area on the right of the source tab is a simple text editor used
for making small modifications to source files. Clicking on a text file
will bring the contents of the file up in the edit text area. Clicking on
a directory will bring up a directory listing in the text editor. If a file
is not a text file, then the text editor will be empty when that file is
selected.

Using an External Text Editor

You may modify the source file in the textbox or right-click and
choose to open it in your favorite text editor. The built-in editor is
intended to be used for small modifications to source files and not
for large edits.

To use your favorite text editor on the source files:

1. Specify the path to the editor.
chapter 2: Packaging with Package Editor 51

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying Source Files
1a. From the Settings menu, choose Editor and then enter the
path to the text editor in the text entry box. If you do not
know the actual path, you may click on the '''Browse''' button
to select it from your filesystem.

1b. When done, click on OK.

2. Once the editor has been set, right-click on any file and then
choose “Open this file in an editor.” This will open the text editor
with the contents of the file.

3. Modify the text file using your preferred editor.

4. Once you have made your changes, from the Source menu,
choose Reload Current File to reload the file in the text area.

Other Options

In addition to editing, you can also delete a file by right-clicking on a
file and selecting '''Delete This File'''. You will be prompted to make
sure that you want to delete the selected file. You may save a file by
selecting '''Save This File''' from the right-click menu or clicking on
the disk icon on the toolbar that has the .c extension on its label. If
you make a modification to a file and the select another file you will
be prompted to save the modified file or disregard the changes.

For makefiles, there is another option available in the right-click
menu. When you right-click on a makefile, an option labeled “Go To
Makefile Section” appears. Select this option and a secondary menu
will appear with each of the makefile targets in it. Selecting one of
those targets will move the cursor to the target's location in the
makefile.

Viewing �Diffs� and Making Patches

Because Target Wizard builds packages from the source tarball or
srpm, it's possible that any changes made to the source tree of a
package will be obliterated the next time the package is built from
scratch. Fortunately, there is a facility to include patches in a package
that will be applied to the source after it is unpacked. You will want
to create a patch from the modifications that you make to any
52 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Modifying Source Files
package. Fortunately, the packager greatly simplifies the process of
making patches.

While making modifications, it's possible to view the diff of
modified source files and their unaltered versions. In order to do
this, you need to have an unmodified version of the source unpacked
in another location for the diffs to be made from. To do this from the
Source menu, choose “Prepare Source For Work.”

View the files in “diff” mode by choosing the menu item View Diff
from the Source menu. This will display the differences between the
working source and the original source in the textbox provided.

Many common file operations are available by right-clicking on files
or directories in the directory view.

Installing Patches from External Sources

In addition to making your own patches, often there will be updates
to pieces of software in the form of patches. These may be available
via an FTP site or other Web site.

Applying patches to software is usually a very simple process. When
you download a patch for a piece of software, it should be placed in
the directory: <project dir>/Packages/local. The name of the patch
should then be added to the “Patches” section of the lbc for that
package. This can be done by opening the package in the Package
Editor, selecting “Patches” in the radio group on the LBC page,
entering the filename of the patch in the text area, and clicking on
the Save LBC toolbar button.

Here is a quick example for the package “make” in a project located
at /home/<username>/project/mips:

1. Download “make-3.79.patch1” from the Web.

2. Copy “make-3.79.patch1” to /home/<username>/project/mips/
Packages/local.

3. Start Package Editor and open the “make” package.

4. In the radio button group on the left side, choose Patches.
chapter 2: Packaging with Package Editor 53

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Building the Binary Image
5. Enter “make-3.79.patch1” in the text area. (It is important to
enter this patch after any others in the text area and not before
because patches are applied in the order that they are listed).

6. Select “Force Complete Rebuild” to make sure that the patch is
applied correctly.

Building the Binary Image
Modifying the LBC sections for a package and testing building the
package go hand in hand. Whenever an LBC section is modified, you
should test building the package to make sure that the changes had
the desired affect.

It is possible to do test builds by opening Target Wizard and forcing
a rebuild of the package, but this can be cumbersome and does not
allow a lot of flexibility (building in Target Wizard is pretty much an
all or nothing approach). Package Editor offers a number of building
options, all available under the Build menu.

Figure 2-9. Build Options (Build Menu)

Whenever you want to test a phase of building, simply choose that
phase from the Build menu and the builder will execute all phases
needed up to the specified phase. For example, if this is your first
build and you choose “Make,” the builder will extract the source,
apply patches, run the configure step and then execute the Make
Build instructions. If you choose “Make” again, the builder will only
execute the Make Build instructions because the previous steps have
already been done.
54 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Building the Binary Image
Here is a list of the available options:

! Force Configure - Forces the builder to execute the Make
Configure section of the LBC. If you have previously executed
the Make Build section, then the builder will do a Make Clean to
clean the source before doing the Make Configure.

! Make - Executes the Make Build section of the LBC.

! Make Install - Executes the Make Install section of the LBC.

! Force Configure, Make, Install - Executes a Forced Configure,
Make Build, and Make Install all in one.

! Force Unpack Sources - Erases the build directory, unpacks the
source files from scratch, and applies the patches specified in the
LBC.

! Force Unpack, Configure, Make, Install - Erases the old build
directory and then executes a Forced Configure, Make Build, and
Make Install all in one.

! Force Complete Rebuild - Erases everything and builds the
package from start to finish, just like the builder would inside of
Target Wizard.

! Make Clean - Executes the Make Clean section of the LBC.

! Stop Build - Stops the builder during the build process. It can be
used at any time.

Note that in order for any changes made in the LBC to affect a build,
the LBC must be saved prior to executing the build. The output of the
build appears in the log window at the bottom of the packager.
Package Editor uses the Target Wizard Command Line (twcl) utility
to execute builds so it is using the same build mechanism that Target
Wizard uses. Whenever a build is started, the first line that appears
in the window will be the actual command used to start the build
with twcl. Here is an example:

+ /usr/bin/twcl --projdir /opt/Embedix/home/
chrisb/project/intel --pkg hello --force
--batch --nuke
chapter 2: Packaging with Package Editor 55

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Installing the Package
This allows the user to see exactly what arguments are being passed
to twcl. For more information on using twcl, execute twcl --help at
the command line to see usage instructions.

In addition to the twcl command, all output from the build process
will appear in the log window. When a build is finished, an
appropriate message will appear at the bottom of the log window.
During the build, the user may continue to work with Package Editor
without needing to wait for the build to finish.

Sometimes you will need to test a build with ECD options set a
specific way. When this situation occurs:

1. Open Target Wizard.

2. Enable or disable the ECD nodes as desired.

3. When finished, right-click on the package component node and
then choose Build Component. This will force Target Wizard to
write the ECD settings to a file used by the builder.

At that point you can continue testing the build from Package
Editor and the new settings will take affect. Target Wizard does
not need to complete it's build as the settings are written out
prior to the build. This means that for long packages, you can
stop the build in Target Wizard immediately after starting it.

Installing the Package
Package Editor automatically places compiled and configured files in
their correct location in the filesystem. (Each package has its own
staging area where it waits to be deployed.)

For instructions on installing the binary image (or target image) on
a target, refer to the target-specific deployment instructions found in
either the Target Wizard User’s Guide or the board support package
(BSP) documentation.
56 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Distributing Packages as LPF Files
Distributing Packages as LPF Files
Once you have a working package for your project, you may want to
distribute it to others or use it in other projects on your system. To
simplify this task, Lineo supports a special package format called
LPF (Lineo Package Format) files. These files are simply gzipped
tarfiles with a control file inside of it. You can use Update Wizard
(downloadable from the Lineo Web site or standard as part of the
SDK 2.4) to install a package LPF file into a project to have the
package appear in the project in Target Wizard. Fortunately, the
Package Editor allows you to easily create an LPF file for any package.

To create an LPF from a package:

1. Open the package in Package Editor.

2. From the File menu, choose Make LPF.

A dialog box appears asking for four different fields:

" Version - This is the version of the package.

" Revision - This is the revision of the package.

" Vendor - This is the entity that this package belongs to. You
can enter your name or the company you work for.

" Support Contact - This should be an e-mail address of who
to contact if there are problems with the package.

3. When you have filled in those fields, click OK and the LPF file
will be created.

A dialog box appears telling you if the creation was successful
and showing the location of the LPF file. Normally it will be
placed in the project directory of the project that the package was
taken from. This file can then be distributed to other Target
Wizard users. They can then install the package into their own
projects using Update Wizard.
chapter 2: Packaging with Package Editor 57

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Using the Embedix Tool Chains
Using the Embedix Tool Chains
A tool chain is a collection of platform-specific compiler tools. The
supported platforms are 8260, ARM, i386, MIPS, PowerPC, and SH.

Note: The best way to leverage a tool chain available in the
Embedix SDK is to create an SDK package from existing
source code.

This section outlines issues with using the GNU compiler tools
included with the Embedix SDK. The tool chains, as set up for Target
Wizard, have two modes of operation: Normal and Spoof. Each of
these has two variants (explained below).

The Normal mode is used by packages that have awareness of the
cross compilation issues. The Spoof mode is used by packages that
have no awareness of cross compilation issues.

In order to determine which mode to use, you must answer some
questions:

1. Is your package cross-compiler aware? In other words, does it know
how to distinguish between the use of the host compiler and the
cross compiler? This is typically accomplished by defining a
couple of values within the Makefile. For example:

CC=gcc for the host compiler and CROSS_CC=powerpc-
linux-gcc for the cross compiler.

Yes: If the answer is yes, then the Normal mode is the desired
mode of operation.

No: If the answer is no, then you have a couple of options: You
can convert the package, making it aware (sometimes this is
preferable), or you can attempt to spoof the package and cross
compile it (this does not always work and will require that the
package be made at least partially aware).

2. If the Spoof mode of tool chain usage is wanted, does the package
build intermediate executables? If yes, do any of the binaries need to
be installed on the target?
58 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Using the Embedix Tool Chains
If the answer to the first question is yes, then the package must
be made partially aware of cross-compile issues (you need to be
able to use a native compiler to properly build these executables).

If the answer to the second question is yes, then you need to
build two versions of the binaries: the first one for a host-based
version and the second one for a target-based version.

3. Is the package self-contained or does it depend on external libraries
(including glibc libraries)?

Target Wizard and the tool chains support the ability to create
different projects in which different versions of packages are
compiled. This means that in package A a minimal subset of
glibc can be built and installed. In package B a full blown
implementation of glibc can be built.

When a library package is built, it usually installs:

public headers into <project_name>/build/dev-image/usr/
include

dynamic libraries into <project_name>/build/dev-image/lib
static libraries into <project_name>/build/dev-image/usr/lib

Dynamic libraries also need to be installed on the target machine
in the correct location. If you want an application to build using
the tool chains, then you need to set three environment variables
appropriately—PATH, INCLUDE_PATH_DEFAULT, and
LIBRARY_PATH_DEFAULT. These variables control the tool
chains’ behavior with regard to where executables, SDK header
files, and SDK library files are found.
chapter 2: Packaging with Package Editor 59

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Using the Embedix Tool Chains
60 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002
C H A P T E R 3 Configuring & Using Metrowerks

CodeWarrior with Embedix SDK
This guide describes steps necessary to most effectively use
Metrowerks CodeWarrior with Lineo's Embedix SDK toolchain.

Included in this chapter are:

Embedix SDK installation options
CodeWarrior installation options
Embedix SDK configuration
CodeWarrior base-line configuration
CodeWarrior per-project configuration.
Using CodeWarrior with Embedix SDK instructions

Throughout this document, we use the MIPS configuration
examples. Other architectures are configured identically, except that
the architecture specific tools are selected.

This guide is not intended to be a replacement for the Metrowerks
CodeWarrior installation manuals, instead it is designed to augment
those manuals by providing Embedix SDK specific information.

Configuring CodeWarrior for Lineo Embedix SDK 2.x
Install and configure CodeWarrior as outlined in the sections that
follow.

Embedix SDK Installation Options

Installation of the Embedix SDK for support of CodeWarrior
requires no special steps except to ensure that you've selected the
“Would you like to add SDK Support for CodeWarrior IDE?” option.
This will, among other things, install nine semi-preconfigured
CodeWarrior Stationery’s. CodeWarrior Stationery is described in
chapter 3: Configuring & Using Metrowerks CodeWarrior with Embedix SDK 61

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
detail later in this document, but it is basically a configuration that
allows CodeWarrior to make use of the SDK toolchain. Each
Stationery has three possible configurations: one for C++
applications, a second for C applications, and a final configuration
for Kernel Modules.

Because configuration of CodeWarrior to use the SDK is project
specific, these nine installed Stationery's are not fully ready for
development of applications for the SDK. Some of the options will
have to be manually configured.

The instructions on configuring CodeWarrior for use with the SDK
later in this document detail how to make a configuration from the
beginning. If you use any of these nine Stationery files installed by
the SDK, many of these options described are already configured.
This document will alert you to which options need to be manually
configured and which options are preconfigured.

Each of the Stationery's is based on one of nine Lineo cross-
compilers. When you open a new project, you must know which
cross-compiler is used in your project and select the appropriate
Stationery accordingly (how to determine your cross-compiler and
how to select Stationery are both described at later points in this
document). The nine Stationery's are listed here:

" i386-linux_Remote

" mips-linux_Remote

" mipsel-linux_Remote

" arm-linux_Remote

" sh3-linux_Remote

" sh4-linux_Remote

" m68k-coff_Remote

" m68k-elf_Remote

" powerpc-linux_Remote

We anticipate making additional stationery available from a Web site
download as it becomes available.
62 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
Post-install SDK Configurations

Some earlier releases of the Embedix SDK will not have a pre-
configuration for CodeWarrior execution from the Target Wizard,
Run Wizard. Fortunately, the SDK Run Wizard menu is rather easy
to configure via a simple python script which when placed in /opt/
Embedix/enbedix-2.0/wizards is launched by the Run Wizard.

The script below adds CodeWarrior support to the Run Wizard
menu.

Tip: You can use a modification of this script to support
other commonly used applications such as editors or DDD.

#DESCRIPTION:CodeWarrior 6

#

The description above appears in the Target Wizard

"Select Wizard" dialog box.

#

This wizard shows how to launch a separate application

from the Target Wizard program.

#

In order to customize this example, modify:

- the global variables 'command' and 'args' .

- the DESCRIPTION comment above

Place the modified script in:

/opt/Embedix/embedix-2.0/wizards

Launch it from File, Run Wizard menu item.

#

This has several examples of other things that might be of

interest for programs launched from the SDK, including:

- determining the current project directory

- adjusting arguments based on arbitrary runtime criteria

(in this example, base on whether we could identify the
proj dir)

- setting an environment variable for the launched program

#from wizard import *

import os

import PyProjAPI

command="/usr/local/bin/cwide"
chapter 3: Configuring & Using Metrowerks CodeWarrior with Embedix SDK 63

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
args=""

sequence=[]

def run_wizard(sequence, globals, standalone=0):

 global command, args

 # get the project directory for the current project

 (r, value) = PyProjAPI.project_get("project dir")

 if r=="OK":

 proj_dir = value

 else:

 proj_dir = None

 # shown for example purposes. Dont' write stuff to
stdout normally.

 print "project directory=", proj_dir

 if proj_dir:

 #

 args=proj_dir

 #

 # set an environment variable (just for demonstration)

 os.environ["PATH"]=os.environ["PATH"]+":/usr/local/
some-other-ddd-dir"

 print 'running command: "%s %s &"' % (command, args)

 os.system("%s %s &" % (command, args))

 return

This is the end of the CodeWarrior Run Wizard Python Script.

 CodeWarrior Installation and Initial Configuration

This section describes how to install CodeWarrior and then to
configure convenience items (e.g. menu items) for best integration
with the host Linux desktop and the Embedix tool chain.

Mount your CD-ROM with the mount command (e.g. mount /mnt/
cdrom) and then read the README file for instructions on installing
this product. Although these installation steps are summarized
below, we encourage you to first read the CodeWarrior README file.
64 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
1. Log in as root.

2. Mount the CD:

/mnt/cdrom/install.sh

3. De-select DDD 3.3 (Embedix SDK includes DDD v3.3 located at
/opt/Embedix/usr/X11R6/bin/ddd.)

4. Select JDK as required for your specific product development.

5. Select Desktop menu items (KDE/Gnome).

6. Begin complete install.

Note: Pay attention to the warning and do not run
CodeWarrior from root.

7. Exit installation procedure.

8. Log out and log back in as a regular user.

9. Configure the new CodeWarrior menu on the KDE start button
to point to /usr/local/bin/cwide (instead of cwide6).

Resolving Problems with CodeWarrior Installation

CodeWarrior 6.0 appears to have a bug during installation on some
Linux host systems (such as RedHat 7.1). You should first attempt to
install according to normal procedure:

su

mount -o exec <cdrom directory>

<cdrom directory>/install.sh

If this is unsuccessful, follow the procedure below:

su

mount -o exec /mnt/cdrom

cd /mnt/cdrom/RPMS

rpm -Uvh --nodeps codewarrior-ide-6.0-b0046d.i386.rpm

and optionally:

rpm -Uvh --nodeps codewarrior-docs-6.0-b0046d.i386.rpm
rpm -Uvh --nodeps codewarrior-java-6.0-b0046c.i386.rpm
chapter 3: Configuring & Using Metrowerks CodeWarrior with Embedix SDK 65

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
rpm -Uvh --nodeps codewarrior-jdk11-1.1.8-2.i386.rpm
rpm -Uvh --nodeps codewarrior-jdk12-1.2.2-4.i386.rpm
rpm -Uvh --nodeps codewarrior-jdk13-1.3.0-3.i386.rpm
rpm -Uvh --nodeps codewarrior-mwCVS-1.0-b0636.i386.rpm

then

/mnt/cdrom/install.sh

(this will ensure that the license file has been installed).

Complete the installation as described previously:

1. Exit installation procedure, but remain as root.

2. Enter these commands:

cd /usr/local/metrowerks/Lineo/
./install_cwide.sh
./install_userprefs.sh

3. Log out and back in as primary user.

4. Configure the new CodeWarrior menu on KDE start button to
point to /usr/local/bin/cwide (instead of cwide6)

Common Global Configuration Options for CodeWarrior

These options apply to global settings of CodeWarrior and may make
the IDE experience more comfortable for your use.

Although the configuration options are discussed within the
CodeWarrior documentation set, we've highlighted the key
configuration options here.

External Editor:

If you wish to use a third-party editor (such as kate, kwrite, or Visual
Slick Edit (TM))other than the default CodeWarrior editor, you need
to complete the following three step process.

1. As root, copy the file

/usr/local/metrowerks CodeWarrior_Pro6/CodeWarrior4.1/

(Helper_Apps)"/External_Editor.lineo

to
66 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
/usr/local/metrowerks/CodeWarrior_Pro6/CodeWarrior4.1/
(Helper_Apps)"/External_Editor

Because this replaces the default file, it is advisable to back up
the original External_Editor file before replacing it.

2. Also as root, edit the contents of the newly replaced
External_Editor file. It's contents include a list of common
editors (all prefixed by “EDITOR=”). The Editor that
CodeWarrior will use is the one that is not in comments (i.e.
prefaced by a '#'). By default, “kwrite” is uncommented and
several other choices are included in comments. Uncomment
the editor desired (remove the leading '#') and put kwrite in
comments (prepend a '#'). Or, if you wish to use an editor not
listed, put kwrite in comments and add a new line
“EDITOR=<your editor name here>”.

3. In CodeWarrior (no longer as root), go to: EDIT -->
PREFERENCES --> GENERAL --> IDE XTRAS and select the
“Use External Editor” option.

Key Bindings:

If you want to change the default key bindings (e.g. cut = alt-x) to
more familar bindings (e.g. cut = ctrl-x):

1. Go to: EDIT > COMMANDS & KEY BINDINGS

2. Alter the key bindings as necessary

Internet Browser:

To configure CodeWarrior to select the correct internet browser for
you host system (e.g. netscape, mozilla, konqueror, opera, etc.):

1. Go to: EDIT > PREFERENCES > HELP PREFERENCES.

2. Replace the listed browser with a new browser of your choice.
The new browser must be accessable on your system path.

Recording Embedix SDK Tools Setting

Because Lineo's development model is project based, that is, each
project is associated with a specific BSP that, itself, has a specific set
chapter 3: Configuring & Using Metrowerks CodeWarrior with Embedix SDK 67

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
of development tools. This step retreives project specific tools
information to assist in configuring CodeWarrior.

1. Start Lineo’s Target Wizard (enter tw at the command prompt).
A screen similar to Figure 3-1 appears.

Figure 3-1

2. Open a new (or existing) project, ensuring to select the proper
“Current Project Target Platform” at the Target Options dialog.

Note: The Embedix SDK supports architectures via
individual board support packages that are shipped
independently from the SDK.

3. Once the new project has been opened, choose the menu item
File > Run Wizard. A dialog box like Figure 3-2 appears.
68 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
Figure 3-2

4. Run the “BSP Config Editor” and write down the value of the
“Cross Compiler Prefix”.

In the example provided in Figure 3-3, the Cross Compiler Prefix
is “mipsel-linux”. As we show additional screens, note that the
tools names are common and “as expected” within the Linux
development environment except for the addition of this prefix.
chapter 3: Configuring & Using Metrowerks CodeWarrior with Embedix SDK 69

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
Figure 3-3. Target Wizard BSP Configuration Editor

This cross compiler prefix value is important because Lineo's
Embedix SDK places all tools, regardless of architecture, within
the same directory (/opt/Embedix/tools/bin) appending a prefix
to designate the specific architecture supported by each tool.

Figure 3-4 shows this directory populated with toolchains for
multiple board support packages. As you can see by the directory
listing below, each of the tools are named identically except for
the architecture identifying prefix.
70 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
Figure 3-4. Sample /opt/Embedix/tools/bin directory listing

CodeWarrior Per Project Configuration Options

This section describes how to configure CodeWarrior to use the
Embedix toolchains for each specific project. A large majority of
these items have been pre-configured in the supplied stationery.

Notes:

! Documentation/tutorial for CodeWarrior for Linux is located on
your system here: /usr/local/metrowerks/CodeWarrior_Pro6/
CodeWarrior_Manuals/HTML/Targeting_Linux/
UNX000_Front.fm.html

! All of the options described below are set from the CodeWarrior
EDIT > TARGET_NAME SETTINGS menu. This menu is
located immediately below the "PREFERENCES" menu option
and is accessed via the main EDIT menu.

! The GNU tools associated with the Embedix SDK are located in
/opt/Embedix/tools/ARCH SPECIFIC directory
chapter 3: Configuring & Using Metrowerks CodeWarrior with Embedix SDK 71

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
Library and Include Files

This section walks through configuration of CW so that the proper
libraries and include files are used. These options are set in the SDK
installed Stationery's.

First, start CodeWarrior by entering cwide at a console, or by using
the newly reconfigured desktop icons/menus (see Figure 3-5)...

Figure 3-5. Initial CodeWarrior Start-up Window

... then, open a new project from the File > New menus and their
associated dialogs.

Figure 3-6. CodeWarrior New Project Window

Next, from the <new_project> window, select Edit > <new_project>
Settings > Target > Access Paths.

! Unselect “Always Search User Paths”.
72 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
! Select the “System Paths” window > Add > Relative To:
“Absolute” > browse and then Add:

! Be sure to add two entries: one for the proper library-include files
and the other for the proper header-include files.

! Ensure that the left-most check box on the same row as the files
above is checked. (See Figure 3-7.)

Figure 3-7. CodeWarrior Access Path Settings

Note that the base directory for the library include files will generally
be: /opt/Embedix/tools/lib/gcc-lib/ CROSS COMPILER PREFIX /
RELEASE_SPECIFIC (e.g. 2.95.3)/include.

The base directory for header files will generally be:
/opt/Embedix/tools/ CROSS COMPILER PREFIX /include .

Output Directory

The Output Directory defined by CodeWarrior is where the software
is placed following compilation. This option is not set in the SDK
installed Stationery’s and must be manually configured.

1. From the <new_project> window, select Edit > Build Hello
Release Settings > Target > Target Settings.

2. Select the output directory and file name of choice.
chapter 3: Configuring & Using Metrowerks CodeWarrior with Embedix SDK 73

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
Note: Setting the output directory as any other directory
will require you to transfer via NFS, ftp, ssh, etc.

Figure 3-8. CodeWarrior Target Settings

Useful Output Directory Locations:

The CodeWarrior {PROJECT} directory is the default build location.

Configuring the output directory to the Target Wizard project /
merge directory (e.g. /home/lineo/project/PROJECT_NAME/
merge) will automatically deploy the application with the rest of the
system via the deployment wizard. It will also enable the GPL
compliance tool to validate library linking between your new
application and the deployable system.

Some BSPs create a /tftpboot directory, which is required for this
boot method.

Debugger

This step configures CodeWarrior so that is uses the proper
debugger.
74 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
At this point, if you choose to use DDD 3.3 which was provided with
CodeWarrior, you need to enter nothing as shown in figure 9 below.
However, if you encounter problems with DDD 3.3, you may want to
use DDD 3.3 provided with the Embedix SDK. Also, if you are using
one of the SDK installed Stationery's, they are preconfigured to use
the SDK DDD 3.3; if you wish to use the CodeWarrior DDD 3.3, you
must turn off using a third party debugger.

To do this:

1. From the <NEW PROJECT> window select EDIT > BUILD
HELLO RELEASE SETTINGS > TARGET > BUILD EXTRAS

2. Unselect "Use third party debugger"

To change the configuration to use the SDK DDD 3.3:

1. From the <NEW PROJECT> window select EDIT > BUILD
HELLO RELEASE SETTINGS > TARGET > BUILD EXTRAS

2. Select "Use third party debugger"

3. Enter the location and command for the debugger followed by
any arguments: /opt/Embedix/usr/X11R6/bin/ddd in the file
field.

4. Consult the DDD documentation for a description of all
arguments.

An example for using the CodeWarrior DDD 3.3 with the 5272C3
is provided below:

ddd --debugger "m68k-bdm-elf-gdb -n -x /
tftboot/tarifa/gdbinit" %1.gdb

Descriptions:

--debugger--debugger--debugger--debugger "<debuggercmdline>" tells ddd which gdb
frontend to use.

-n-n-n-n tells the gdb not to invoke any .gdbinit that might be in the
execution directory

-x <file> tells an explicit gdbinit file to use
%1.gdb%1.gdb%1.gdb%1.gdb is special to m68k-elf as uClinux usualy produces

(non-elf)flat binaries plus (non-executable) elf binaries
chapter 3: Configuring & Using Metrowerks CodeWarrior with Embedix SDK 75

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
(with .gdb postfix) so for non uClinux architectures, you
may just enter %1 instead

Figure 3-9. CodeWarrior Build Extras Settings

Compiler Command Line Arguments

CodeWarrior is extremely versatile, but it does not eliminate the
developer's need to know essential compiler arguments. However,
it does greatly simplify the creation of applications and associated
project management once these arguments are in place. This
section describes how and where to set these command line
arguments. Some basic command line arguments are already in
place in the SDK installed Stationery’s; however, the configurations
for Kernel Modules in each of these Stationery's are incomplete out
of necessity and even the configurations for C++ and C applications
should be reviewed to ensure that the arguments are correct for the
application being developed.
76 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
Note: Default SDK Global SDK GCC arguments for a
specific project can be found in Target Wizard: FILE > RUN
WIZARD > BSP CONFIGURATION EDITOR > C FLAGS

Note: Individual package GCC arguments can be found in
Target Wizard: FILE > RUN WIZARD > LBC EDITOR >
COMPILE FLAGS

Note: In CodeWarrior remember to add in the -o command
line argument when compiling kernel modules.

Note: CodeWarrior defaults to -g as the debug command
line option.

To set these GCC command line arguments:

1. From the <new_project> window, select Edit > Build Hello
Release Settings > Language Settings > GNU Compiler.

2. Enter in the GCC Command Line Arguments associated with
your specific board. Consult the GCC documentation for a full
explanation of these options. Figure 3-10 shows the basic
command line arguments for creating a user application.

Below, we’ve provided example GCC command and arguments
for a kernel module:

-g -D__KERNEL__ -DMODULE -O2 -Wall -
I<Include file paths>/ -c filename.c -o
filename.o

Descriptions:

! The -g option adds in the debug symbols for use with
GDB.
chapter 3: Configuring & Using Metrowerks CodeWarrior with Embedix SDK 77

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
! The -D__KERNEL__ flag (note the double
underscores!)tells the preprocessor to select certain
parts of kernel headers.

! You must define the -DMODULE symbol for a kernel
loadable module,and you should define it before
including the linux/module.h file.

! You must enable optimization with the -O2 flag
because many functions are declared as inline in the
header files,and gcc does not expand inlines unless
optimization is enabled.

! We recommend turning on compiler warnings with the
-Wall flag because eliminating all compiler warnings
helps to prevent unexpected errors later on.

! The -I<Include file paths> flag specifies the
directories in which the included header files can be
found.

! The -c filename.c option tells gcc to stop after
generating the object file (it does not go on to the link
phase).

! The -o filename.o option tells the compiler to create an
object file of name filename .
78 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
Figure 3-10. CodeWarrior GNU Compiler Settings

Linker

This section describes how and where to set these command line
arguments for the Linker. The SDK installed Stationery's have some
linker options preconfigured for C++ applications. However, due to
the nature of linker arguments, the preconfigured arguments should
be reviewed.

Because gcc performs compilation as well as linking, it is often not
required to enter any linker specific arguments as shown in
Figure 3-11. To change these settings:

1. From the <new_project> window select Edit > Build Hello Release
Settings > Linker > GNU Linker.

2. In the dialog box provided, enter the Linker flags associated with
your specific board.

3. In the dialog box provided, enter the Libraries.

Note: Linux for MMU-less devices (uClinux) requires some
additional configuration options for the linker. Following is an
example of the linker command line arguments for the Motorola
ColdFire 5272C3, which form a good starting point for MMU-
less configuration:
chapter 3: Configuring & Using Metrowerks CodeWarrior with Embedix SDK 79

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
-m5200 -Wl,-elf2flt,"-T /opt/Embedix/
tools/m68k-elf/lib/elf2flt.ld"

In the "Libraries" window, enter: -lc

Figure 3-11. CodeWarrior GNU Linker Settings

Configure CodeWarrior to Use the Right GNU Tools

This step ensures that CodeWarrior access the proper target specific
GNU tools provided with the Embedix tool-chain. This information
is set in the SDK installed Stationery's.

1. From the <new_project> window, select Edit > Build Hello
Release Settings > Command-Line Extras > GNU Tools
Commands. A screen similar to Figure 3-12 on page 81 appears.

2. Select “Use Custom Tool Commands” and then complete the
dialog boxes provided on the right of the window:

Compiler: Point to /opt/Embedix/tools/bin/CROSS
COMPILER PREFIX-gcc

Linker: Point to /opt/Embedix/tools/bin/CROSS
COMPILER PREFIX-gcc

Archiver: Point to /opt/Embedix/tools/bin/CROSS
COMPILER PREFIX-ar crs
80 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
Size Reporter: Point to /opt/Embedix/tools/bin/CROSS
COMPILER PREFIX-size

Figure 3-12. CodeWarrior GNU Tool Commands Settings

Configure CodeWarrior to Recognize *.ecd and *.lbc Files

CodeWarrior will not recognize files which have an unknown or
undefined (to CodeWarrior) extension. If you want to edit Lineo’s
ECD and LBC file formats via CodeWarrior, you need to configure
the File Mappings Page so that these are recognized. This
information is set in the SDK installed Stationery's. (See
Figure 3-13.)
chapter 3: Configuring & Using Metrowerks CodeWarrior with Embedix SDK 81

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
Figure 3-13. CodeWarrior File Mappings Configuration

1. From the <new_project> window select Edit > Build Hello
Release Settings > Commannd-Line Extras > File Mappings.

2. Map .lbc files by completing these steps:

2a. In the “File Type” box, select “Text”

2b. In the “Extension” box, enter “.lbc”

2c. In the Compiler entry, select “None”

2d. Click “ADD”

3. Repeat the process for .ecd files:

3a. In the “File Type” box, select “Text”

3b. In the “Extension” box, enter “.ecd”

3c. In the Compiler entry, select “None”

3d. Click “ADD”

4. Repeat the process for .in files (gdbinit.in):

4a. In the “File Type” box, select “Text”

4b. In the “Extension” box, enter “.in”

4c. In the Compiler entry, select “None”

4d. Click “ADD”
82 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
Creating Project �Stationery� Files

CodeWarrior includes project Stationery which are templates which
store all of the information that you’ve just set up. These files allow
you to avoid this set-up procedure for each new project. If you are
using the SDK installed Stationery's, this may or may not be
necessary depending on the nature of the projects involved. Most of
the configuration not in the SDK Stationery's are project specific and
may not transfer well to other projects. This section also contains
instructions on accessing and selecting Stationery.

To select a stationery file:

From the initial CodeWarrior start-up window (Figure 3-5), you can
select a stationery by: File > New > (choose any stationery).

To create a new stationery file:

1. As root, ease the write priviledges on /usr/local/metrowerks/
CodeWarrior_Pro6/CodeWarrior4.1/(Project_Stationery) to
allow the user to write files.

chmod -R 777 * "/usr/local/metrowerks/CodeWarrior_Pro6/
CodeWarrior4.1/(Project_Stationery)"

(It should be noted that quotes or '\'s may be necessary to access
the “(Project_Stationery)” directory because of the parenthesis).

2. Create a new directory named “<ARCH>_Remote” under: /usr/
local/metrowerks/CodeWarrior_Pro6/CodeWarrior4.1/
(Project_Stationery).

This is the name which will appear as available stationery when
a new project is opened.

3. Underneath the new directory above, create separate directories
<TEMPLATE_DESCRIPTION> whose names describe the type
of templates you are creating. (e.g. /C_Application, /
C_Shared_Library, C++_Application, C_Kernel_Module, etc.)
These are the names which will appear as available project types
within the architecture selected in Step 2.

4. Start CodeWarrior.
chapter 3: Configuring & Using Metrowerks CodeWarrior with Embedix SDK 83

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Configuring CodeWarrior for Lineo Embedix SDK 2.x
5. Create a new project, selecting any suitable stationery as the
starting point.

6. Configure all of the target specific settings as described in this
document. Note that the configuration for the Build XYZ
Release and Build XYZ Debug are independent. Thus, you need
to configure and save them independently.

7. Build the project (remember to build both Release and Debug
configurations).

8. Using a name of PROJECT_NAME.mcp, save the project to the
appropriate directory: /usr/local/metrowerks/
CodeWarrior_Pro6/CodeWarrior4.1/(Project_Stationery)/
<ARCH>_Remote/<TEMPLATE DESCRIPTION>

Hints and Notes:

Each of the settings panels includes the EXPORT PANEL option.
This allows you to save the settings on any specific panel, to be
restored with IMPORT PANEL.

If you can’t export the panel, review your settings. Some pages, like
the “Target Settings” page, will not allow you to export a panel if
something within the panel (such as file name) conflicts with an
existing file name or does not exist.

Adding New Tools to the CodeWarrior Menus

Once CodeWarrior is configured for the essential elements, it is
often useful to add your own helper applications, or new Lineo
applications as they become available to the CodeWarrior menus.
This section describes this simple procedure.

1. From the Edit > Command and Key Bindings menu, select the
EmbedixSDK command group.

2. Click NEW COMMAND.

3. Enter in the name of the tool (Kwrite, Package Editor, etc.)

4. Enter in command line arguments, etc.

5. Ensure that “Appears in Menus” is selected.
84 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Using CodeWarrior with Embedix SDK
6. Select SAVE

7. Close the window (X).

Using CodeWarrior with Embedix SDK
Lineo has configured CodeWarrior for the majority of architecture
specific elements including: cross-compilers, compiler command
line arguments, libraries, headers, include files, and debug agents/
stubs.

The purpose of this section is to describe the top level details
associated with using the CodeWarrior IDE to create applications
which can be run and debugged on a target system which was
created and deployed with Embedix Target Wizard. It is not meant
as a replacement for the full CodeWarrior documentation set which,
provided that it was installed, can be found on the host development
system at: /usr/local/metrowerks/CodeWarrior_Pro6/
CodeWarrior_Manuals/

1. Start CodeWarrior.

To start CodeWarrior, simply select the KDE or Gnome menu
option which you may have opted to provide during the
CodeWarrior installation process.

Alternatively, you can open an xconsole and type:

cwide

When CodeWarrior initializes, you will be presented with a
window as shown below:

Figure 3-14. CodeWarrior Menu Bar

2. Choose an architecture-specific tool chain.
chapter 3: Configuring & Using Metrowerks CodeWarrior with Embedix SDK 85

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Using CodeWarrior with Embedix SDK
This step requires you to choose the architecture which
coincides with your target hardware and the Embedix board
support package.

Figure 3-15. Architecture Options

2a. Highlighted the appropriate architecture.

If you are unsure which tool chain is appropriate, start Target
Wizard and open your board-specific project. Then, from the
menu bar, choose File > Run Wizard and select “BSP Config
Editor” and then note the entry listed in the "Cross Compiler
Prefix" entry. This value coincides with the options provided
in the CodeWarrior dialog shown below.

2b. Enter a project name and location (directory path) and then
click OK.

3. Choose the Application Type.

Tell CodeWarrior what type of application you wish to develop as
shown below and click OK.
86 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Using CodeWarrior with Embedix SDK
Figure 3-16. Application Type

4. Select a “Target.”

CodeWarrior uses the term "target" to define unique
configurations of compile and debug tools which get applied
against the same source files. Lineo has pre-configured three
separate targets: Build Hello Self Host- x86, Build Hello Debug,
and Build Hello Release, which are selectable from the drop
down box located just below the menu bar (see Figure 3-17).

Figure 3-17. Opened Project with “Build Hello Release” Target Selected
chapter 3: Configuring & Using Metrowerks CodeWarrior with Embedix SDK 87

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Using CodeWarrior with Embedix SDK
" Self Hosted - x86 Target

One of the advantages of developing on a Linux machine is
that the API running on the development platform is the
same API which runs on the target. Thus, you can develop
and debug the large majority of your user space applications
on the desktop, even before the development hardware is
available. In consideration of this, Embedix includes a Self
Hosted -x86 target which builds and debugs against tools for
x86 platforms.

Build Hello Release settings are defaulted to apply code
optimization to the compiled application (i.e. gcc -O2 ...).
Applications to be debugged should generally not be code
optimized.

" Debug Target

Build Hello Debug settings are defaulted to apply no code
optimization to the compiled application (i.e. gcc -O0 ...).
Applications to be debugged should generally not be code
optimized.

" Release Target

Build Hello Release settings are defaulted to apply code
optimization to the compiled application (i.e. gcc -O2 ...).

Note: Even when you have selected Build Hello Release
(which has been optimized for non-debug purposes), the
compiler will default to including debug symbols as long as
the small black circle below the green “bug” is selected. (The
green “bug” is seen directly above the main pane and
immediately to the right of the "bullseye" icon.) So, be sure
to de-select this icon.

5. Set the Output Directory and Target Name.

The output directory, that is, the directory where the compiled
application (or kernel module) is placed is project dependent.
This directory can be set to one of several locations depending on
how you plan on developing and deploying your software.
88 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Using CodeWarrior with Embedix SDK
Typical deployment options include:

" Project specific /merge directory: The recursive contents of
the project specific /merge located at: /home/USER NAME/
project/PROJECT DIRECTORY/PROJECT.

" NAME/merge are included in the identical locations within
the target's root file system upon deployment. When the
user's application is located here, it will receive full benefit of
the Embedix SDK tools, including Lipo, GPL Tool, and
automatic deployment onto the target.

" tftpboot directory: When the tftpboot deploy method is used,
software is initially located on the host under a directory
traditionally named /tftpboot. This software is then moved
over to the target once the system has booted.

" NFS mount directory: NFS mounts are physically located on
the host development platform, but mounted via the network
and treated as if they were physically located on the target.

" Other defined directory: In cases where the Self Hosted -x86
target it used, the developer may choose any arbitrary
directory location. Other directories may be appropriate for
alternative deployment schemes.

Unless you plan on deploying the hello world application, you'll
probably want to rename your target. This is performed from the
same dialog as used to set the output directory (see Figure 3-18).
chapter 3: Configuring & Using Metrowerks CodeWarrior with Embedix SDK 89

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Using CodeWarrior with Embedix SDK
Figure 3-18. Output Directory

6. Review the GCC Arguments

We've pre-configured the compile and debug options for the
majority of uses, but it is probably worthwhile for you to review
them and custmize as needed.

Figure 3-19. GCC Arguments
90 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Using CodeWarrior with Embedix SDK
7. Edit your Source Code.

To Edit your source code, simply expand the “Sources” tree and
double-click the file which you would like to edit. If you've
performed the CodeWarrior configuration steps as described in
this document, your application will open up in your favorite
editor.

Figure 3-20. Sample View of Editor

8. Make/Build

CodeWarrior dramatically eases the make/build process. Simply
click the third icon from the target selection (which looks like an
envelope with a pencil writing on it). When you do, another
window will open showing the status of the compile.

Figure 3-21. Make File Compile Status
chapter 3: Configuring & Using Metrowerks CodeWarrior with Embedix SDK 91

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Using CodeWarrior with Embedix SDK
9. Test your Application on the Development Platform.

This step shows you how to run and debug your application on
the host platform.

9a. Ensure that Self Hosted-x86 Target is selected.

9b. Make/Build the application.

9c. From the menu bar, choose Project > Debug. This will start
the DDD (debugger) interface and connect it to the
architecture specific gdb.

Figure 3-22. DDD (Debugger) Interface
92 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Using CodeWarrior with Embedix SDK
Figure 3-23. DDD (Debugger) Menu

10. Change “Targets” for the Development Hardware.

Now that your application runs on the x86 platform, select the
Debug Target and make/build the application.

11. Test your Application on the Target Platform.

This step shows you how to run and debug your application on
the development hardware.

11a.Ensure that your target has been configured with gdbserver
via Target Wizard.

11b.Open a console (remotely or natively) on the target platform
and start gdbserver.

11c.From the menu bar, choose Project > Debug. This will start
the DDD (debugger) interface and connect it to the
architecture specific gdb.

11d.It may be convenient for you to use a gdbinit file which is
located in the same directory output directory, or in a
separate directory. To configure this, navigate to the
CodeWarrior Target settings Build Extras > Third Party
Debugger dialog, then enter:
/opt/Embedix/usr/X11R6/bin/ddd --debugger "opt/

Embedix/tools/bin/ARCH-linux-gdb -x -n GDBINIT_DIR/

gdbinit" %1

See the DDD and GDB manuals for detailed information on how to
debug using these tools.
chapter 3: Configuring & Using Metrowerks CodeWarrior with Embedix SDK 93

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Using CodeWarrior with Embedix SDK
94 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002
C H A P T E R 4 Debugging Using GDB and DDD
This chapter describes using the GDB and DDD debugging tools on
your target image after the target image has been deploy to your
target.

The GNU Debugger, GDB, is a debugging tool that provides source-
level run-time debugging. It is used during development to aid in
finding and fixing problems.

The Data Display Debugger, DDD, is a graphical user interface for
GDB. Effective debugging is easy using the graphical interface
provided by DDD rather than by using the command-line driven
GDB by itself. The DDD interface provides menus for GDB
functions and windows for GDB commands, code listing, and
variables. It also automatically runs GDB commands in the
background to provide useful information.

Note: When the cursor is positioned over an item of
interest in the source code, the variable types and values of
that item are displayed.

Understanding Remote Debugging
The word Host refers to the development host machine or system
that is used to develop the system software that will be deployed to
the target. This is the system that you run Embedix Target Wizard on
to create the target image.

The word Target refers to the target device or system to which you will
deploy your newly developed software.
chapter 4: Debugging Using GDB and DDD 95

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Understanding Remote Debugging
The supported debugging method is referred to as host-target
debugging, because GDB is used on the host system communicating
over a communication port to either gdbserver or gdbstubs running
on the target system.

General Steps to Debugging a Target Kernel or
Target Application

1. Prepare your target image using Embedix Target Wizard,
configuring it as needed for your debugging needs.

For example, you may to do one of the following from the tree
view of your target project:

! Kernel debugging requires startkgdb to be enabled.

! Kernel module debugging requires kernel module
support to be enabled.

! Serial ports or network drivers needed for
communication need to be enabled in the target kernel.
Application debugging can become more efficient
when IP network communications is enabled.

2. Deploy an OS that has been configured for debugging to your
target.

3. Connect a serial and/or networking cable between target and
host machines.

4. Configure host and target software for debugging
communication, including exporting appropriate paths.

5. Debug.

The following tutorials are included to help you set up a variety of
embedded debugging tasks that may be new to some software
engineers.

“Overview of Debugging an Embedix Target Image” on page 101
“Kernel Debugging at Boot Time” on page 102
“Kernel Debugging—Started from the Shell” on page 105
“Kernel Module Debugging” on page 106
96 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Using DDD and GDB from Target Wizard's Tools Menu
“Application Debugging over IP” on page 109
“Application Debugging over Serial Port” on page 111

Using DDD and GDB from Target Wizard's Tools
Menu
Launching DDD

The SDK 2.4 features the new 'Tools' menu in Target Wizard. From
this menu you are able to launch DDD and have the SDK
automatically attach it to a GDB for your board.

The SDK 2.4 installs DDD version 3.3.1 under /opt/Embedix/usr/
X11R6/bin/

When you launch DDD from Target Wizard, it will use the DDD
installed with the SDK. After DDD is launched, it will attach to a
specific GDB based on your current project settings (DDD cannot be
launched unless a project is open).

GDBs Used by the SDK

Under most circumstances, GDB needs only be configured against
the cross compiler used for a target board. The SDK has nine
preconfigured GDB's located under /opt/Embedix/tools/bin/.
These nine GDB's are listed below:

arm-linux-gdb
m68k-elf-gdb
m68k-coff-gdb
powerpc-linux-gdb
sh3-linux-gdb
sh4-linux-gdb
i386-linux-gdb
mips-linux-gdb
mipsel-linux-gdb
chapter 4: Debugging Using GDB and DDD 97

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Using DDD and GDB from Target Wizard's Tools Menu
Each GDB includes the name of the cross-compiler it is configured
for in the name. These are the most common nine cross-compilers
used in the SDK.

However, if your project uses a cross-compiler not listed above, or if
the default GDB does not work for your target, you have the option
of building your own GDB binary and placing it under <project-
directory>/emb-bin/ (it must be named 'gdb'). Some Lineo BSP's
have special GDB binaries which are placed in this directory for each
project. Please refer to each BSP's documentation for details.

In summary, DDD will first look to connect to a GDB under <project-
directory>/emb-bin/ (it will expect the file to be named 'gdb'). If it
cannot find GDB there, it will revert to using the cross-compiler
specific GDB found uner the /opt/Embedix/tools/bin/ directory.

Manual Execution of DDD

The Target Wizard option to launch DDD is available for
convenience in working with the most common debugging tasks.
However, you may wish to have more direct control over starting
DDD (e.g., you may wish to specify it's command-line arguments,
etc). Many BSP documentations have instructions for using ddd
and/or gdb from the command-line.

If DDD is already installed on your system, execute the debugger by
entering 'ddd' at a command-line prompt. If you do not have DDD
on your system, or wish to use the DDD provided with the SDK,
enter '/opt/Embedix/usr/X11R6/bin/ddd' at the comand-line. In
either case, command-line arguments may be used as desired (the '-
-help' option lists all command-line arguments).

Using DDD

DDD has detailed documentation about it's operations and feature-
set. Included on the SDK 2.4 CD is a DDD manual, GDB manual
and a DDD tutorial. The locations and filenames are listed below:

! <cdrom directory>/EmbedixSDKdddManual/pdf/ddd-3.3.1.pdf

! <cdrom directory>/EmbedixSDKdddManual/pdf/gdb.pdf
98 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Using DDD and GDB from Target Wizard's Tools Menu
! <cdrom directory>/EmbedixSDKdddManual/pdf/
ddd_debug_tutorial.pdf

For convenience, the following instructions are included for remote
debugging of an application.

1. Deploy the target application

Before you can debug your application on the target hardware,
you must first deploy the application to the target. Please refer
to the Target Wizard manual and your BSP documentation. You
must also deploy gdbserver (PROGRAMMING > DEBUGGING
> GDBSERVER).

If you wish to debug over TCP/IP instead of serial, you must
make sure that the package 'iproute2' is enabled in your
deployed filesystem. Package 'iproute2' (SYSTEM >
IPROUTE2). You must make sure that this package is built and
deployed or you will not be able to debug over TCP/IP.

2. Boot the target and start gdbserver Boot the target hardware.
From a console window, launch gdbserver:

gdbserver localhost:<portportportport> <full-path-to-applicationfull-path-to-applicationfull-path-to-applicationfull-path-to-application>

3. On the host, launch ddd.

To launch ddd, see the previous instructions on launching ddd
from the Tools menu in Target Wizard.

Once ddd is started, load the program that you wish to debug.
This means that you must have the application on both the target
and the host. Theapplication can be stripped on the target, but
must NOT be stripped on the host. If you wish do debug from
source code, you must also have the source code on the host and
in the same directory as the binary.

If you have built your application using Target Wizard, you will
find your source and binary under your <project_directory>/src/
<application_name> directory.

To load the program in ddd, select FILE > OPEN PROGRAM
menu. Browse to the appropriate directory, and select the
binary file. ddd will load the appropriate source code.
chapter 4: Debugging Using GDB and DDD 99

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Using DDD and GDB from Target Wizard's Tools Menu
4. Connect to the remote gdbserver

At the bottom of the ddd GUI is the gdb console. At the '(gdb)'
prompt, type 'Target Remote <gdbserver's IP address>:<port>'.

5. Debug the application normally.

Once you are connected to the remote gdbserver, you can debug
the application as you would debug it locally (e.g. breakpoints,
watch's, etc).

In addition to the remote configuration, you may wish to
configure some global options of your ddd. The following
descriptions are found in the ddd documentation, but are
included here for convenience.

Editor Configuration

1. In DDD, browse to the following menu:

Edit > Preferences > Helpers > Edit Sources

2. Enter “<EDITOR_NAME> @FILE@” (where
<EDITOR_NAME< is replaced with the actual name of the
editor of choice e.g. "kate @FILE@"). If the editor desired is
not on the path, the absolute path to its executable must be
entered.

Note: Some editors also have the ability to jump directly to the
line of code selected in DDD. If your selected editor is capable of
this, enter "<EDITOR_NAME> @FILE@ @LINE@"

3. Press the HELP button from the HELPERS screen for more
information.

4. When finished, select Edit > Save Options.

Web Browser Configuration

1. In DDD, browse to the following menu:

Edit > Preferences > Helpers > Web Browser
100 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Overview of Debugging an Embedix Target Image
2. Enter the name of the web browser desired. If the web browser
desired is not on the path, the absolute path to it's executable
must be entered.

3. Then select Edit > Save Options.

Tip of the Day

To turn off(/on) tip of the day:

1. In DDD, browse to the following menu: Edit > Preferences >
Startup.

2. Unselect(/select) tip of the day.

3. Then select: Edit > Save Options.

Warning

Any preferences you select under Edit > Preferences will not be kept
on the next instantiation of ddd unless you select Edit > Save
Options. You must do this or your changes will be lost the next time
you run the debugger.

Overview of Debugging an Embedix Target Image
The following is a brief tutorial on debugging an Embedix target
image using GDB with DDD and GDB’s associated agent programs,
gdbserver and gdbstubs. The intent is to provide immediate access
to the features of GDB that allow host-target debugging.

Debugging the Target from the Host

Usually GDB is used by itself on a single computer. In host-target
debugging, GDB is used on the host machine that was used to
develop the software image that was moved to the target system. To
provide this ability, GDB communicates with an agent program
running on the target system. A few simple GDB commands make
this possible.

Embedix SDK provides a copy of GDB for each processor
architecture in your chosen support package. These executables are
chapter 4: Debugging Using GDB and DDD 101

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Kernel Debugging at Boot Time
located at
/opt/Embedix/tools/bin/. (These versions of GDB will not conflict
with the copy of GDB provided in your host system.)

For GDB to debug a program running on your target board, it needs
a debug agent running on the target while GDB runs on the host
system.

Note: When GDB runs on the host, it must have access to
the source code and the unstripped application. (Usually a
stripped executable is deployed to the target to save space in
the target’s filesystem.)

Gdb agent programs used on the target include gdbserver and kgdb.

gdbserver is the user space application debug agent.

kgdb is the kernel debug agent derived from the gdbstub
source code. It is sometimes referred to as stub, gdbstub, or
kgdb (for kernel gdb).

When debugging the target system, run the version of GDB that
matches the target system.

This list of options is not comprehensive. The options available are
based upon the BSPs you have installed with Embedix SDK. They are
located in /opt/Embedix/tools/bin/ on your host system.

The following tutorials assume that the target is an intel i386
processor; therefore, the version of GDB used is “i386-linux-gdb.”
You can avoid typing the full path for GDB by adding “/opt/
Embedix/tools/bin/” to your path environment variable.

Kernel Debugging at Boot Time
Complete the following steps to start a debugging session for your
target’s kernel:

1. In the Target Wizard tree view,
102 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Kernel Debugging at Boot Time
1a. Enable Embedix > Kernel > Kernel hacking > Remote (serial)
kernel debugging with GDB.

1b. Enable appropriate serial drivers in the kernel.

Note: By default a stripped kernel has been placed in your
target image and an unstripped kernel has been left in the
project kernel source directory for use with GDB.

2. Connect a serial cable from the host system to the target system.

3. On the host system, open an X-term and then complete the
following steps at the prompt:

3a. Provide paths to the executables by entering this:

export PATH=/opt/Embedix/tools/bin/:/opt/Embedix/

usr/X11R6/bin/:$PATH

3b. Go to the kernel source directory.

This is under the project directory you created with Embedix
Target Wizard. The command will be similar to this:

cd /home/<username>/project/<projectname>

/src/linux/

Note: In order for GDB to use the symbol information, the
program’s source code must remain in the same directory
path it was in during compilation.

3c. Start the GDB executable for your target processor.

For example, to start GDB, enter this command:

i386-linux-gdb vmlinux

Alternatively, start DDD with GDB:

ddd --debugger i386-linux-gdb vmlinux
chapter 4: Debugging Using GDB and DDD 103

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Kernel Debugging at Boot Time
4. At the gdb prompt (in the GDB command window within DDD)
configure the remote connection by entering these two
commands:

set remotebaud 9600
target remote /dev/ttyS0

Note: Some agents have communication routines that time
out after lack of communication for a period of time.
Because of this, it is best to put GDB into “target remote”
mode within about 30 seconds of the time the agent is
started.

5. To debug kernel code closer to the entry point, start the stub from
the kernel command line.

Enter the following at the LILO Boot prompt (assuming you have
a label of “embedix” within the /etc/lilo.conf file, a serial port
connection to COM1, such as ttyS0, and a communication speed
of 9600 baud):

embedix gdb gdbttyS=0 gdbbaud=9600

You can also do this by adding an append line within the
/etc/lilo.conf file.

append="gdb gdbttyS=0 gdbbaud=9600"

After running LILO with this line in lilo.conf, the system will
start up in debug mode until the line is removed and LILO has
been run again.

The ‘permanent’ nature of a change like this is a good reason to
just use the command line unless you need to reboot many times
while debugging the kernel.

You can now debug the target kernel from the host system. For
more information about debuggers and how to use them, see
“Additional Resources” on page 113.
104 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Kernel Debugging—Started from the Shell
Kernel Debugging�Started from the Shell
Complete the following steps to start a debugging session for the
kernel:

1. In the Target Wizard tree view,

1a. Enable Embedix > Programming > Debugger > startkgdb.

1b. Enable Embedix > Kernel > Kernel hacking > Remote (serial)
kernel debugging with GDB.

1c. Enable appropriate serial drivers in the kernel.

Note: By default a stripped kernel has been placed in your
target image and an unstripped kernel has been left in the
project kernel source directory for use with GDB.

2. Connect a serial cable from the host system to the target system.

3. On the host system, open an X-term and then complete the
following steps at the prompt:

3a. Provide paths to the executables by entering this command:

export PATH=/opt/Embedix/tools/bin/:/opt/Embedix/usr/

X11R6/bin/:$PATH

3b. Go to the kernel source directory.

This is under the project directory you created with Embedix
Target Wizard. The command will be similar to this:

cd /home/<username>/project/<projectname>
/src/linux/

Note: In order for GDB to use the symbol information, the
program’s source code must remain in the same directory
path it was in during compilation.

3c. Start the GDB executable for your target processor.
chapter 4: Debugging Using GDB and DDD 105

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Kernel Module Debugging
For example, to start GDB, enter this command:

i386-linux-gdb vmlinux

Alternatively, start DDD with GDB:

ddd --debugger i386-linux-gdb vmlinux

4. At the gdb prompt (in the GDB command window within DDD),
configure the remote connection by entering these two
commands:

set remotebaud 9600
target remote /dev/ttyS0

Note: Some agents have communication routines that time
out after lack of communication for a period of time.
Because of this it is best to put GDB into “target remote”
mode within about 30 seconds of the time the agent is
started.

5. To start the debug agent,

5a. Boot the target.

5b. Log in as root.

5c. Enter the following command:

startkgdb -s <baudrate> -t <serial port>

For example:

startkgdb -s 9600 -t /dev/ttyS0

You can now debug the target kernel from the host system. For more
information about debuggers and how to use them, see “Additional
Resources” on page 113.

Kernel Module Debugging
Complete the following steps to start a debugging session for the
kernel:

1. In the Target Wizard tree view,
106 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Kernel Module Debugging
1a. Enable as modules any needed device drivers.

1b. Enable Embedix > Kernel > Kernel hacking > Remote (serial)
kernel debugging with GDB.

1c. Enable Embedix > Programming > Debugger > startkgdb.

1d. Enable Embedix > Kernel > Enable loadable module support
> Kernel module loader (CONFIG_KMOD).

1e. Enable appropriate serial drivers in the kernel.

Note: Make note of the path to the module to be debugged.
(This path is relative to the Linux source directory where
you will start the debugger.)

2. Deploy and boot the target image.

For more information, refer to the “Building and Deploying a
Target Image” section of your Embedix Target Wizard User
Guide or refer to your board support package documentation.

Note: By default a stripped kernel has been placed in your
target image and an unstripped kernel has been left in the
project kernel source directory for use with GDB.

3. Connect a serial cable from the host system to the target system.

4. Ensure that the module is in the correct location on the target,
and prepare the kernel to find the module.

4a. Move a copy of modules to be debugged to
/lib/modules/‘uname -r‘/<module_category>

4b. Enter this command: depmod -a

5. On the host system, open an X-term and then complete the
following steps at the prompt:

5a. Provide paths to the executables by entering this command:
chapter 4: Debugging Using GDB and DDD 107

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Kernel Module Debugging
export PATH=/opt/Embedix/tools/bin/:/opt/Embedix/usr/

X11R6/bin/:$PATH

5b. Go to the kernel source directory.

This is under the project directory you created with Embedix
Target Wizard. The command will be similar to this:

cd /home/<username>/project/<projectname>
/src/linux/

Note: In order for GDB to use the symbol information, the
program’s source code must remain in the same directory
path it was in during compilation.

5c. Start the GDB executable for your target processor.

For example, to start GDB, enter this command:

i386-linux-gdb vmlinux

Alternatively, start DDD with GDB:

ddd --debugger i386-linux-gdb vmlinux

6. At the gdb prompt (in the GDB command window within DDD),
configure the remote connection by entering these two
commands:

set remotebaud 9600
target remote /dev/ttyS0

Note: Some agents have communication routines that time
out after lack of communication for a period of time.
Because of this it is best to put GDB into “target remote”
mode within about 30 seconds of the time the agent is
started.

7. To start the debug agent,

7a. Boot the target.

7b. Log in as root.
108 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Application Debugging over IP
7c. Enter the following command:

startkgdb -s <baudrate> -t <serial port>

For example:

startkgdb -s 9600 -t /dev/ttyS0

You can now debug the target kernel from the host system. For
more information on debuggers and how to use them, see
“Additional Resources” on page 113.

8. At the gdb prompt, load the module for debugging. The path is
relative to the kernel source path from where GDB was started:

loadmodule <module_path>/<module_name>.o

The module symbols are now available to breakpoint and debug
as part of the kernel.

Note: If you are using a COM port other than ttyS0, you
must update the following entry in the file src/linux/
.gdbinit (replacing ttyS0 with your COM Port):

shell ./Documentation/kgdb/gdb_loadmodule $arg0

/dev/ttyS0 > .gdbtmp

You can now debug the target kernel from the host system. For more
information about debuggers and how to use them, see “Additional
Resources” on page 113.

Application Debugging over IP
Complete the following steps to start a debugging session for
debugging an application over IP:

1. In the Target Wizard tree view, complete these steps:

1a. Enable appropriate network drivers in the kernel.

1b. Enable Embedix > Programming > Debugger > gdbserver.

2. Prepare your custom application for debugging.
chapter 4: Debugging Using GDB and DDD 109

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Application Debugging over IP
2a. Compile the application program with the -g flag to provide
debugger symbols.

2b. Ensure that the original unstripped application remains in
the project source directory for use with GDB.

2c. Place a stripped copy of the application program in the target
image before deployment.

For detailed information, see Chapter 1, “Introduction to SDK
Tools.”

3. Deploy and boot the target image.

For more information, refer to the “Building and Deploying a
Target Image” section of your Embedix Target Wizard User
Guide or refer to your board support package documentation.

4. Connect host and target systems to the same network.

5. On the host system, open an X-term and then complete the
following steps at the prompt:

5a. Provide paths to the executables by entering this:

export PATH=/opt/Embedix/tools/bin/:/opt/Embedix/usr/

X11R6/bin/:$PATH

5b. Go to the application source directory.

If you added your custom application to your Embedix Target
Wizard project, you will find your application in the
following directory:

cd /home/<username>/project/<projectname>/src
/<custom_application_source>/

Note: In order for GDB to use the symbol information, the
program’s source code must remain in the same directory
path it was in during compilation.

5c. Start the GDB executable for your target processor.

For example, to start GDB, enter this command:

i386-linux-gdb <application_name>
110 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Application Debugging over Serial Port
Alternatively, start DDD with GDB:

ddd --debugger i386-linux-gdb <application_name>

6. At the gdb prompt (in the GDB command window within DDD),
configure the remote connection by entering this:

target remote <IP_address>:<Port_number>

Replace <IP_address> with the IP address of the target system. Use
a valid (unused) port number between 1024-65535.

7. At the shell prompt on the target system, start the target debug
agent by entering this:

gdbserver <IP_address>:<Port_number> <application-command-line>

Replace <IP address> with the IP address of the host system and be
sure to use the same port number used in the previous step.
Replace <application-command-line> with the desired application and
arguments.

Note: Some agents have communication routines that time
out after lack of communication for a period of time.
Because of this it is best to put GDB into “target remote”
mode within about 30 seconds of the time the agent is
started.

You can now debug your custom application from the host system.
For more information about debuggers and how to use them, see
“Additional Resources” on page 113.

Application Debugging over Serial Port
Complete the following steps to start a debugging session for
debugging an application over IP:

1. In the Target Wizard tree view, complete these steps:

1a. Enable appropriate serial drivers in the kernel.

1b. Enable Embedix > Programming > Debugger > gdbserver.
chapter 4: Debugging Using GDB and DDD 111

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Application Debugging over Serial Port
2. Prepare your custom application for debugging.

2a. Compile the application program with the -g flag to provide
debugger symbols.

2b. Ensure that the original unstripped application remains in
the project source directory for use with GDB.

2c. Place a stripped copy of the application program in the target
image before deployment.

For detailed information, see Chapter 1, “Introduction to SDK
Tools.”

3. Deploy and boot the target image

For more information, refer to the “Building and Deploying a
Target Image” section of your Embedix Target Wizard User
Guide or refer to your board support package documentation.

4. Connect a serial cable from the host system to the target system.

5. On the host system, open an X-term and then complete the
following steps at the prompt:

5a. Provide paths to the executables by entering this:

export PATH=/opt/Embedix/tools/bin/:/opt/Embedix/usr/

X11R6/bin/:$PATH

5b. Go to the application source directory.

If you added your custom application to your Embedix Target
Wizard project, you will find your application in the
following directory:

cd /home/<username>/project/<projectname>/src
/<custom_application_source>/

Note: In order for GDB to use the symbol information, the
program’s source code must remain in the same directory
path it was in during compilation.

5c. Start the GDB executable for your target processor.
112 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Additional Resources
For example, to start GDB, enter this command:

i386-linux-gdb <application_name>

Alternatively, start DDD with GDB:

ddd --debugger i386-linux-gdb <application_name>

6. At the gdb prompt (in the GDB command window within DDD),
configure the remote connection by entering these two
commands:

set remotebaud 9600

target remote /dev/ttyS0

7. At the shell prompt on the target system, start the target debug
agent by entering this:

gdbserver /dev/ttyS0 <application-command-line>

Replace <application-command-line> with the desired application and
arguments.

Note: Some agents have communication routines that time
out after lack of communication for a period of time.
Because of this it is best to put GDB into “target remote”
mode within about 30 seconds of the time the agent is
started.

You can now debug your custom application from the host system.
For more information about debuggers and how to use them, see
“Additional Resources” on page 113.

Additional Resources
These tutorials were provided specifically to show how to start a
debugging session in a way many software engineers may not have
previously encountered. To learn how to perform debugging with
GDB and DDD, see the following references:

! GDB User’s Manual. A copy can be found on the Embedix SDK
CD-ROM (browse the CD-ROM to index.html/documents/
Embedix Packages Technical References/gdb).
chapter 4: Debugging Using GDB and DDD 113

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Additional Resources
! DDD User’s Manual. This can also be found on the Embedix SDK
CD-ROM (browse the CD-ROM to index.html/documents/
Embedix Packages Technical References/ddd).

! Additional information about gdbstubs and kernel stubs are
found in the Linux kernel source tree under linux/
Documentation/gdb-serial.txt.
114 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002
C H A P T E R 5 Helper Utilities
This section discusses utilities available to SDK users that are
external to Embedix Target Wizard. Topics covered include:

“Building” on page 115
“Privileges” on page 116
“Deployment” on page 116

Building
Embedix Target Wizard uses a variety of external utilities to facilitate
the build process, and Builder.pm is central to this whole system.
It is a perl module that defines a class for building packages.
Builder.pm itself is architecture-neutral with respect to its
knowledge of building packages. However, for each architecture that
Embedix Linux supports, there will be a subclass of Builder.pm
which will be found in /opt/Embedix/emb-bin.

There are two important scripts that make use of Builder.pm and
its subclasses. The first is emb_mkproj, which is called whenever
you start a new project or change to a different project within
Embedix Target Wizard. Its purpose is to create the appropriate
directories and symlinks inside the specified project directory so that
the ECD information for Embedix Target Wizard can be initialized
properly and that the correct toolchain for building is used.

The other script that uses Builder.pm is emb_build. Its purpose
is to build a package for an Embedix Linux distribution. Embedix
Target Wizard invokes this script once for each package during the
build sequence. Together, these two scripts comprise the bulk of the
build system.
chapter 5: Helper Utilities 115

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Privileges
Privileges
Another important helper utility is suwrapper. The purpose of
suwrapper is to provide fine-grained root privileges for certain
programs for certain users. The privilege rules are defined in /opt/
Embedix/etc/suwrapper.conf. If you are familiar with sudo, you will
find suwrapper similar in concept. Without this program, neither
emb_mkproj nor emb_build would run properly unless you
were root. On the same note, if permission problems arise while
trying to use Embedix Target Wizard, suwrapper may not be
configured properly.

Deployment
emb_deploy is a Perl/TK script that facilitates the deployment of
an Embedix Linux target image. This script was intended to be
launched as a subprocess of Embedix Target Wizard, but it can be
used as a stand-alone application as well.

The man pages that are relevant to the previously mentioned
programs have been included here:

�emb_build� on page 117
�emb_mkproj� on page 118
�suwrapper� on page 119
�suwrapper.conf� on page 120
�tcconfig� on page 122
116 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Deployment
emb_build

NAME emb_build -- build a package for an Embedix distribution.

SYNOPSIS Usage
emb_build [OPTION]...

DESCRIPTION emb_build is a script that builds packages for an Embedix
distribution. It is a front-end to Builder.pm which provides a
framework for cross-compiling packages for a wide array of
architectures.

OPTIONS emb_build requires that the following options be specified:

--projectdir DIR

DIR should be the path to where the project files are stored. This
is usually $HOME/project.

--force

This forces a package to be built even if it theoretically doesn’t
need to be.

FILES $PRJ_BASE/buildmsg

This is a named pipe that STDOUT and STDERR get redirected
to so that external programs (such as Target Wizard) can monitor
the progress of a build.

$PRJ_BASE is currently defined as the string passed to --spec
modified by the regex, s-/build/rpmdir/SPECS.*--;
chapter 5: Helper Utilities 117

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Deployment
emb_mkproj

NAME emb_mkproj - create a new Embedix Target Wizard project.

SYNOPSIS Usage
emb_mkproj [OPTION]...

DESCRIPTION The purpose of emb_mkproj is to create a new Embedix Target
Wizard project. This creates a project directory if necessary and
populates that directory with the data needed for configuring and
building an Embedix distribution.

OPTIONS emb_mkproj requires that the following parameters be specified:

board BOARD

BOARD should be the name of a perl module that is a subclass
of Defaults that distills the architecture-specific information
needed for cross-compilation.

projectdir DIR

DIR should be the path to where the project files will be stored.
The specified directory will be created if it doesn't exist. By
convention, Target Wizard defaults to using paths of this form:

$HOME/project/
uid UID

UID should be the user id of the current user.

gid GID

GID should be the group id of the current user.
118 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Deployment
suwrapper

NAME suwrapper - fine-grained root privilege provider

SYNOPSIS Usage
suwrapper <COMMAND> [ARG]...
Example
 $ suwrapper emb_build \
 --spec=glibc.spec \
 --pkg=glibc \
 --board=mpc8260adsp \
 --srpm=glibc-2.2.1-2.srpm

DESCRIPTION The purpose of suwrapper is to provide fine-grained root privileges.
It is fine grained in the sense that the set of executables and the set
of users that may have root privileges is specified in a configuration
file called /opt/Embedix/etc/suwrapper.conf. Those of you who are
familiar with sudo(8) will find suwrapper to be familiar in concept.

suwrapper itself is suid, so it is promoted to root privileges
automatically by Linux when it is run. It reads the file /opt/Embedix/
etc/suwrapper.conf, which contains a list of commands and the
users who can execute them. The list of commands should ALWAYS
be specified with absolute paths.

If a relative path is specified as the command to run, then

1. The PATH is searched.

2. The first file that matches has its fullpath expanded and is used
to see if there is a match.

3. If the requested program is found in the configuration file, and
the user who originally called suwrapper is listed, then the
command is executed.

Note that suwrapper also automatically performs a chroot to /opt/
Embedix for certain hardcoded programs. Specifically, it will do so
for fakeroot and emb_build. In order to make sure that the original
user can run inside the chroot, /etc/passwd and /etc/group are
copied to /opt/Embedix/etc before chroot-ing.
chapter 5: Helper Utilities 119

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Deployment
Finally, if the command to be executed is fakeroot, privileges are
returned to those of the original calling user (since fakeroot will take
care of spoofing certain operations that require root privileges).

FILES
/opt/Embedix/etc/suwrapper.conf

This is the primary configuration file for suwrapper. For more
information, see suwrapper.conf(8).

/etc/passwd

This file is used to identify users. It is also copied into /opt/
Embedix/etc to facilitate chroot-ing.

/etc/group

This file is used to identify groups. It is also copied into /opt/
Embedix/etc to facilitate chroot-ing.

suwrapper.conf

NAME suwrapper.conf - configuration for suwrapper

DESCRIPTION suwrapper.conf is the configuration file for suwrapper. It is expected
to reside in /opt/Embedix/etc. It is very important that suwrapper be
properly configured, because many key Target Wizard operations
require privileged write permissions to work properly.

FORMAT
Comments

Lines beginning with '#' are ignored.

Commands and who can execute them

The first token is a command. It is recommended that the full
path be given to minimize the risk of executing a trojan. All
subsequent tokens are login names of those who are authorized
to execute the said command.

EXAMPLE

A sample suwrapper configuration file. Suwrapper is used to
run some
120 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Deployment
programs with root user permissions, these programs are listed
here along

with the users who are allowed to run the command.

#

Lines beginning with a # are ignored as are empty lines.

#

Format is as follows:

#

command user1 user2 user3 ...

/opt/Embedix/emb-bin/emb_build knox root seh mattw tbird seth
beppu

/opt/Embedix/emb-bin/emb_mkproj knox root seh mattw tbird seth
beppu

/opt/Embedix/usr/local/bin/fakeroot knox root seh mattw tbird
seth beppu

/opt/Embedix/bin/mount knox root seh mattw tbird seth
beppu

/opt/Embedix/bin/umount knox root seh mattw tbird seth
beppu

/opt/Embedix/bin/tar knox root seh mattw tbird seth
beppu

/opt/Embedix/bin/cp knox root seh mattw tbird seth beppu

DO NOT DO THIS AS IT IS A SECURITY RISK:

#mount knox
chapter 5: Helper Utilities 121

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Deployment
tcconfig

NAME tcconfig - toolchain configuration for the Embedix SDK

DESCRIPTION tcconfig files describe the various characteristics of a toolchain for a
given architecture. The format of these files is line-based, where each
line is of this form:

 VARIABLE=value

The build system uses the information found in these files to
properly invoke the appropriate cross-compiler for a given project.

VARIABLES The following is a description of the variables found in a tcconfig file.
Most of these are self-explanatory.

TC_TARGET_PREFIX

This is the prefix that is prepended to the cross-compiler (such
as i386-linux-gcc)

TC_KERNEL_IMAGE_NAME

This is the name of the kernel image.

TC_KERNEL_ARCH

This is the architecture of the kernel.

TC_RPM_ARCH

This is the architecture of the RPM executable.

TC_ARCH_DESCRIPTION

This is a string used by Target Wizard to refer to this toolchain.

TC_GCC_INCLUDE_PATH
TC_GCC_LIBRARY_PATH

These are paths that gcc uses to compile and link with the
appropriate files for a given architecture.

TC_SIZE_SHORT
TC_SIZE_INT
TC_SIZE_LONG
TC_SIZE_FLOAT
122 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Deployment
TC_SIZE_DOUBLE

These are architecture-specific data sizes.

TC_BOARD

This is the name of the board that this particular toolchain config
applies to.

EXAMPLE /opt/Embedix/tools/i386.tcconfig

 TC_TARGET_PREFIX=i386-linux
 TC_KERNEL_IMAGE_NAME=bzImage
 TC_KERNEL_ARCH=i386
 TC_RPM_ARCH=i386
 TC_ARCH_DESCRIPTION=GNU/Intel 386
 TC_GCC_INCLUDE_PATH=/opt/Embedix/tools/lib/

gcc-lib/i386-linux/2.95.2/include:/opt/
Embedix/tools/lib/gcc-lib/i386-linux/2.95.2/
../../../../i386-linux/include:/opt/Embedix/
tools/lib/gcc-lib/i386-linux/2.95.2/../../
../../include/g++-3

 TC_GCC_LIBRARY_PATH=/opt/Embedix/tools/lib/
gcc-lib

 TC_SIZE_SHORT=2
 TC_SIZE_INT=4
 TC_SIZE_LONG=4
 TC_SIZE_FLOAT=4
 TC_SIZE_DOUBLE=8
 TC_BOARD=i386_default-2.0

The tcconfig files are expected to be in the /opt/Embedix/tools
directory.

SEE ALSO

Builder(3pm), &Builder::parse_twcfg
chapter 5: Helper Utilities 123

Embedix SDK Lineo Book Template 1.04a

May 10, 2002

Deployment
124 Embedix SDK Tools

Embedix SDK Lineo Book Template 1.04a

May 10, 2002
A P P E N D I X Manual Method of Packaging
This section provides a conceptual overview to manually creating the
essential components of an Embedix package. We recommend you
review this section to gain a fundamental understanding of
packaging concepts, then refer to “Packaging with Package Editor”
on page 5 and use Package Editor to create and edit your custom
packages.

This section covers the following topics:

“What is an Embedix Package?” on page 125
“Creating an LBC” on page 126
“Creating an ECD” on page 136
“Using a Tarfile, SRPM, or CVS Directory For Source” on

page 151
“Creating an SRPM” on page 153

What is an Embedix Package?
An Embedix package consists of at least three files:

! An LBC (Lineo Build Control) file containing the build control
instructions for a package

! An ECD (Embedix Component Description) file containing
information relevant to Target Wizard

! A source file (which could be a tarfile, SRPM file, or CVS
directory) containing the source code and spec file of the package
Appendix: Manual Method of Packaging 125

Place Product Name and Version Here Lineo 1.05a

Creating an LBC

May 10, 2002
Note: A package is permitted to have one or more patch
files that will be applied after the SRPM or tarfile has been
unpacked and prepared. These patches are activated by the
presence of the %patches section in the LBC file.

Creating an LBC
The Embedix SDK builder software provides default build
instructions for all packages. These defaults are contained in the
Builder.pm file and should not be modified. They can, however, be
overridden with entries in buildcontrol files.

A Lineo buildcontrol (LBC) file is used to provide information and
build instructions to the SDK build engine. An LBC file is required
for every software package.

Buildcontrol File Features

An LBC file has two important features:

! Granular “build” sections. In an LBC file, the build section is
divided into the %makec and %makeb sections. This means that
for most builds, a lengthy configure and rebuild-from-scratch
step can be avoided.

! Independent sections. Each section provides either data or a
shell script fragment. These sections are used at appropriate
times in the build process.

Buildcontrol File Sections

The following table lists all the the sections available for use in an
LBC file. Some sections are required, but most are not. Default build
instructions exists for all SDK packages, so most sections are added
to an LBC file only as needed to override a default.

Section Purpose

%pkg_file Source name (for example, linux-2.4.2-1.src.rpm).
Required for every package.
126 Lineo Book Template

Place Product Name and Version Here Lineo 1.05a

Creating an LBC

May 10, 2002
%patches Package specific patches. (The Builder automatically
determines the patch level. Note that these patches are
applied after any patches called out by the specfile
when using an SRPM as the package file.)

%bld_dir_name Build directory name. (This is required only if the
directory created by the SRPM/tar file does not
correlate with that of the package file name.)

%cflags Compile flags applied to the CFLAGS of a package

%cfgopts Extra options for configuration stage (for example, this
is used with glibc)

%spec Spec file name (This is only needed if the name of the
spec file within an SRPM is not correlated to the
SRPM name.)

%bin Linux kernel name, including any subdirectory
prefixes (for example, on x86 it may be arch/i386/
boot/bzImage). Applies to the kernel only.

%bld_targ The specific name of the make target required to build
the Linux kernel for this platform (zImage, vimage,
bzImage, linuz). Applies to the kernel only.

%makep Instructions for the package prep stage

%makec Instructions for doing one-time configuration

%makerc Instructions for doing a repeat of the dynamic
configuration of the package

%makeb Instructions for compiling the source in the package

%makei Instructions for building the virtual rooted target
package (similar to the install section within an
SRPM)

%makest Instructions to stage components in the dev_image.
dev_image is the location of libraries and other files
needed to compile on a host system for a target. For
instance, you may require a library from one package
in order to build another, but the library itself is not
required on the target.
Appendix: Manual Method of Packaging 127

Place Product Name and Version Here Lineo 1.05a

Creating an LBC

May 10, 2002
Buildcontrol Inheritance

Default build instructions that are contained in the Builder.pm file
should not be modified. They can, however, be overridden at any
level as needed with sections and section entries in LBC files.

The builder looks for LBC files in three places: the generic, board,
and local directories, which are located in the directory:

<project_name>/config-data/buildcontrol/

The generic directory contains package-dependent LBC files and
sections that are valid for any board or project.

The board directory contains architecture-dependent LBC files and
sections that override above behaviors and fix very specific
architecure build problems.

The local directory contains local project development LBC files and
sections that override any of the above sections. Personal software
development should be specified in this section.

Sections in LBC files from each of these locations are merged, giving
priority first to local, then to board, and then generic.

End-user LBC files would normally be placed in the local
subdirectory and would have precedence over all other LBC files.

Example 1:

The following example shows the masking behavior for a project that
has LBC files with section entries in the four locations described. In
this example, the sections included in each LBC file are represented
with letters.

A = %makep
B = %makec
C = %makeb
D = %makei

%makedc Instructions for removing object code and other
generated material, and to place in a state ready to be
configured and built again.
128 Lineo Book Template

Place Product Name and Version Here Lineo 1.05a

Creating an LBC

May 10, 2002
E = %makedc

Location LBC File Sections

builder.pm A B C D E

generic A - - D E

board - - C - E

local A - - - -

 | | | | E from board/<pkgname>.lbc

 | | | D from generic/<pkgname>.lbc

 | | C from board/<pkgname>.lbc

 | B from Builder.pm (SDK default)

 A from local/<pkgname>.lbc

The point of this example is to demonstrate that each of the files can
have identical sections, but the behavior is dependant on a specific
hierarchy. If you want to override a certain section, then you only
need to include that section (plus the only required section %pkg_file)
in the LBC file. In other words, you do not need a complete LBC file
in order to override one section.

Example 2:

! /generic/bash.lbc has the sections %makei, %bin, %pkg_file,
and %makeb

! /board/bash.lbc has two sections, %makedc and %makei

! /local/bash.lbc has two sections, %makeb and %makei

Here, the builder would use the local version of %makeb and
%makei, the board version of %makedc, and the generic version of
all the rest.
Appendix: Manual Method of Packaging 129

Place Product Name and Version Here Lineo 1.05a

Creating an LBC

May 10, 2002
This way, if there is a global change to the %bin section for bash, you
only need to change the %bin in the generic directory and everything
will still build safely for the different boards because all projects will
“inherit” the change.

Build Phases

For most packages the first time a package is built the following
sections will be executed in this order. (The build sequence for
subsequent builds will be determined by the Package build steps.)

%makep
%makec
%makeb
%makei
%makest

%pkg_file

The name of the file containing the source materials for this
package. This is the only section of the LBC file that is absolutely
required. Other sections may be optional or may utilize default
behavior provided by the build engine itself.

This name is matched against several patterns to determine the
appropriate action for certain build phases (particularly the "install
source" or "prep" phase).

The following patterns are detected:

tar.gz, .tgz, or .bz2 = Indicates a compressed archive of a source
tree

.src.rpm = Indicates a source RPM file (SRPM) with its own
source archive, specfile, and optional patches

CVSROOT = Indicates a source repository

%patches

This indicates a list of patch filenames for patches that are applied at
the end of the "install source" or "prep" phase. These are source
130 Lineo Book Template

Place Product Name and Version Here Lineo 1.05a

Creating an LBC

May 10, 2002
patches that are applied to the source tree after it has been installed
during that phase (in the build directory for this package).

The patches themselves reside in one of the subdirectories of
<project/name>/Packages (generic, board, or local).

%bld_dir_name

This is the name of the directory where the source materials reside,
in the project directory under <project/name>/build/rpmdir/
BUILD/bld_dir_name.

%cflags

This section indicates compilation flags that are appended to the
normal CFLAGS used by a package. These flags are put into the
environment variable OPT_FLAGS before the build of a particular
package. They override the project CFLAGS during the package
compilation. The default CFLAGS can be found in the following file:
(project)/config-data/buildcontrol/board/bsp_config

%cfgopts

This section has extra options used for the configure script. The
glibc package configuration step can be customized from the
command line. The extra options can be passed in by including
them in this section.

%spec

The spec file name doesn't match the short name on some packages.
(Currently glibc is the only package that falls into this category.) This
allows the system to explicitely name the spec file for an RPM build.

%bin

The name and/or location of the kernel at the end of the build cycle.

%bld_targ

This section indicates the "build target" name, or the name of the
resulting kernel image after a kernel build. This section is only used
Appendix: Manual Method of Packaging 131

Place Product Name and Version Here Lineo 1.05a

Creating an LBC

May 10, 2002
for the kernel. The actual kernel image name varies depending on
the architecture and deployment system used and can vary from bsp
to bsp.

Some example names are:

 zImage
 vimage
 bzImage
 vmlinuz

%makep

These are the instructions for the "prep" phase, which is the phase
during which the source materials for a package are installed into the
project build area. The source materials are located in one of the
directories: <project/name>/Packages/{generic, board, local} and
are specified by the %pkg_file and %patches sections.

The result of performing this stage is that the package source
materials are located under <project/name>/build/rpmdir/BUILD
directory and are ready to build.

If this section is missing, then the default behavior depends on the
package type. The package type is determined by matching the
pkg_file name to one of the patterns mentioned above. This can be
archive, SRPM, or CVS.

For an SRPM, the default behavior is to install the software using the
"rpm -bp" command. This means that the SRPM is installed, placing
the SRPM archive and patches into <project/name>/build/rpmdir/
SOURCES, and the specfile into build/rpmdir/SPECS. Then the
software is placed into <project/name>/build/rpmdir/BUILD/
<bld_dir_name>.

For an archive, the default behavior is to untar the software directly
into <project/name>/build/rpmdir/BUILD.

For a CVS repository, the behavior is to check out the software into
<project/name>/build/rpmdir/BUILD.

No matter what the package type, any patches that are specified are
then applied to the resulting source tree. This means that end-user
132 Lineo Book Template

Place Product Name and Version Here Lineo 1.05a

Creating an LBC

May 10, 2002
patches can be applied on top of source that has already been patched
by the RPM build-prep operation.

Note that the patches reside in one of the Packages subdirectories
(generic, board, or local), just like other source package formats.
Also, the patches are applied in a way that auto-determines the
appropriate patch level based on information in the patch and in the
source tree.

After this phase is complete, the package state file is created
(<project/name>/build/packagestate/<pkg>.st) and a "bp" entry is
made in the file. This indicates that the software source has been
"prepped" or installed in the build area of the project.

If you need to re-install the software (in order to return it to a pristine
state), you can remove the package state file and build the package
from Target Wizard. This will cause the builder to reprep the
software. The package state files are located in the
<project_name>/build/packagestate/"package".{bi,st}.

If the builder tries to reprep the software and a directory already
exists for it under the BUILD directory, then the installed directory is
moved from <project_name>/build/rpmdir/BUILD/<bld_dir_name>
to <project_name>/build/rpmdir/BUILD/<bld_dir_name>.modified.
This is done to preserve any changes that the user may have made to
the source.

If <bld_dir_name>.modified already exists, then the builder stops
and displays an error message, allowing the user to correct the
situation. You may remove or rename the .modified directory.

%makec

These are the instructions used to configure the software for
building. This usually consists of running a configuration script,
which auto-detects many aspects of the host system, including tools
and libraries. This step usually reverts the source tree into a state
where a full recompile is required. Hence it has been split out into
its own phase (separate from the "build" phase).

After this phase is run, an entry "cfg" is made to the package state
file. You can force a package to run through its configure phase by
Appendix: Manual Method of Packaging 133

Place Product Name and Version Here Lineo 1.05a

Creating an LBC

May 10, 2002
removing this entry from the package state file found in the
following location: <project_name>/build/packagestate/
<pkg_name>.st.

The default action in the Builder.pm file for the phase is
"makeconfigure."

%makerc

This is only used by the kernel and is used to configure the kernel
after the first configuration has already been run. This saves time,
because certain operations do not need to be run every time you
reconfigure the kernel.

%makeb

These are the actual instructions used to build the software from the
source code. At the end of this phase, the software binaries have been
created, but they still reside inside the source tree under
<project/name>/build/rpmdir/BUILD/<bld_dir_name>.

These instructions are run for a normal "build" operation and
should be able to remake the software if it has been changed. In
particular, it should support incremental rebuild so that only the
modified or unbuilt files are compiled (or recompiled).

The default behavior for this stage (if this section is missing) is
simply "make," at the root of the <bld_dir_name>.

%makei

These instructions are used to install the binaries from the software
(usually to a "fake" root area) where they can be collected for
placement into a tarfile.

If this section is empty, then packages of type SRPM result in a call
to "rpm -bi." This means that the instructions in the package
SPECFILE are used to install the software, and the %Files section of
the SPECFILE is used to populate the contents of ultimate tarfile.

After this step is complete, a tarfile for this package should be found
in the directory <project>/build/tarfiles. If there is a link in that
134 Lineo Book Template

Place Product Name and Version Here Lineo 1.05a

Creating an LBC

May 10, 2002
directory (back to the bsp directory where the prebuilt binaries are),
then that link is replaced with the real file that results from the build.

%makest

This phase is used to "stage" build materials into the dev_image area
<project/name>/build/dev_image. The dev_image is an area where
include files, libraries, and other development materials are placed.
Other packages may reference these files in order to build. By
referencing these files, the target enviroment will not reference host
libraries and include files.

The %makest typically looks something like this:

tar zxf %TARDIR/%PKG.tar.gz ./ursr/lib ./usr/include

This will extract the files in /usr/lib, include and install them in the
dev_image directory.

%makedc

Commands listed in this phase can be used to restore a source tree
to a completely fresh state. If a "Makefile" system is used, a "make
clean" would be the default behavior. This step does not remove user
modifications. This phase is called before a forced rebuild of a
package and should result in all other build phases being run, except
for the prep phase.

Example

The following is a simple hello.lbc file.

hello_world build controls

%pkg_file
hello_world-1.0.tgz

%bld_dir_name
hello_world-1.0

%makedc
make clean

%makep

%makep
make
Appendix: Manual Method of Packaging 135

Place Product Name and Version Here Lineo 1.05a

Creating an ECD

May 10, 2002
%makei
if [-e $BUILD_ROOT]
then rm -rf $BUILD_ROOT

fi
mkdir -p $BUILD_ROOT/usr/bin
CP $BUILD_DIR/hello_world $BUILD_ROOT/usr/bin

Creating an ECD
The Embedix Component Description (ECD) file contains
information that Target Wizard uses to provide descriptions and
options to build packages. Many packages require simple ECD files
that can be written with a few minutes’ worth of work.

ECD format is similar to nested tags in HTML. To guide you through
the steps involved in creating a typical ECD file, we use a sample
application Hello World. The examples presented in this sample
ECD should be sufficient for most applications.

Note: For further examples of ECDs, review the ECDs in
/opt/Embedix/embedix-2.0/config-data/ecds on your build
platform (the development host machine).

A Typical ECD File

The following example is an ECD that begins with a comment (a line
beginning with a #) on line 1:

hello_world.ecd:

#ECD for Hello World.

Where this package appears in the component tree depends on
which group is specified. If you don't specify a group, then the
package will appear under the root Embedix component. Consider
136 Lineo Book Template

Place Product Name and Version Here Lineo 1.05a

Creating an ECD

May 10, 2002
creating a new group for your package named “custom,” as follows
on lines 2 and 3:

hello_world.ecd:

#ECD for Hello World.

<GROUP Custom>

</GROUP>

Each package is contained in a component description with a unique
name:

hello_world.ecd:

#ECD for Hello World.

<GROUP Custom>

<COMPONENT hello_world>

</COMPONENT>

</GROUP>

The SRPM file and the specpatch are also specified. These are legacy
fields since the source code and patches are specified in the .lbc file.
Specpatch is not normally used unless you are adding an SRPM.
Only the base of the SRPM file needs to be named.

For example, if your SRPM were named hello_world-1.0-1.src.rpm,
you would need to enter “SRPM=hello_world” only.

hello_world.ecd:

#ECD for Hello World.

<GROUP Custom>

<COMPONENT hello_world>

SRPM=hello_world
Appendix: Manual Method of Packaging 137

Place Product Name and Version Here Lineo 1.05a

Creating an ECD

May 10, 2002
<SPECPATCH></SPECPATCH>

</COMPONENT>

</GROUP>

Next, add a help message for this component:

hello_world.ecd:

#ECD for Hello World.

<GROUP Custom>

<COMPONENT hello_world>

SRPM=hello_world

<SPECPATCH></SPECPATCH>

<HELP>This is my custom application.

It's good!

</HELP>

</COMPONENT>

</GROUP>

This help message appears in the Description tab in Target Wizard
when the component or node is selected. (This particular help
section can have multiple lines; you can follow this example if you
need a longer message.)

Now add some base information for the component:

hello_world.ecd:

#ECD for Hello World.

<GROUP Custom>

<COMPONENT hello_world>

SRPM=hello_world
138 Lineo Book Template

Place Product Name and Version Here Lineo 1.05a

Creating an ECD

May 10, 2002
<SPECPATCH></SPECPATCH>

<HELP>This is my custom application.

It's good!

</HELP>

TYPE=bool

DEFAULT_VALUE=1

PROMPT=Include custom application hello_world?

</COMPONENT>

</GROUP>

The type field is assigned a boolean value, so that you have two
choices (include hello_world or exclude hello_world). The
default_value field will be 1, because hello_world will probably be
included most of the time. The prompt field contains a string that
will appear in the Node list in Target Wizard.

Now think about what this component provides and what it requires
for and from other packages. In this case, this component provides
the application hello_world. Suppose that it is dynamically linked to
libc.so, but to no other libraries (which you could determine by using
the ldd command).

hello_world.ecd:

#ECD for Hello World.

<GROUP Custom>

<COMPONENT hello_world>

 SRPM=hello_world

 <SPECPATCH></SPECPATCH>

 <HELP>This is my custom application.

 It's good!

 </HELP>

 TYPE=bool
Appendix: Manual Method of Packaging 139

Place Product Name and Version Here Lineo 1.05a

Creating an ECD

May 10, 2002
 DEFAULT_VALUE=1

 PROMPT=Include custom application hello_world?

 <PROVIDES>

 hello_world

 </PROVIDES>

 <REQUIRES>

 libc.so.6

 </REQUIRES>

</COMPONENT>

</GROUP>

Now any other package that requires hello_world can specify
hello_world in its REQUIRES field. Similarly, the package providing
libc.so must have libc.so.6 in its PROVIDES field (which it does).

To tell Target Wizard which files are needed for application
hello_world, a KEEPLIST option is used. If you want all files, include
this line:

KEEPLIST=/

Suppose that your application installs the files /usr/bin/hello_world,
/usr/local/share/hello_world/hello_world.cfg, and /usr/man/
man1/hello_world.1. If you want the executable and the
configuration file on an embedded target but not the documentation
(the man page), your ECD should be as follows:

hello_world.ecd:

#ECD for Hello World.

<GROUP Custom>

<COMPONENT hello_world>

SRPM=hello_world

<SPECPATCH></SPECPATCH>

<HELP>This is my custom application.

It's good!
140 Lineo Book Template

Place Product Name and Version Here Lineo 1.05a

Creating an ECD

May 10, 2002
</HELP>

TYPE=bool

DEFAULT_VALUE=1

PROMPT=Include custom application hello_world?

<PROVIDES>

hello_world

</PROVIDES>

<REQUIRES>

libc.so.6

</REQUIRES>

<KEEPLIST>

/usr/bin/hello_world

/usr/local/share/hello_world/hello_world.cfg

</KEEPLIST>

</COMPONENT>

</GROUP>

Note: You don't need to include directories in the keeplist,
only the specific files. If you do enter a directory in the
keeplist, then Target Wizard is instructed to place that entire
directory tree on the target.

Finally, some miscellaneous options can be included (omitting them
will not break anything).

STATIC_SIZE contains the amount of memory used by this
component. Use the command size <objfileobjfileobjfileobjfile> to determine size of
every item in your keeplist. Use the decimal value output. (For
example, the command size hello_world might display a “dec”
size of 1343.) Don’t forget to add up all files in the keeplist.
Appendix: Manual Method of Packaging 141

Place Product Name and Version Here Lineo 1.05a

Creating an ECD

May 10, 2002
STORAGE_SIZE is the size of all the files in the keeplist of this
component. They can be found simply by using the ls command
with the -l option.

STARTUP_TIME is the time (in seconds) that is required to start this
component for the first time. If you think this is significant and you
know the value, specify it using this field. This is normally set to 0.

All these values are used for size and time calculations by Target
Wizard. If they are not included, Target Wizard will assume the value
is 0. Although this does not affect whether you can build, be aware
that your size calculations will be off if these values are not correct.

For the example, assume that /usr/bin/hello_world requires 25,792
bytes on disk, and /usr/local/share/hello_world/hello_world.cfg
requires 981 bytes, and hello_world’s memory size is 15,607. Also
assume that STARTUP_TIME is insignificant. The ECD example
then becomes this:

hello_world.ecd:

#ECD for Hello World.

<GROUP Custom>

<COMPONENT hello_world>

 SRPM=hello_world

 <SPECPATCH></SPECPATCH>

 <HELP>This is my custom application.

 It's good!

 </HELP>

 TYPE=bool

 DEFAULT_VALUE=1

 PROMPT=Include custom application
hello_world?

 <PROVIDES>

 hello_world
142 Lineo Book Template

Place Product Name and Version Here Lineo 1.05a

Creating an ECD

May 10, 2002
 </PROVIDES>

 <REQUIRES>

 libc.so.6

 </REQUIRES>

 <KEEPLIST>

 /usr/bin/hello_world

 /usr/local/share/hello_world/
hello_world.cfg

 </KEEPLIST>

 STATIC_SIZE=15607

 STORAGE_SIZE=26773

 STARTUP_TIME=0

</COMPONENT>

</GROUP>

Build Options in an ECD

Now you can explore using Target Wizard for more advanced uses of
build options.

Build Option 1

The first type of build option allows you to include or exclude groups
of files. For example, suppose application hello_world has a support
application that provides online help called hello_world-help. You can
provide this option simply by adding an OPTION section to the ECD:

hello_world.ecd:

#ECD for Hello World.

<GROUP Custom>

<COMPONENT hello_world>

 SRPM=hello_world
Appendix: Manual Method of Packaging 143

Place Product Name and Version Here Lineo 1.05a

Creating an ECD

May 10, 2002
 <SPECPATCH></SPECPATCH>

 <HELP>This is my custom application.

 It's good!

 </HELP>

 TYPE=bool

 DEFAULT_VALUE=1

 PROMPT=Include custom application
hello_world?

 <PROVIDES>

 hello_world

 </PROVIDES>

 <REQUIRES>

 libc.so.6

 </REQUIRES>

 <KEEPLIST>

 /usr/bin/hello_world

 /usr/local/share/hello_world/
hello_world.cfg

 </KEEPLIST>

 STATIC_SIZE=0

 STORAGE_SIZE=26773

 STARTUP_TIME=0

<OPTION include-hello_world-help>

 TYPE=bool

 DEFAULT_VALUE=1

 PROMPT=Include online help for hello_world?

 <HELP>If you have room for the online help,
you should probably include it. If you don't
include it, hello_world will still work, but the
user might need to consult a hard copy manual.
144 Lineo Book Template

Place Product Name and Version Here Lineo 1.05a

Creating an ECD

May 10, 2002
 </HELP>

 <KEEPLIST>

 /usr/local/share/hello_world/
hello_world.help

 </KEEPLIST>

 STATIC_SIZE=0

 STORAGE_SIZE=7548

 STARTUP_TIME=0

</OPTION>

</COMPONENT>

</GROUP>

Note: Each option must be enclosed in an OPTION tag, and
all fields under the component field can also be under an
OPTION field.

Build Option 2

The second kind of build option allows you to change configuration
at build time.

For this example, suppose you want to include debugging symbols
in the hello_world binary. Suppose too that your spec file has the
following in the build section:

hello_world.spec:

%Build

%{DESTDIR}

CFLAGS="-O2";export CFLAGS

make

Appendix: Manual Method of Packaging 145

Place Product Name and Version Here Lineo 1.05a

Creating an ECD

May 10, 2002
To enable debugging, you need to pass -g to the compiler in the
CFLAGS environment variable. To do this, first create a placeholder
for the option in a copy of the spec file:

hello_world.spec.new:

%Build

%{DESTDIR}

CFLAGS="-O2 !!HELLO_WORLD_CFLAGS!!";export
CFLAGS

make

Another method is to just add a %cflags section to the
hello_world.lbc file. For example:

%cflags -g

Creating a Specpatch File

Specpatch files are needed only when configuration options need to
be included in the RPM spec file. Otherwise, specpatch files can be
omitted.

If a specpatch file is required, this is the point at which you need to
create it. If hello_world.spec is the original and
hello_world.spec.new contains your changes, you can create the
specpatch using the command diff -c hello_world.spec
hello_world.spec.new > hello_world.specpatch. You then copy
hello_world.specpatch to /opt/Embedix/embedix-2.0/config-data/
specpatches.

The !!HELLO_WORLD_CFLAGS!! in your new spec file is referred
to as a build variable. You can change the value of
HELLO_WORLD_CFLAGS by inserting another option in the ECD:

hello_world.ecd:

#ECD for Hello World.
146 Lineo Book Template

Place Product Name and Version Here Lineo 1.05a

Creating an ECD

May 10, 2002
<GROUP Custom>

<COMPONENT hello_world>

 SRPM=hello_world

 <SPECPATCH>hello_world.specpatch</
SPECPATCH>

 <HELP>This is my custom application.

 It's good!

 </HELP>

 TYPE=bool

 DEFAULT_VALUE=1

 PROMPT=Include custom application
hello_world?

 <PROVIDES>

 hello_world

 </PROVIDES>

 <REQUIRES>

 libc.so.6

 </REQUIRES>

 <KEEPLIST>

 /usr/bin/hello_world

 /usr/local/share/hello_world/
hello_world.cfg

 </KEEPLIST>

 STATIC_SIZE=0

 STORAGE_SIZE=26773

 STARTUP_TIME=0

<OPTION include-hello_world-help>

 TYPE=bool

 DEFAULT_VALUE=1
Appendix: Manual Method of Packaging 147

Place Product Name and Version Here Lineo 1.05a

Creating an ECD

May 10, 2002
 PROMPT=Include online help for hello_world?

 <HELP>If you have room for the online help,
you should probably include it. If you don't
include it hello_world will still work, but the
user might need to consult a hard copy manual.

 </HELP>

 <KEEPLIST>

 /usr/local/share/hello_world/
hello_world.help

 </KEEPLIST>

 STATIC_SIZE=0

 STORAGE_SIZE=7548

 STARTUP_TIME=0

</OPTION>

<OPTION hello_world-debug>

 TYPE=bool

 DEFAULT_VALUE=0

 PROMPT=Turn on debugging symbols for
hello_world?

 <HELP>

 You need these to follow what's going on
with a debugger.

 </HELP>

 <BUILD_VARS>

 HELLO_WORLD_CFLAGS="-g"

 </BUILD_VARS>

</OPTION>

</COMPONENT>

</GROUP>

148 Lineo Book Template

Place Product Name and Version Here Lineo 1.05a

Creating an ECD

May 10, 2002
Note that the SPECPATCH option contains hello_world.specpatch.
Now you have an option from Target Wizard to specify a build with
debugging symbols on.

Now suppose that you'd like to be able to specify more flags to the
compiler. Then you can do the following:

hello_world.spec:

%Build

%{DESTDIR}

CFLAGS="-O2 !!HELLO_WORLD_CFLAGS!!";export
CFLAGS

make

hello_world.ecd:

#ECD for Hello World.

<GROUP Custom>

<COMPONENT hello_world>

 SRPM=hello_world

 <SPECPATCH>hello_world.specpatch</
SPECPATCH>

 <HELP>This is my custom application.

 It's good!

 </HELP>

 TYPE=bool

 DEFAULT_VALUE=1

 PROMPT=Include custom application
hello_world?

 <PROVIDES>

 hello_world
Appendix: Manual Method of Packaging 149

Place Product Name and Version Here Lineo 1.05a

Creating an ECD

May 10, 2002
 </PROVIDES>

 <REQUIRES>

 libc.so.6

 </REQUIRES>

 <KEEPLIST>

 /usr/bin/hello_world

 /usr/local/share/hello_world/
hello_world.cfg

 </KEEPLIST>

 STATIC_SIZE=0

 STORAGE_SIZE=26773

 STARTUP_TIME=0

<OPTION include-hello_world-help>

 TYPE=bool

 DEFAULT_VALUE=1

 PROMPT=Include online help for hello_world?

 <HELP>If you have room for the online help,
you should probably include it. If you don't
include it hello_world will still work, but the
user might need to consult a hard copy manual.

 </HELP>

 <KEEPLIST>

 /usr/local/share/hello_world/
hello_world.help

 </KEEPLIST>

 STATIC_SIZE=0

 STORAGE_SIZE=7548

 STARTUP_TIME=0

</OPTION>

<OPTION hello_world-cflags>
150 Lineo Book Template

Place Product Name and Version Here Lineo 1.05a

Using a Tarfile, SRPM, or CVS Directory For Source

May 10, 2002
 TYPE=string

 DEFAULT_VALUE="-O2"

 PROMPT=Enter CFLAGS to control compile
options.

 <HELP>

Enter command line options to be passed to the
compiler:

 </HELP>

 <BUILD_VARS>

 HELLO_WORLD_CFLAGS="$VALUE"

 </BUILD_VARS>

</OPTION>

</COMPONENT>

</GROUP>

Summary

You can change the spec file of the package based on option values
viewed under Target Wizard.

Any configuration item that an environment variable can contain
can be placed in the Target Wizard Node list (and that should cover
almost all possible configuration options). Use this method
whenever you have a configuration that changes from target to
target.

Using a Tarfile, SRPM, or CVS Directory For Source
The Embedix SDK currently supports three forms of package
archives: tarfile, source RPM (SRPM), and CVS repository. The
preferred form is tarfile.

The archive (whichever one you choose) is placed in the directory
<project>/Packages/local.
Appendix: Manual Method of Packaging 151

Place Product Name and Version Here Lineo 1.05a

Using a Tarfile, SRPM, or CVS Directory For Source

May 10, 2002
Tarfile

Tarfiles are usually available for open source packages directly from
the Internet. If you have obtained a source tree in another form, or if
you are dealing with source that you have created yourself, then you
will need to make the tarfile yourself from the source directory tree.

A convention that is used in the industry is to include the version
number of the software in the tarfile name.

<program_name>-<program_version>.<file_type>

Notice that the program name and program version are separated by
a dash. For example, if the code you were making a tarfile for was the
“hello world” program, version 1.0, a good tarfile name would be:

hello-1.0.tgz

The extension in this case, is a gzip-compressed tarfile. The
extension .tgz is an abbreviation for tar.gz. The extensions .tgz,
.tar.gz, and .bz2 (bzip2 compressed tarfile) are all recognized by the
SDK build engine.

You can create a tarfile for a source directory tree by going to the root
of the tree and typing:

tar -czvf hello-1.0.tgz hello/*

The resulting archive “hello-1.0.tgz” should be placed in the
<project>/Packages/local directory.

SRPM

The SRPM file can be placed directly in the <project>/Packages/local
directory and, after creating the .lbc and .ecd files, the SRPM file
should be usable.

CVS Repository

The CVS repository can be specified in the %pkg_file section of the
.lbc file in the format:

CVSROOT=<directory>/package.
152 Lineo Book Template

Place Product Name and Version Here Lineo 1.05a

Creating an SRPM

May 10, 2002
The SDK will check out a current copy of the source code into the
build area and proceed with the build sequences.

Creating an SRPM
An SRPM file is generated by the RPM command. This is mostly for
legacy purposes, since the SDK makes it very easy to add simple tar
files using a .ecd, .lbc, and the source code. Building an SRPM
involves these steps:

1. Creating a tar file of your source

2. Creating a spec file

3. Placing these in the correct location on your computer (for
example, under /usr/src/OpenLinux if you are working on
OpenLinux 2.4)

4. Running rpm -ba package.spec, where package is the name of
your package

Note: For more information about the RPM suite and
SRPM files, you can check <www.rpm.org>.
Appendix: Manual Method of Packaging 153

Place Product Name and Version Here Lineo 1.05a

Creating an SRPM

May 10, 2002
154 Lineo Book Template

Place Product Name and Version Here Lineo 1.05a

IndexIndex
A
adding configurations 5
adding custom applications 5

B
buildcontrol

build sequence 130
file sections 126

C
commands

rpm 153
conventions used in manual v
creating ECDs 136
creating SRPMs 153
customizing a project 5

D
ddd 95
debugging overview 95
debugging tools 95
debugging tutorials

Additonal resources 113
Application debugging over IP 109
Application debugging over serial port

111
Kernel debugging at boot time 102
Kernel debugging started from the shell

105

Kernel module debugging 106
Overview 101

documentation conventions v

E
ECD, example 136
ECDs, creating 136
Embedix tool chains 58

G
gdb 95

L
lbc file sections

%bin 131
%bld_targ 131
%cfgopts 131
%cflags 131
%makeb 134
%makec 133
%makedc 135
%makei 134
%makep 132
%makerc 134
%makest 135
%patches 130
%pkg_file 130
%spec 131
bld_dir_name 131
Index 155

lbc file sections, explained 126

N
notes v

P
package

essential files 6, 125
project

customize 5

S
SRPMs

creating 153

T
tips v
tool chains 58

U
using tool chains 58

W
warnings v
156 Embedix SDK Tools

Lineo Book Template 1.04

	Embedix SDK 2.4 Tools
	About This Guide
	Conventions Used in This Document
	Admonitions
	Key Combinations
	Special Fonts and Capitalization

	Additional Resources

	Introduction to SDK Tools
	Embedix Target Wizard
	Package Editor
	Metrowerks CodeWarrior for Lineo Embedix SDK
	Data Display Debugger (DDD)
	Embedix GPL Compliance Toolset
	Graphical Remote Process Analyzer
	Helper Utilities

	Packaging with Package Editor
	What is an Embedix Package?
	Starting Package Editor
	From the Menu Bar
	From the Command Line

	Exploring the Interface
	Menus
	Shortcut Icons
	Tabs
	Log Window

	Overview to Creating a Package
	General Packaging Steps
	Tutorial: Creating a New Package
	Tutorial: Creating a Package for an Application from an External Source (like Open Source Applica...
	Tutorial: Creating Binary Packages to Use in Target Wizard

	Downloading the Source
	Unpacking the Source
	Modifying LBC Sections
	What is an LBC?
	LBC File Tab
	LBC File Sections
	LBC File Inheritance
	Build Variables in LBC Files

	Modifying ECD Files
	What is an ECD?
	ECD File Tab
	Why and How to Use ECD
	Build Variables in ECD Files

	Modifying Source Files
	Source Tab
	Using an External Text Editor
	Other Options
	Viewing “Diffs” and Making Patches
	Installing Patches from External Sources

	Building the Binary Image
	Installing the Package
	Distributing Packages as LPF Files
	Using the Embedix Tool Chains

	Configuring & Using Metrowerks CodeWarrior with Embedix SDK
	Configuring CodeWarrior for Lineo Embedix SDK 2.x
	Embedix SDK Installation Options
	Post-install SDK Configurations
	CodeWarrior Installation and Initial Configuration
	Common Global Configuration Options for CodeWarrior
	Recording Embedix SDK Tools Setting
	CodeWarrior Per Project Configuration Options
	Library and Include Files
	Output Directory
	Useful Output Directory Locations:
	Debugger
	Compiler Command Line Arguments
	Linker
	Configure CodeWarrior to Use the Right GNU Tools
	Configure CodeWarrior to Recognize *.ecd and *.lbc Files
	Creating Project “Stationery” Files
	Adding New Tools to the CodeWarrior Menus

	Using CodeWarrior with Embedix SDK

	Debugging Using GDB and DDD
	Understanding Remote Debugging
	Using DDD and GDB from Target Wizard's Tools Menu
	Launching DDD
	GDBs Used by the SDK
	Manual Execution of DDD
	Using DDD
	Editor Configuration
	Web Browser Configuration
	Tip of the Day
	Warning

	Overview of Debugging an Embedix Target Image
	Kernel Debugging at Boot Time
	Kernel Debugging—Started from the Shell
	Kernel Module Debugging
	Application Debugging over IP
	Application Debugging over Serial Port
	Additional Resources

	Helper Utilities
	Building
	Privileges
	Deployment
	emb_build
	emb_mkproj
	suwrapper
	suwrapper.conf
	tcconfig

	What is an Embedix Package?
	Creating an LBC
	Buildcontrol File Features
	Buildcontrol File Sections
	Buildcontrol Inheritance
	Build Phases
	%pkg_file
	%patches
	%bld_dir_name
	%cflags
	%cfgopts
	%spec
	%bin
	%bld_targ
	%makep
	%makec
	%makerc
	%makeb
	%makei
	%makest
	%makedc

	Creating an ECD
	A Typical ECD File
	Build Options in an ECD
	Creating a Specpatch File
	Summary

	Using a Tarfile, SRPM, or CVS Directory For Source
	Tarfile
	SRPM
	CVS Repository

	Creating an SRPM

	Index

