The raw data contained within a BFD is maintained through the section abstraction. A single BFD may have any number of sections. It keeps hold of them by pointing to the first; each one points to the next in the list.
Sections are supported in BFD in section.c
.
When a BFD is opened for reading, the section structures are created and attached to the BFD.
Each section has a name which describes the section in the
outside world--for example, a.out
would contain at least
three sections, called .text
, .data
and .bss
.
Names need not be unique; for example a COFF file may have several
sections named .data
.
Sometimes a BFD will contain more than the "natural" number of
sections. A back end may attach other sections containing
constructor data, or an application may add a section (using
bfd_make_section
) to the sections attached to an already open
BFD. For example, the linker creates an extra section
COMMON
for each input file's BFD to hold information about
common storage.
The raw data is not necessarily read in when
the section descriptor is created. Some targets may leave the
data in place until a bfd_get_section_contents
call is
made. Other back ends may read in all the data at once. For
example, an S-record file has to be read once to determine the
size of the data. An IEEE-695 file doesn't contain raw data in
sections, but data and relocation expressions intermixed, so
the data area has to be parsed to get out the data and
relocations.
To write a new object style BFD, the various sections to be
written have to be created. They are attached to the BFD in
the same way as input sections; data is written to the
sections using bfd_set_section_contents
.
Any program that creates or combines sections (e.g., the assembler
and linker) must use the asection
fields output_section
and
output_offset
to indicate the file sections to which each
section must be written. (If the section is being created from
scratch, output_section
should probably point to the section
itself and output_offset
should probably be zero.)
The data to be written comes from input sections attached
(via output_section
pointers) to
the output sections. The output section structure can be
considered a filter for the input section: the output section
determines the vma of the output data and the name, but the
input section determines the offset into the output section of
the data to be written.
E.g., to create a section "O", starting at 0x100, 0x123 long,
containing two subsections, "A" at offset 0x0 (i.e., at vma
0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the asection
structures would look like:
section name "A" output_offset 0x00 size 0x20 output_section -----------> section name "O" | vma 0x100 section name "B" | size 0x123 output_offset 0x20 | size 0x103 | output_section --------|
The data within a section is stored in a link_order.
These are much like the fixups in gas
. The link_order
abstraction allows a section to grow and shrink within itself.
A link_order knows how big it is, and which is the next link_order and where the raw data for it is; it also points to a list of relocations which apply to it.
The link_order is used by the linker to perform relaxing on final code. The compiler creates code which is as big as necessary to make it work without relaxing, and the user can select whether to relax. Sometimes relaxing takes a lot of time. The linker runs around the relocations to see if any are attached to data which can be shrunk, if so it does it on a link_order by link_order basis.
Here is the section structure:
typedef struct sec { /* The name of the section; the name isn't a copy, the pointer is the same as that passed to bfd_make_section. */ CONST char *name; /* Which section is it; 0..nth. */ int index; /* The next section in the list belonging to the BFD, or NULL. */ struct sec *next; /* The field flags contains attributes of the section. Some flags are read in from the object file, and some are synthesized from other information. */ flagword flags; #define SEC_NO_FLAGS 0x000 /* Tells the OS to allocate space for this section when loading. This is clear for a section containing debug information only. */ #define SEC_ALLOC 0x001 /* Tells the OS to load the section from the file when loading. This is clear for a .bss section. */ #define SEC_LOAD 0x002 /* The section contains data still to be relocated, so there is some relocation information too. */ #define SEC_RELOC 0x004 #if 0 /* Obsolete ? */ #define SEC_BALIGN 0x008 #endif /* A signal to the OS that the section contains read only data. */ #define SEC_READONLY 0x010 /* The section contains code only. */ #define SEC_CODE 0x020 /* The section contains data only. */ #define SEC_DATA 0x040 /* The section will reside in ROM. */ #define SEC_ROM 0x080 /* The section contains constructor information. This section type is used by the linker to create lists of constructors and destructors used byg++
. When a back end sees a symbol which should be used in a constructor list, it creates a new section for the type of name (e.g.,__CTOR_LIST__
), attaches the symbol to it, and builds a relocation. To build the lists of constructors, all the linker has to do is catenate all the sections called__CTOR_LIST__
and relocate the data contained within - exactly the operations it would peform on standard data. */ #define SEC_CONSTRUCTOR 0x100 /* The section is a constuctor, and should be placed at the end of the text, data, or bss section(?). */ #define SEC_CONSTRUCTOR_TEXT 0x1100 #define SEC_CONSTRUCTOR_DATA 0x2100 #define SEC_CONSTRUCTOR_BSS 0x3100 /* The section has contents - a data section could beSEC_ALLOC
|SEC_HAS_CONTENTS
; a debug section could beSEC_HAS_CONTENTS
*/ #define SEC_HAS_CONTENTS 0x200 /* An instruction to the linker to not output the section even if it has information which would normally be written. */ #define SEC_NEVER_LOAD 0x400 /* The section is a COFF shared library section. This flag is only for the linker. If this type of section appears in the input file, the linker must copy it to the output file without changing the vma or size. FIXME: Although this was originally intended to be general, it really is COFF specific (and the flag was renamed to indicate this). It might be cleaner to have some more general mechanism to allow the back end to control what the linker does with sections. */ #define SEC_COFF_SHARED_LIBRARY 0x800 /* The section contains common symbols (symbols may be defined multiple times, the value of a symbol is the amount of space it requires, and the largest symbol value is the one used). Most targets have exactly one of these (which we translate to bfd_com_section_ptr), but ECOFF has two. */ #define SEC_IS_COMMON 0x8000 /* The section contains only debugging information. For example, this is set for ELF .debug and .stab sections. strip tests this flag to see if a section can be discarded. */ #define SEC_DEBUGGING 0x10000 /* The contents of this section are held in memory pointed to by the contents field. This is checked by bfd_get_section_contents, and the data is retrieved from memory if appropriate. */ #define SEC_IN_MEMORY 0x20000 /* The contents of this section are to be excluded by the linker for executable and shared objects unless those objects are to be further relocated. */ #define SEC_EXCLUDE 0x40000 /* The contents of this section are to be sorted by the based on the address specified in the associated symbol table. */ #define SEC_SORT_ENTRIES 0x80000 /* When linking, duplicate sections of the same name should be discarded, rather than being combined into a single section as is usually done. This is similar to how common symbols are handled. See SEC_LINK_DUPLICATES below. */ #define SEC_LINK_ONCE 0x100000 /* If SEC_LINK_ONCE is set, this bitfield describes how the linker should handle duplicate sections. */ #define SEC_LINK_DUPLICATES 0x600000 /* This value for SEC_LINK_DUPLICATES means that duplicate sections with the same name should simply be discarded. */ #define SEC_LINK_DUPLICATES_DISCARD 0x0 /* This value for SEC_LINK_DUPLICATES means that the linker should warn if there are any duplicate sections, although it should still only link one copy. */ #define SEC_LINK_DUPLICATES_ONE_ONLY 0x200000 /* This value for SEC_LINK_DUPLICATES means that the linker should warn if any duplicate sections are a different size. */ #define SEC_LINK_DUPLICATES_SAME_SIZE 0x400000 /* This value for SEC_LINK_DUPLICATES means that the linker should warn if any duplicate sections contain different contents. */ #define SEC_LINK_DUPLICATES_SAME_CONTENTS 0x600000 /* This section was created by the linker as part of dynamic relocation or other arcane processing. It is skipped when going through the first-pass output, trusting that someone else up the line will take care of it later. */ #define SEC_LINKER_CREATED 0x800000 /* End of section flags. */ /* Some internal packed boolean fields. */ /* See the vma field. */ unsigned int user_set_vma : 1; /* Whether relocations have been processed. */ unsigned int reloc_done : 1; /* A mark flag used by some of the linker backends. */ unsigned int linker_mark : 1; /* End of internal packed boolean fields. */ /* The virtual memory address of the section - where it will be at run time. The symbols are relocated against this. The user_set_vma flag is maintained by bfd; if it's not set, the backend can assign addresses (for example, ina.out
, where the default address for.data
is dependent on the specific target and various flags). */ bfd_vma vma; /* The load address of the section - where it would be in a rom image; really only used for writing section header information. */ bfd_vma lma; /* The size of the section in bytes, as it will be output. contains a value even if the section has no contents (e.g., the size of.bss
). This will be filled in after relocation */ bfd_size_type _cooked_size; /* The original size on disk of the section, in bytes. Normally this value is the same as the size, but if some relaxing has been done, then this value will be bigger. */ bfd_size_type _raw_size; /* If this section is going to be output, then this value is the offset into the output section of the first byte in the input section. E.g., if this was going to start at the 100th byte in the output section, this value would be 100. */ bfd_vma output_offset; /* The output section through which to map on output. */ struct sec *output_section; /* The alignment requirement of the section, as an exponent of 2 - e.g., 3 aligns to 2^3 (or 8). */ unsigned int alignment_power; /* If an input section, a pointer to a vector of relocation records for the data in this section. */ struct reloc_cache_entry *relocation; /* If an output section, a pointer to a vector of pointers to relocation records for the data in this section. */ struct reloc_cache_entry **orelocation; /* The number of relocation records in one of the above */ unsigned reloc_count; /* Information below is back end specific - and not always used or updated. */ /* File position of section data */ file_ptr filepos; /* File position of relocation info */ file_ptr rel_filepos; /* File position of line data */ file_ptr line_filepos; /* Pointer to data for applications */ PTR userdata; /* If the SEC_IN_MEMORY flag is set, this points to the actual contents. */ unsigned char *contents; /* Attached line number information */ alent *lineno; /* Number of line number records */ unsigned int lineno_count; /* When a section is being output, this value changes as more linenumbers are written out */ file_ptr moving_line_filepos; /* What the section number is in the target world */ int target_index; PTR used_by_bfd; /* If this is a constructor section then here is a list of the relocations created to relocate items within it. */ struct relent_chain *constructor_chain; /* The BFD which owns the section. */ bfd *owner; /* A symbol which points at this section only */ struct symbol_cache_entry *symbol; struct symbol_cache_entry **symbol_ptr_ptr; struct bfd_link_order *link_order_head; struct bfd_link_order *link_order_tail; } asection ; /* These sections are global, and are managed by BFD. The application and target back end are not permitted to change the values in these sections. New code should use the section_ptr macros rather than referring directly to the const sections. The const sections may eventually vanish. */ #define BFD_ABS_SECTION_NAME "*ABS*" #define BFD_UND_SECTION_NAME "*UND*" #define BFD_COM_SECTION_NAME "*COM*" #define BFD_IND_SECTION_NAME "*IND*" /* the absolute section */ extern const asection bfd_abs_section; #define bfd_abs_section_ptr ((asection *) &bfd_abs_section) #define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr) /* Pointer to the undefined section */ extern const asection bfd_und_section; #define bfd_und_section_ptr ((asection *) &bfd_und_section) #define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr) /* Pointer to the common section */ extern const asection bfd_com_section; #define bfd_com_section_ptr ((asection *) &bfd_com_section) /* Pointer to the indirect section */ extern const asection bfd_ind_section; #define bfd_ind_section_ptr ((asection *) &bfd_ind_section) #define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr) extern const struct symbol_cache_entry * const bfd_abs_symbol; extern const struct symbol_cache_entry * const bfd_com_symbol; extern const struct symbol_cache_entry * const bfd_und_symbol; extern const struct symbol_cache_entry * const bfd_ind_symbol; #define bfd_get_section_size_before_reloc(section) \ (section->reloc_done ? (abort(),1): (section)->_raw_size) #define bfd_get_section_size_after_reloc(section) \ ((section->reloc_done) ? (section)->_cooked_size: (abort(),1))
These are the functions exported by the section handling part of BFD.
bfd_get_section_by_name
Synopsis
asection *bfd_get_section_by_name(bfd *abfd, CONST char *name);
Description
Run through abfd and return the one of the
asection
s whose name matches name, otherwise NULL
.
@xref{Sections}, for more information.
This should only be used in special cases; the normal way to process
all sections of a given name is to use bfd_map_over_sections
and
strcmp
on the name (or better yet, base it on the section flags
or something else) for each section.
bfd_make_section_old_way
Synopsis
asection *bfd_make_section_old_way(bfd *abfd, CONST char *name);
Description
Create a new empty section called name
and attach it to the end of the chain of sections for the
BFD abfd. An attempt to create a section with a name which
is already in use returns its pointer without changing the
section chain.
It has the funny name since this is the way it used to be before it was rewritten....
Possible errors are:
bfd_error_invalid_operation
-
If output has already started for this BFD.
bfd_error_no_memory
-
If memory allocation fails.
bfd_make_section_anyway
Synopsis
asection *bfd_make_section_anyway(bfd *abfd, CONST char *name);
Description
Create a new empty section called name and attach it to the end of
the chain of sections for abfd. Create a new section even if there
is already a section with that name.
Return NULL
and set bfd_error
on error; possible errors are:
bfd_error_invalid_operation
- If output has already started for abfd.
bfd_error_no_memory
- If memory allocation fails.
bfd_make_section
Synopsis
asection *bfd_make_section(bfd *, CONST char *name);
Description
Like bfd_make_section_anyway
, but return NULL
(without calling
bfd_set_error ()) without changing the section chain if there is already a
section named name. If there is an error, return NULL
and set
bfd_error
.
bfd_set_section_flags
Synopsis
boolean bfd_set_section_flags(bfd *abfd, asection *sec, flagword flags);
Description
Set the attributes of the section sec in the BFD
abfd to the value flags. Return true
on success,
false
on error. Possible error returns are:
bfd_error_invalid_operation
-
The section cannot have one or more of the attributes
requested. For example, a .bss section in a.out
may not
have the SEC_HAS_CONTENTS
field set.
bfd_map_over_sections
Synopsis
void bfd_map_over_sections(bfd *abfd, void (*func)(bfd *abfd, asection *sect, PTR obj), PTR obj);
Description
Call the provided function func for each section
attached to the BFD abfd, passing obj as an
argument. The function will be called as if by
func(abfd, the_section, obj);
This is the prefered method for iterating over sections; an alternative would be to use a loop:
section *p; for (p = abfd->sections; p != NULL; p = p->next) func(abfd, p, ...)
bfd_set_section_size
Synopsis
boolean bfd_set_section_size(bfd *abfd, asection *sec, bfd_size_type val);
Description
Set sec to the size val. If the operation is
ok, then true
is returned, else false
.
Possible error returns:
bfd_error_invalid_operation
-
Writing has started to the BFD, so setting the size is invalid.
bfd_set_section_contents
Synopsis
boolean bfd_set_section_contents (bfd *abfd, asection *section, PTR data, file_ptr offset, bfd_size_type count);
Description
Sets the contents of the section section in BFD
abfd to the data starting in memory at data. The
data is written to the output section starting at offset
offset for count bytes.
Normally true
is returned, else false
. Possible error
returns are:
bfd_error_no_contents
-
The output section does not have the SEC_HAS_CONTENTS
attribute, so nothing can be written to it.
This routine is front end to the back end function
_bfd_set_section_contents
.
bfd_get_section_contents
Synopsis
boolean bfd_get_section_contents (bfd *abfd, asection *section, PTR location, file_ptr offset, bfd_size_type count);
Description
Read data from section in BFD abfd
into memory starting at location. The data is read at an
offset of offset from the start of the input section,
and is read for count bytes.
If the contents of a constructor with the SEC_CONSTRUCTOR
flag set are requested or if the section does not have the
SEC_HAS_CONTENTS
flag set, then the location is filled
with zeroes. If no errors occur, true
is returned, else
false
.
bfd_copy_private_section_data
Synopsis
boolean bfd_copy_private_section_data(bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
Description
Copy private section information from isec in the BFD
ibfd to the section osec in the BFD obfd.
Return true
on success, false
on error. Possible error
returns are:
bfd_error_no_memory
-
Not enough memory exists to create private data for osec.
#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \ BFD_SEND (obfd, _bfd_copy_private_section_data, \ (ibfd, isection, obfd, osection))
This document was generated on 7 April 1999 using the texi2html translator version 1.52.